CHEMISTRY.

XII STD : $\underline{\mathit{INDEX}}$

A- THEORY

UNIT NO	TITLE	Suggested No. of Periods
	Inorganic Chemistry	
I	Atomic Structure II	5
II	Periodic Table	5
III	p – block elements	7
IV	d – block elements	12
V	f – block elements	4
VI	Co-ordination compounds &	
	bio co-ordination compounds	5
VII	Nuclear Chemistry	4
	Physical Chemistry	
VIII	Solid state	5
IX	Thermodynamics II	6
Х	Chemical equilibrium II	4
XI	Chemical Kinetics II	5
XII	Surface Chemistry	5
XIII	Electro chemistry I	8
XIV	Electro chemistry II	5
	Organic Chemistry	
XV	Isomerism in Organic Chemistry	5
XVI	Hydroxy derivatives	8
XVII	Ethers	4
XVIII	Carbonyl Compounds	10
XIX	Carboxylic acid	10
XX	Organic Nitrogen Compounds	8
XXI	Bio molecules	5
XXII	Chemistry in Action	5
XXIII	Problems in Chemistry	5
	Total No. of Periods	140

B- PRACTICAL (As Found in the Syllabus)

UNIT -I. Atomic Structure -II

EXPECTED SPECIFIC OUTCOME OF LEARNING	CONTENT IN TERMS OF CONCEPTS	CURRICULUM TRANSACTIONAL STRATEGIES	ILLUSTRATIONS	EVALUATION	SUGGE STED NO. OF PERIOD S
Recognises the dual properties of electron.	1.1 Dual properties of electrons	Particle and wave properties of electron is impressed.	Tabulate the name of experiments to prove particles and wave property of electrons.	Mention the methods to prove the properties of electron.	
Understands the de-Broglie relation.	1.2 de-Broglie relation.	de-Broglie relation ? =h/mv. Significance and problems.	Impresses dual properties of electrons.	Given the speed of light as 3.0x10 ⁸ m/s and the electron mass as 9.1x10 ²⁸ g. Calculate the de-Broglie wave length for an electron travelling at 1% the speed of rate	
Recognises Heirsenberg's Uncertainity principle	1.3 Heisenberg's uncertainity principle	Principle underlying Heisenberg's uncertainity principle.	Uncertainity in position and velocity is explained	State and explain Heisenberg's uncertainity principle.	
Proposes wave nature of an electron.	1.4 wave nature of an electron.	Mathematical equations used to describe wave motion of an electron is explained.	Electron wave principle – moving or running wave.	Explain wave nature of an electron	
Introduces schrodinger wave equation.	1.5 Schrodinger wave equation .(only equation, no derivation)	Parameters in schrodinger wave equation is explained.	Application of schrodinger wave equation to find out symmetry and shape of orbitals.	Write schrodinger wave equation and explain principle involved in it.	
Learns eigen values and eigen functions.	1.6 Eigen values and Eigen functionsignificant only.	Only significances of eigen values and eigen functions are impressed.	Applications of Eigen value and Eigen function	Write briefly on meaning and significance of Eigen values and Eigen function	
Proposes molecular orbitals	1.7 molecular orbital method. Application to homo diatomic and Hetero diatomic molecules.	Indicate bonding and anti bonding. Molecular orbitals and their relative energies	M.O Diagram for Hydrogen molecules, Nitrogen molecules Oxygen molecules, and NO molecules	Construct M.O diagram for Oxygen molecule and indicate whether it is para or dia-magnetic. And bondorder.	
Introduces metallic bonding	1.8 Metallic Bond	Simple theories Drude and Band theory -Elementary Treatment	Application of Band theory	Write briefly on band theory of metals.	

Analyses Hybridisation	1.9 Hybridization of atomic orbitals	Hybridization involving s,p, and d Orbitals.	Sp³,dsp², d² sp³, hybridization and their corresponding shapes.	Indicate the shape of the molecules formed through dsp ² and d ² sp ³ hybridization.
Recognises the types of forces between molecules.	1.10 Types of forces between molecules.	Vanderwalls force, dipole –dipole interactions, Hydrogen bond.	Weak forces of attraction between molecules are impressed	Metion different types of forces exist between molecules?
Unit – II. Period	 ic classification-l			
Recalls the periodic properties	2.1 Review of periodic properties.	Trends in various periodic properties are impressed.		
Learns calculation of atomic radii, ionic radii.	22 Calculation atomic radii.	Calculation of atomic radii from covalent bond length.	Specific examples of bond length.	How is atomic radii calculated from covalent bond length?
	2.2.1Calculation of ionic radii	lonic radii from Pauling and Slatter's rule is explained.	Specific examples of calculating cationic and anionic radii.	How ionic radii is calculated from effective nuclear charge and screening constant?
Analyses ionisation potential and the method to determine IE and the factors affecting IE.	2.3 Method of determination of lonisation potential.	Mention the name of the method for the calculation of IE.	Differentiate I, II and III ionisation potential.	Why III IE is far greater than II. IE?
_	2.3.1 Factors affecting ionisation potential	Effect of nuclear charge, atomic radii and screening effect upon ionisation energy.	Explain the concept with specific examples.	Why IE decreases down the group?
Understands the method to determine electron affinity and the factors affecting them.	2.4 Method to determine the electron affinity 2.4.1 Factors affecting EA.	Mention the name of the method only Effect of nuclear charge, atomic radii and screening effect upon EA.	Among the elements in the periodic table, elements having highest EA and lowest EA. Explanation through specific examples	Explain the various factors affecting that affects electron affinity?
Analyses the various scales	2.5 Various scales on	Pauling and mullikan's scales	Sample calculations	How electro negativity values help to find out

on electro	electro	are briefly	through simple	nature of bonding
negativity.	negativity values.	explained.	relations.	between atoms?
UNIT III p-BL	OCK ELEMENTS	<u>- II</u>		
Recognises the general trends	3.1 Group -13 General trends	Brief idea about trends in various	Tabulate various properties	
general trends	General trends	physical properties	properties	
Understands	3.1.1 Potash	Any one method of	Preparation,	How potash alum is
the preparation,	alum-	preparation,	properties are	prepared? Mention its
properties and	Preparation,	chemical properties	explained through	uses.
uses of potash alum	Properties uses	and uses	equations	
Recognises the	3.2 Group 14	Brief idea about	Tabulate various	
general trends	General trends	trends in various properties	properties	
Learns silicates	3.2.1 Silicates -	Various types of	Explanation	Give an example of
	Types and structure	silicates and related structures	through specific examples	two dimensional and three dimensional
	Structure	are explained	examples	silicates?
Recognises the	3.2.2 Silicones	Explains - different	Importance of	What are silicones?
structures and	- Structure and	types of silicones	silicones in day	Mention their important
uses of silicones	uses	and their corresponding	today life.	uses?
SIIICOHES		structures.		
Understands	3.2.3	Method of	Flow chart of	How is very pure lead
the extraction	Extraction of	extraction of lead	metallurgy of lead.	extracted from its
of lead	lead	from its sulphide ore is explained.		sulphide ore?
		The role of lead in		
		industries, plumbo		
		solvency is		
Recalls the	3.3 Group - 15.	explained Brief idea about	Tabulates various	
general trends.	General trends	trends in various	properties	
		properties		
Knowledge	3.3.1	Explain various	Importance of	Explain different
about allotropy and the	Phosphorous - Allotropes and	allotropes of phosphorous and	phosphorous in industry	allotropes of phosphorous.
extraction of	extraction	compare their	i idusti y	priospriorous.
phosphorous		properties		
Recognises the	3.3.2	Halides, oxides,	Explains	How are P ₂ O ₃ , P ₂ O ₅
compounds of phosphorous.	Compounds of phosphorous	oxyacids and hydride of	preparation and properties through	prepared from phosphorous?
priospriorous.	ριιοσριιοίουσ	phosphorous -	equations and	Mention their important
		preparation,	structures through	properties.
		properties, uses	diagrams.	
		and structure is explained.		
		oxpiairioa.		
Recalls the	3.4 Group - 16.	Brief idea about	Tabulate various	
general ideas.	General trends	trends in various	properties.	
		properties.		

general characteristics and properties characteristics. Physical and Chemical properties and solubility of halides in water, different oxidation states of halides in water, different oxidation of fluorine and its properties in groperty of fluorine, itching property of fluorine, itching property of fluorine, itching property of fluorine, itching property of fluorine, itching property. Understands as a compounds of tructure are substance of inert gases. Isolation of inert gases in inert gases. Isolation of inert gases in industry. Xenon UNIT IV d - BLOCK ELEMENTS Proposes the general characteristics of halogens. 4.1 General characteristics of halides Nature of four transition series, electronic configuration atomic and ionic radii, metallic characteristics. origination of alloys, oxidation number and variable valency. Understands 4.2 First	Understands the manufacture and properties of H ₂ SO ₄ .	3.4.1 H ₂ SO ₄ - Manufacture and properties.	General outline of manufacture of H ₂ SO ₄ and its reactions with metals and nonmetals.	Explains property through equations	How is H₂SO₄ manufactured ?
isolation of fluorine and its properties. Understands about inter halogen compounds Recognises the importance of inert gases. Proposes the general characteristics of d-block elements UNIT IV d - BLOCK ELEMENTS Proposes the general characteristics of d-block elements Offluorine and its properties and its properties and structure are sold its properties and uses UNIT IV d - BLOCK ELEMENTS Nature of four transition series, formation, magnetic properties, complex formation, magnetic properties, oxidation number and variable valency. Understands 4.2 First	Understands general characteristics and properties	General characteristics. Physical and Chemical	electronic configuration, oxidation power of halogens, anamolous nature of fluorine, nature and solubility of halides in water, different oxidation		general characteristics
about inter halogen compounds structure are explained. Recognises the importance of inert gases. Recognises the importance of inert gases in inclustry. Recognises the importance of inert gases in industry. Recognises the inert gases in industry. Recognise inert gases in industry. Recogni	Recognises the isolation of fluorine and its properties.	of fluorine and	flourides to produce fluorine, itching	fluorine through	isolated from their fluorides? Mention the
importance of inert gases. Inert gases - Isolation, properties and uses UNIT IV d - BLOCK ELEMENTS Proposes the general characteristics of d-block elements 4.1 General characteristics of d-block elements Configuration atomic and ionic radii, metallic character, coloured ion formation, magnetic properties, formation, magnetic properties, oxidation number and variable valency. Understands Inert gases - Isolation of inert gases. Importance of noble gases in industry. Isolation of inert gases. Importance of noble gases in industry. Tabulate the physical properties and general characteristics. Froposes the general characteristics of d-block elements Inouter gases are isolated from air. Tabulate the physical properties and general characteristics. Explain their general characteristics.	Understands about inter halogen compounds	Interhalogen compounds	properties and structure are explained.	equations. Structure through diagrams	compounds? How are they prepared.
Proposes the general characteristics of d-block elements 4.1 General characteristics of d-block elements Anture of four transition series, electronic configuration atomic and ionic radii, metallic character, coloured ion formation, catalytic properties, complex formation, magnetic properties, oxidation number and variable valency. Understands 4.2 First Nature of four transition series, electronic configuration atomic series are there in d-block elements? Explain their general characteristics. How many transition series and general characteristics. Explain their general characteristics.	importance of inert gases.	Inert gases - Isolation, properties and uses	gases from air, preparation, properties of compounds of	Isolation of inert gases. Importance of noble gases in	noble gases are
general characteristics of d-block elements characteristics electronic configuration atomic and ionic radii, metallic character, coloured ion formation, catalytic properties, complex formation, magnetic properties, formation of alloys, oxidation number and variable valency. Characteristics electronic configuration atomic and ionic radii, metallic characteristics. Series are there in d-block elements? Explain their general characteristics. Understands 4.2 First	UNIT IV d - BLO	OCK ELEMENTS			
the extraction of I transition series	Proposes the general characteristics of d-block elements	characteristics of d-block elements	transition series, electronic configuration atomic and ionic radii, metallic character, coloured ion formation, catalytic properties, complex formation, magnetic properties, formation of alloys, oxidation number and variable	physical properties and general	series are there in d- block elements? Explain their general
uid dauguuti oli ualigiuuti gelieg	the extraction of	transition series			

the extraction of chromium, copper and zinc.	4.2.1 Occurrence and principles of extraction - chromium, copper and zinc - Alloys.	General methods of extraction, purification and properties. Name and uses of alloys.	Explain reactions through equations. Metallurgy through flow chart. Table of characteristics of alloys.	How is very pure chromium extracted from its oxide ores? Mention any two alloys of chromium and their uses.
Recognises the extration of	4.3 Second transition series			
silver	4.3.1 Occurrence and principles of extraction of silver	General methods of extraction and purification of silver from its ore and properties. Spitting of Silver. Extraction of silver from silver coins.	Explain reactions through equations. Metallurgy through flowchart.	How is silver extracted from its sulphide ore? Write a note on spitting of silver.
Proposes the extraction of	4.4 Third transition series			
gold.		General methods of extraction of gold from gold bearing rocks. Gold plating, properties of gold, reactions with aqua regia.	Explain metallurgy through flow chart and properties through equations	How is gold extracted from gold bearing rocks?
Recognises the importance of compounds of transition metal.	4.5 Compounds - K ₂ Cr ₂ O ₇ , CuSO ₄ 5H ₂ O, AgNO ₃ , Hq ₂ Cl ₂ , ZnCO ₃ , Purple of cassius.	Methods of preparation, properties and uses	Explain preparation and properties through equations.	How is K ₂ Cr ₂ O ₇ prepared from the chrome iron ore?
UNIT - V f-block				
Learns the general characteristics of f-block elements & extraction.	5.1 General characteristics of f-block elements and extraction.	Electronic configuration, oxidation state, ionic radii of trivalent lanthanide ions Extraction from monozite.	Tabulate general characteristics of f-block elements. Give a flowchart.	Describe in detail general characteristics of f-block elements. Give an account on lanthanide contraction and its consequences.
Proposes the comparision of lanthanides and actinides	5.2 Comparison of Lanthanides and Actinides.	Comparison of properties of Lanthanides and Actinides.	Tabulate the comparison of lanthanides and actinides.	Compare the properties of lanthanides and actinides.
Recognises the uses of lanthanides and actinides.	5.3 Uses of lanthanides and actinides	Uses of lanthanides and actinides are emphasised.	Tabulate the uses of lanthanides and actinides.	Mention any three uses of lanthanides and actninides.

UNIT - VI COORDINATION COMPOUNDS AND BIO-COORDINATION COMPOUNDS

Learns coordination compounds	6.1 An introduction	Explanation of simple salts, double salts and complex salts.	Representation of salts through chemical formula	Give one example each for double salt and complex salt? In what way complex salt differs from double salt?
Proposes the terminology in co- ordination chemistry	6.2 Terminology in coordination chemistry	Defines and explains ligands, central metal ion, coordination number, charge on complex ion, oxidation state of central metal ion, chelates	Explains the different types of ligands including chelating legand.	What are ligands and coordination number?
Proposes IUPAC nomenclature of coordination compounds	6.3 IUPAC nomenclature of mononuclear coordination compounds	Latest nomenclature of coordination compounds by emphasising alphabetical order.	Naming cationic complex, anionic complex and neutral complex.	Give the formula of the following complex compounds. 1.Potassium hexacyano ferrate(II) 2.Tetramminecopp er(II) sulphate
Recognises isomerism in coordination compounds	6.4 Isomerism in coordination compounds	Importance of isomerism is explained		
Proposes structural isomerism	6.4.1 Structural isomerism	Gives specific examples with formulae	Chart showing different structural isomers	Find the type of isomerism in the following compounds [Fe(NH ₃) ₂ Cl ₂]NO ₃
Learns geometrical isomerism in coordination compounds	6.4.2 Geometrical isomerism in 4 - coordinate, 6 – coordinate complexes	Any two specific examples	Diagrammatic representation of Geometrical isomerism.	Write structure for cis and trans diammine dichloroplatinum(II)
Recognises the theories of coordination compounds	6.5 Theories on coordination compounds			
	6.5.1 Werner's theory (brief)	Brief concept of Werner's theory		Write briefly on Werner's theory of coordination compounds.
	6.5.2 Valence Bond theory	Postulates with one para	Orbital diagrammatic	Using VB theory prove [FeF ₆] ⁴⁻ is

		magnetic and one diamagnetic complexes	representation Explains shape and magnetic properties.	para magnetic whereas [Fe(CN) ₆)] ⁴⁻ is diamagnetic. Predict their shapes.
	6.5.3 Crystal field theory	Brief concept of crystal field theory	Proposes only elementary idea	Compare VB theory and crystal field theories
Analyses the importance of the coordination compounds	6.6 Uses of coordination compounds	Role of coordination compounds in analysis is explained.	Importance of coordination compounds	Mention the uses of coordination compounds
Learns about Bio coordination compounds	6.7 Bio- coordination compounds Haemoglobin and chlorophyll	Brief explanation of haemoglobin and chlorophyll mentioning the central metal ion and ligand system.	Role of Haemoglobin and chlorophyll - tabulated.	Mention the central metal ion and ligands present in haemoglobin and in chlorophyll.

UNIT -VII. Nuclear chemistry

Proposes about Nuclear chemistry	7 Nuclear chemistry	Brief explanation of nuclear reactions.			
Learns nuclear fission and fusion	7.1 nuclear energy nuclear fission and fusion	Brief explanation of nuclear fission and its application to nuclear power generation fusion reaction	Diagrammatic representation of nuclear reactions	Write briefly on nuclear fission and nuclear fusion.	
Recognises radio carbon dating	7.2 Radio carbon dating	Brief explanation of the method	Write simple representation through skeleton equation	Write briefly on radio carbon dating.	
Knowledge about sun	7.3 Nuclear reaction in sun	Mention the types of nuclear reactions taking place in sun.	Tabulate the reactions.	Mention the types of reactions take place in sun.	
Recognises the uses	7.4 uses of radioactive isotopes	Explains the application in medicine, industry and in analyses	Tabulate the uses	Mention the uses of radioactive isotopes	

UNIT -VIII. Solid state II

Learns the packing of atoms in crystals.	8.1 Types of packing in crystals.	bcc, fcc arrangements	Diagrammatic representation of bcc & fcc arrangements	Explain different types of packing of atoms in crystals.
Analyses the X-Ray crystal structure.	8.2 X-Ray crystal structure.	Bragg's equation(no derivation) Brief explanation of the method	Explain the significance of Bragg's equation and the Bragg's method	Write briefly on Bragg's method of determining crystal structure
Recognises the types of crystals	8.3 types of ionic crystals	AB and AB ₂ types with simple explanation	Significance of AB and AB ₂ types	Give examples of crystals which follow AB and AB ₂ types
Learns the imperfection in solids	8.4 Imperfections in solids	Schotky, Frenkel defects – elementary idea.	Diagrammatic representation	Explain different imperfections
Proposes the properties of crystals	8.5 Properties of crystalline solids	Elementary idea about conducting and super conducting properties.	Table showing the difference between conducting and super conducting properties.	Differentiate conducting and super conducting materials.
Learns amorphous soilds	8.6 Amorphous soild	Glasses – properties super cooled liquids	Nature of glassy substances	Explain the nature of glass.

Unit - IX THERMODYNAMICS - II

Recalls I law of	9.1 Review of	Limitation of I		State limitations	
thermodynamics	Haw	law of		of I law of	
		thermodynamics		thermodynamic	
		,		S	
Proposes II	9.2 Need for the	Various	Mathematical	State II law of	
law of	II law of	statements of	representation of	thermodynamic	
thermodynamic	thermodynamic	II law of	statements.	s in different	
	S	thermodynamics		ways.	
Recognises	9.3	Brief explanation	Mathematical	How would you	
spontaneous and	Spontaneous	with examples.	representation of	differentiate	
non-spontaneous	and non		entropy changes	spontaneous	
processes	spontaneous		for spontaneous	and non	
	processes		and non	spontaneous	
			spontaneous	processes	
			processes.	through entropy	
				changes.	

Learn about entropy, Gibb's free energy	9.4 Entropy 9.5 Gibb's free energy	Brief explanation Nature and tool to find out the spontaneity of a process.	Relate ? G=? H-T? S	At 25°C ? S=+105 jkmol ⁻¹ write the free energy change of the reaction. Predict spontaneity (or) non spontaneity.	
	9.5.1 Free energy change and chemical equilibrium	Equations only significance of the equations	Condition for equilibrium ? G = O		
Understands the concept of third law of thermodynamics.	9.6 Third law of thermodynamic s	Elementary idea of third law and impact on third law of entropy	Introduce the concept of third law through entropy concept.	State and explain third law of thermodynamic s.	

UNIT -X Chemical equilibrium II

EXPECTED SPECIFIC OUTCOME OF LEARNING	CONTENT IN TERMS OF CONCEPTS	CURRICULUM TRANSACTIO NAL STRATEGIES	ILLUSTRATIONS	EVALUATION	SUGGES TED NO. OF PERIOD S
Recalls law of mass action.	10.1 Applications of law of mass action.	1) ? n _g = 0 2) ? n _g = +ve 3) ? n _g = -ve	Derivations of Kp and Kc for the following reactions 1) Formation of HI from H ₂ and I ₂ 2) Decomposition of PCI ₅ 3) Formation of NH ₃ from N ₂ and H ₂	Derive Kp and Kc for the formation of ammonia by Haber's Process.	
Learns Le Chatlier's Principle.	10.2 Le Chatlier's principle.	Applications of Le Chatlier's principle to Haber's process and contact process and Birkeland- Eyde process.	Explain the effect of change of temperature and change of pressure on equilibrium. Quantitative calculations on chemical equlibrium.	Apply Le Chatlier's principle for higher yield of nitric acid through Birkeland-Eyde process. 1 mole of nitrogen and 3 moles of hydrogen, were mixed at 593 K and 2X10 ⁷ Pa. At equilibrium the mixture contained 1.5	

	moles of	
	ammonia.	
	Calculate Kp for	
	this reaction.	

Unit - XI Chemical Kinetics -II

Recalls order of	11.1 First order	Derivation of	Impress the unit	Derive the rate
the reactions	reaction and	rate constant of	of rate constant	constant of first
the reactions	pseudo first	first order	order of	order reaction
	order reaction	reaction and	reactions.	and derive the
	order reaction		reactions.	
Manual adam alam	44.0	half - life period.	les euro e e e e cuelo	suitable unit.
Knowledge about	11.2	Acid hydrolysis	Impress pseudo	How is the rate
the experimental	Experimental	of an ester	first order	constant of acid
determination of	determination of		reactions.	hydroysis of
first order	first order			ester
	reaction.			determined?
Learns the	11.3 method of	Graphical	Show the nature	How will you
methods of	determining	method	of curve	differentiate
determining order	order of		connecting the	orders of
of the reaction.	reaction		rate Vs	chemical
			concentraions	reaction
			and rate Vs	through
			Concn ² , rate	graphical
			Vs Concn ³	method?
Analyses	11.4	Arrhenius	Significance of	Explain the
temperature	temperature	equation (no	activation energy	various
effect on rate	dependence of	derivation) and	through graphical	parameters
constant.	rate constant	the brief	representation	found in
		significance of		Arrhenius
		Arrhenius		equation?
		parameters		'
Learns simple	11.5 Simple	Examples with	Show the reaction	Differentiate
and complex	and complex	brief	path.	simple and
reactions.	reactions	explanation.	F	complex
. 55.54.51.61				reactions.

UNIT XII – SURFACE CHEMISTRY

Learns Adsorption	12.1 Adsorption	Physical and chemical adsorptions. Factors affecting adsorption.	Tabulate the differences between physical and chemical adsorption.	Differentiate physical and chemical adsorption.	
Recognises the importance of catalysis	12.2 Catalysis	Homogeneous and heterogeneous catalysis and types of catalysts.	Examples for all types of catalysts.	Write briefly on i)Promoters ii)Active centers iii)Catalytic poisons.	
Understands the theory of catalysis	12.3 Theory of catalysis	Heterogeneous catalysis and intermediate	Represent theories through equation.	Explain intermediate compound	

		compound theory.		theory.
Learns colloids and their types, preparation and properties.	12.4 Colloids	Nature, types	Tabulate the types	
	12.5 Preparatio n of colloids	Dispersion and condensation methods	Explain different dispersion and condensation methods	1.How colloids are prepared by condensation method?
	12.6 Properties of colloids	Kinetic, optical and electrical properties	Explain with diagrams	2. Write briefly on Tyndall effect, Brownian movement and catephoresis.
Understands about emulsions	12.7 Emulsions	Oil in water and water in oil emulsions	Explanation with examples	What are emulsions? Give examples.

UNIT XIII – ELECTROCHEMISTRY – I

Learns	13.1	Nature and type	Tabulate the	What are semi
conductors,	Conductors,	with examples	differences	conductors?
insulators and	insulators and		between three	
semi conductors	semi		types of	
	conductors		conductors	
Recognises theory	13.2 Theory of	Brief idea about	Applicability of	What are the
of electrical	electrical	Arrhenius	Arrhenius theory	limitations of
conductance	conductance	theory of	to weak	Arrhenius
		electrolytic	electrolyte is	theory of
		conductance	emphasized.	electrolytic
		and its		dissociation?
		limitations		
Learns theory of	13.3 Theory of	Brief idea about	Explain various	Explain the
electrolytes	strong	interionic theory	retardation	various
	electrolytes		effects. Mention	retardation
			Onsager	effects present
			equation.	during the
				migration of
				ions in solution.
Recognises the	13.4 Faraday's	Statement of	Quantitative	State and
Faraday's laws of	laws of	laws and their	calculations on	explain
electrolysis.	electrolysis.	significance	Faraday's laws	Faraday's laws
				of electrolysis.

Applies knowledge on conductance	13.5 Specific resistance, specific conductance, equivalent and molar conductance.	Definition and explanation	Explanation through mathematical explanation.	Define specific, equivalent and molar conductance.
Analysis the effect of dilution on conductance.	13.6 Variation of conductance with dilution	Nature of variation of strong and weak electrolytic solutions	Graphical representations of conductance Vs concentration.	Indicates the types of curves obtained for strong and weak-electrolyte.
Recognises the law	13.7 Kohlrausih's law	Statement and significance	Explanation through examples	State and explain Kohlrausih's law?
Learns the concept of ionic product of water, p ^H and p ^{OH} .	13.8 Ionic product of water, p ^H and p ^{OH}	Definition, explanation	Quantitative calculations on lonic product, p ^H and p ^{OH} .	Calculate p ^H and p ^{OH} of 0.1m HCI.
Understands buffer solutions	13.9 Buffer solutions	Nature, Explanation Henderson equation Importance of buffer solution in domestic and in industry.	Nature of acidic, basic buffer.	Derive Henderson equation for acid buffer.
Recognises the uses of p ^H values	13.10 Use of p ^H values	p ^H scale- p ^H range of indicators in titrations.	Nature of p ^H range for different types of titrations.	How indicators are chosen for acid, base titrations.

UNIT XIV – ELECTROCHEMISTRY - II

Understands cells	14.1	Cells	Electrolytic and	Interconversion of	Explain	
			Electrochemical	electrical and	electrolytic and	
			cells	chemical energy	electrochemical	
				is emphasized.	cell with	
				·	suitable	
					examples.	

Proposes electrodes and electrode potentials	14.2 Electrodes and electrode potentials	Metal-Metal ion electrode and hydrogen electrode – calculation of electrode potential from Nernst equations	Impress relation between ? G = -nEF occurring in cells	Explain relationship between change of free energy and electrode potentials.
Learns the construction of cells using electrodes	14.3 Construction of cell and EMF	Using standard electrodes the method of constructing a cell	Construction of Daniel cell – cell EMF from electrodes potentials	Represent the emf of Daniel cell from electrode potential
Recalls corrosion and its preventions	14.4 corrosion and its preventions	Electrochemical corrosion and the concept	Electrochemical relations involved in corrosion	Explain electro chemical corrosion
Applies knowledge of electrochemistry	14.5 commercial production of chemicals	Production of NaOH, Extraction AI, Na and CI ₂ .	Only principles (not the detailed procedures)	Mention the principle in electrolytic preparation of Na from NaOH ?
Realises the importance of fuel cells	14.6 Fuel cells	Primary, Secondary including fuel cells	Importance of primary, secondary and fuel cells	Write briefly on fuel cells.

UNIT XV – ISOMERISM IN ORGANIC CHEMISTRY

Learns geometrical isomerism	15.1 Geometrical isomerism.	Geometrical or Cis-trans isomerism in alkenes.	Explain the meaning of cistrans isomerism with examples	Draw the structures of cis and trans isomers of 1,2-dibromoethene and 2,3-butadiene.
Recognises conformation of cyclic compounds	15.2 Conformations of cyclic compounds	Discuss the conformation in cyclohexanol.		Drwa the structures of different conformers of cyclohexanol.
	15.3 Optical isomerism	Explain the meaning of the terms asymmetric carbon, enantiomers, racemic mixture, chirelity	Represent asymmetric nature of carbon in optically active compounds	Explain the terms: Asymmetric carbon, enantiomers, racemic mixture

Learn optical activity	15.3.1 Optical activity	Explain the phenomenon of optical activity and conditions for optical activity.	Give examples of compounds showing optical activity	What are the conditions for optical activity.	
Proposes chivality	15.3.2 Chirality	Concept of chirality is explained.	Chirality-Nature and meaning	What is meant by chiral carbon.	
Identifies the chiral centres in compounds	15.3.3 Compounds containing chiral centres	Give examples of compounds containing chiral centre.	Diagrammatic representation of optical isomers of lactic acid (one chiral centre) and tartanic acids.(two chiral centres)	Give the optical isomers of lactic and tartaric acid.	
Recognises the D-L and R-S notation of optical isomers.	15.3.4 D-L and R-S notation.	D-L and R-S notation of optical isomers – elementry idea is given.	Representation of D-L and R-S notations through diagram.	Identify each of the following structures as R or S CH ₃ CH ₃ I-C-H H-C-CI Br CBr3	
Recognises the isomerism in distributed benzene1	15.4 Isomerism in distributed benzene	Nature of O,P and m-isomers of distributed benzene is explained.	Represents the isomers in the term of equations		

UNIT XVI – HYDROXY DERIVATIVES

Learns the naming of alcohols	16.1 Nomenclature of alcohols	IUPAC names of first few members of alcohol series	Table showing structural formula IUPAC name and common names of first few members of the series.	Write the structure of the following compounds 3-Hexanol 2,3-Dimethyl-2-butanol	
Learns the classification of alcohols	16.2 Classification of alcohols	Classification of alcohols – Monohydric, dihydric and polyhydric alcohols.Primar y, secondary and teritiary alcohols.	Give examples for each type of alcohols.	Give one example each for 1°,2° and 3° alcohols.	

Learns the general methods of preparation, properties and uses of alcohols.	16.3 General methods of preparation of primary alcohols	Mention the preparation of alcohols from alkenes, alkylhalides, aldehydes, Grignard reagents, primary amines.	Represent the reactions with chemical equations	How will you obtain ethylalcohol using grignard reagents.
	16.3.1 Properties	Mention inportant physical properties - chemical properties - Reaction with metals, phosphorous halides, thionyl chloride, hydrogen halide, carboxylic acid, acid halides and anhydrides	Represent the reactions with chemical equations	Complete the following i)C ₂ H ₅ OH + Na ii)ROH + PCI ₅ iii)C ₂ H ₅ OH + SOCI ₂ iii
Distinguishes 1°, 2° and 3° alcohols.	Methods of distinction between three classes of alcohols (1°,2° and 3°)	16.3.2 Explain the methods of distinction - Lucas test, oxidation test, catalytic dehydrogenatio n and Victor Meyer's test.	Give suitable chemical equations	How will you distinguish 1°, 2° and 3° alcohols ?
Learns the methods of preparation, properties and uses of dihydric alcohols.	16.4 Methods of preparation of dihydric alcohols.(glyco l).	Explain the preparation of ethylene glycol .	Represent the reactions with chemical equations.	How will you prepare ethylene glycol from i)ethylene oxide ii)ethylene diamine.
	16.4.1 Properties	Mention the physical properties. Chemical properties-reaction with Na, PCI ₅ ,HCI, Carboxylic acid, HNO ₃ terephthalic acid, action of heat and oxidation.	Represent the chemical reactions with equations	How will you convert ethylene glycol into i)glycol nitrate ii)terylene iii)oxalic acid.

	16.4.2 Uses	Mention the		
		uses of glycol.		
Learns the methods of preparation, properties and uses of trihydric alcohols.	16.5 Methods of preparation of trihydric alcohols.	Synthesis from esters of fatty acids and propene.	Give the chemical equations of the reactions.	How will you prepare glycol from propene.
	16.5.1 Properties	Mention the physical properties. The chemical properties – Reaction with Na, HCI, PCI5, acetic acid, nitric acid, oxalic acid, HI, dehydration and oxidation.	Represent the reactions with chemical equations.	Give the chemical equations for the conversion of glycol into i)glycol trinitrate ii)acrolein iii)allyl alcohol
	16.5.2 Uses	Give the uses of glycol.		
Understands the methods of preparation of properties and uses of benzyl alcohol.	16.6. Aromatic alcohols.			
	16.6.1 Methods of preparation of benzyl alcohol.	Preparation from benzyl chloride and benaldehyde and bycannizaro reaction.	Give suitable chemical equations	Describe the preparation of glycol by Cannizzarro's reaction.
	16.6.2 Properties	Physical properties Chemical properties — Reaction due to primary alcoholic group and benzene ring.	Represent the reactions with chemical equations.	
	16.6.3 Uses	Use in cosmetics and in medical field.		
Understands the classification of phenols.	16.7 Phenols.	Classification into monohydric, dihydric and trihydric phenols.	Draw the structures of different types of phenols.	

16.7.1 Manufacture of phenols	Manufacture of phenol from chlorobenzene, diazonium salt and benzene.	Give suitable chemical reactions	How phenol is synthesized from Benzene diazonium chloride.
16.7.2 Properties	Physical properties Acidic nature of phenol.	Explain the acedic nature of phenol.	Why phenol is more acidic then alcohols.
16.7.3 Chemical properties	Reactions of hydroxyl group and benzene ring are explained.(All name-reaction)	Represent with suitable chemical equations.	Write notes on Reimer- Tiemann reaction, Kolbe reaction and coupling reaction of phenols
16.7.4 Uses of Phenols	Industrial and domestic uses		

<u>UNIT – XVII ETHERS</u>

Recognises classification, nomenclature and isomerism in ethers	17.1 Ethers	Classification, nomenclature and isomerism in ethers are explained with examples		Mention the types of isomerism found in ehters
Learns the general methods of preparation, properties and uses of aliphatic ethers	17.2 General methods of preparation of aliphatic ethers	Dehydration of alcohols, Williamson's synthesis using Grignard reagents and from alkyl halides.	Represent the reactions with chemical equations.	How will you obtain diethyl ether by Williamson's synthesis.
	17.2.1 Properties	Physical properties, chemical properties – Reaction with Cl ₂ , Pcl ₅ , H ₂ SO ₄ , HI and formation of peroxide and oxonium salts	Give suitable chemical equations	Give two types of reactions of Cl ₂ with diethyl ether.

	17.2.2 Uses	Mention its use as solvent, anaesthetic, substitute for petrol etc.		Give any two uses of ethers?
Understands the preparation, properties and uses of anisole.	17.3 Aromatic ethers	Mention important aromatic ethers – anisole, phenotole		Give the IUPAC name of anisole.
	17.3.1 Preparation of anisole	Give the preparation of anisole by Williamson's synthesis.	Give the chemical equations	Write the synthesis of anisole.
	17.3.2 Reactions of anisole	Reaction with Cl ₂ , HI & nitration.		Complete the reaction Anisole + Br ₂ /H ₂ O ?
	17.3.3 Uses	Mention its uses.		

<u>UNIT – XVIII</u> <u>Carbonyl Compounds.</u>

Understands nomenclature of carbonyl compounds.	18.1 Nomenclature of carbonyl compounds.	Nomenclature of aldehydes and ketones of lower members.		Write the structures of the following 3-hydroxybutanal 3-pentanone	
Recognises similarities and differences between aldehydes and ketones	18.2 Comparison of aldehydes and ketones.	Compare aldehydes and ketones with corresponding reactions.	Table showing the Comparison of aldehydes and ketones.		
Learns general methods of preparation of aldehydes, properties and uses.	18.3 General methods of preparation of aldehydes	Preparation from alcohols, alkenes, acid chlorides acetylene, and calcium salt of fatty acid.	Give suitable chemical reactions.	Explain the preparation of acetaldehyde from ethanol, and acetylene.	

	18.3.1 properties	Physical properties Chemical properties - nucleophilic addition reactions with NaHSO ₃ , HCN, ammonia derivatives, Grignard reagents, reduction and oxidation reactions, Schiff's test, reaction with	Represent the reactions with suitable chemical equations.	Complete the following 1) HCHO + NH ₃ 2) CH ₃ CHO+N H ₂ NH ₂ 3) CH ₃ CHO+O H ⁻ +Cu ²⁺
		NaOH, Cl ₂ haloform reaction and polymerisation reaction.		
	18.3.2 Uses	Mention the commercial and synthetic uses of formaldehyde and acetaldehyde		Mention the uses of formaldehyde and acetaldehyde
Learns aromatic aldehydes -preparation and properties	18.4 Aromatic aldehydes	Formulae and names of inportant aromatic aldehydes		
	18.5 Preparation of benzaldehyde.	Preparation by oxidation, hydrohysis and from calcium salt of fatty acids.	Represent with chemical equations.	How will you obtain benzaldehyde from benzal chloride?

	T	T =	· _	1
	18.5.1 Properties	Physical properties Chemical properties reactions similar to aliphatic aldehydes and reactions different from aliphatic aldehydes – nucleophilic substitution reactions and naming reactions.	Represent the reactions with chemical equations.	Writre note on 1) Cannizzaro reaction 2) Benzoin condensatio n 3) Perkin's reaction 4) Claisen reaction
	18.5.2 Uses	Mention the uses of benzaldehyde		
Learns about aliphatic and aromatic ketones	18.6 Ketones	Classification ketones	Classifies as aliphatic, mixed and aromatic ketones	Write the structure of arisole, benzophenone
	18.7 general methods of preparation of aliphatic ketones (acetone)	Give the preparation of acetone from isopropyl alcohol, calcium salt of fatty acids and hydrolyses of isopropylidene chloride.	Represents equations for all the synthetic methods	How acetone is obtained from isopropylalcohol and calcium salt of fatty acids.
	18.7.1 Properties	Physical properties Chemical properties Reactions common to both aldehydes and ketones reactions different from aldehyde.	Mention common Physical properties Give suitable Chemical equations.	In what way aldehydes differ from ketones?
	18.7.2 Uses	Mention the uses of acetone.		Mention the uses of acetone

18.8 Aromatic ketones	Formulae and IUPAC names of acetophenone and benzophenone.			
18.8.1 preparation of acetophenone	Preparation by Friedel –Craft's reaction and calcium salts.	Give the chemical equation	Describe any two methods of preparation of acetophnone.	
18.8.2 Properties	Physical properties Chemical properties Reduction, oxidation halogenation, electrophilic substitution and haloform reaction.	Represent with suitable chemical equations	What happens when acetophenone reaction with chlorine in presence of halogen carried?	
18.8.3 Uses	Mention the uses of acetophenone.	List the uses.	Mention any two uses of a acetophenone	
18.9 preparation of benzophenone	By Friedel- Craft's reaction, and distillation of calcium benzoate.	Represent preparation through equation .	How benzophenone is prepared from benzene	
18.9.1Properti es	Physical properties Chemical properties Oxidation, reduction, fusion with solid KOH		Mention oxidation properties of benzophenone	

UNIT XIX – CARBOXYLIC ACIDS

Recalls the	19.1	Nomenclature	Tabulates the	
nomenclature of	Nomenclature	of carboxylic	IUPAC and	
carboxylic acids		acids	common names	
			and structure of	
			lower members of	
			the series	

				<u></u>
Understands the	19.2	Oxidation of	Explains the	How will you
preparation,	Preparation of	methanal,	preparation with	prepare formic
properties of	aliphatic	hydrolysis of	suitable chemical	acid from HCN.
formic acid.	monocarboxyli	HCN and from	equations	
	c acids –	oxalic acid.	'	
	formic acid.			
	19.2.1	Physical	Mention the	Complete the
Δ	Properties	properties	characteristic	following
	1 Toportios	properties	physical	i)HCOOH+PCI₅
			properties.	1)110001111 OI5
			Explains the	ii)HCOOH+NH ₃
			important	E STATE OF IT IN 13
			chemical	iii)HCOOH+Ag ₂
			reactions with	O €
			equations.	; ALICOOLI
December 44	40.00115.55	Manatian de a		iv)HCOOH
Recognises the	19.2.2 Uses	Mention the		
uses of formic acid	40.00 T	industrial uses	Illinoise di anni	
Learnsto test the	19.2.3 Tests	Litmus test,	Illustration by	
presence of	for carboxylic	reaction with	doing	
carboxylic acid	acid	NaHCO₃ and	experiments.	
group		alcohol.		
Recalls the	19.3 Monohyd	Give examples.		
functional group,	roxy			
formula and	monocar			
nomenclature	boxylic			
Recalls the natural	acids.			
sources of lactic				
acid				
Learns the				
synthesis of lactic				
acid.				
	19.3.1 Lactic	Give the natural		
	acid –	sources of lactic		
	Source	acid.		
	S			
	19.3.2 Synthe	Synthesis from	Give suitable	How will you
	sis of	acetaldehyde,	chemical	prepare lactic
	lactic	molasses and	equations	acdi from
	acid	? -substituted	'	? -
		propionic acid.		chloropropionic
				acid?
	19.4 Aliphatic	Mention the		
	dicarboxylic	lower members		
	acids			
		l .	l	

Learns the preparation of dicarboxylic acids.	19.4.1. preparation of dicarboxylic acids – oxalic and succinic acids	Preparation of oxalic acid from sucrose, cyanogens and glycol. Preparation of succinic acid from ethylene cyanide and ethylene.	Explains with chemical equations.	Give the preparation of oxalic acid and succinic acid.
Learns the properties of dicarboxylic acids.	19.4.2 Properties	Physical properties Chemical properties-	Explains the chemical reactions with equations.	Give the reactions of oxalic acid and succinic acid with i)NaOH ii)PCI ₅ iii)NH ₃ iv)action of heat
Recognises the strength of carboxylic acid	19.5 Strengths of carboxylic acids.	Resonance effect	Draw the resonance structure of carboxylic acid and carboxylic ion.	Formic acid is stronger than acetic acid. Explain
	19.6 Aromatic acids	Mention important acids		
Learns the methods of preparation of benzoic acid.	19.6.1 Preparation of benzoic acid.	Gives the methods of preparation of benzoic acid.	Represent with suitable chemical equations.	How will you prepare benzoic acid from the following? i)benaldehyde ii)toluene iii)phenyl cyanide iv)phenyl magnesium bromide
Understands the properties of benzoic acid.	19.6.2 Properties	Physical properties Chemical properties – reactions of carboxylic group and benzene.	Write equations.	Complete the following i) C_6H_5COOH + $C_2H_5OH \not \sim$ ii) C_6H_5COOH + $NH_3 \not \sim$ iii) C_6H_5COOH + $C_2 \not \sim$
Recognises the uses of benzoic acid in day to day life.	19.6.3 Uses	Mention the uses of benzoic acid.		What are the uses of benzoic acid?
Learns the preparation of Salicylic acid.	19.7 Preparation of salicylic acid.	Preparation of salicylic acid from phenol.	Give the chemical equation.	Write preparation of salicylic acid from phenol.

I Indoratondo tha	10.7.1	Dhygiaal	Mrita tha	Evaloin the
Understands the	19.7.1	Physical	Write the	Explain the
properties of	Properties	properties	chemical	reaction of
salicylic acid.		Chemical	equations.	salicylic acid
		properties-		with sodium
		reactions of		carbonate and
		phenolic group		actylchloride.
				actyleriloride.
		and carboxylic		
		acid group.		
Recognises the	19.7.2 Uses	Mention the		
uses of salicylic		important uses		
acid.				
Recognises the	19.8	Mention the	Tabulate the	
different functional	Derivatives of	functional	structural	
derivatives of	carboxylic	derivatives of	relationship	
carboxylic acid.	acids.	carboxylic acid	among the	
		and give their	derivatives with	
		nomenclature.	specific example.	
Learns the	19.9.1	By action of	aparine onampion	Complete the
	Preparation of			
preparation and	•	pcl5 and SOCl ₂		following.
properties of	acid chloride –	on carboxylic		i)CH₃COOH+P
acetyl chloride.	acetyl chloride	acids.		Cl ₅ £
	(CH₃COCI)			ii)CH₃COOH+S
	,			ÓCl₂∞
	19.9.2	Physical	Write the	Give the
		properties	chemical	
	Properties			products of
		Chemical	equations	reaction of
		properties –		acetyl chloride
		Representative		i)Water
		reactions of		ii̇́)Ammonia
		acetyl chloride.		iii)Ethanol
Recognises the	19.9.3 Uses	Mention its		III) Et la loi
_	19.9.3 0565			
uses of acetyl		uses.		
chloride.				
Learns the	19.10	Preparation	Represent with	Write the
preparation and	Preparation of	from	suitable	preparation of
properties of	acetamide	ammonium	equations.	acetamide.
acetamide.	23010111100	acetate and	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
actamide.				
	40.40.4	methyl cyanide.		a average to the
	19.10.1	Physical		complete the
	Properties	properties		following
		Chemical		i)CH ₃ CONH ₂ +N
		properties-		aOH̃ <u>æ</u>
		reaction with		ii)CH ₃ CONH ₂ +H
		NaOH,HCI and		UI #0
		P ₂ O ₅		
Understands the	19.11	By the reaction	Give the chemical	How will you
preparation and	Preparation of	of acetyl	equations	obtain acetic
properties of	acetic	chloride with		anhydride from
acetic anhydride.	anhydride.	sodium acetate		acetyl chloride?
accio arriyariac.	arii iyariac.	Journal acciate	l .	accity criteriae:

	19.11.1 Properties	Physical properties Chemical properties-Hydrolysis, alco holyser, ammonolysis, reaction with HCI and PCI ₅ .	Write the chemical equations	Write the reactions of acetic anhydride with i)water ii)ammonid iii)HCI
Learns the preparation and properties of methyl acetate.	19.12 Preparation of esters-methyl acetate	Esterification of carboxylic acid from acid chloride.	Give the chemical reactions.	
Understands the properties of methyl acetate.	19.12.1 Properties	Physical properties Chemical properties- Hydrolysis (both acid and alkali), alcoholysis and ammonolysis claisen ester condensation	Represent the reaction with suitable chemical equations	Write notes on claisen ester condensation.

<u>UNIT – XX Organic Nitrogen Compounds.</u>

Recalls the nomenclature and isomerism in aliphatic nitro compounds	20.1 Aliphatic nitro compounds	Nomenclature and isomerism in aliphatic nitro compounds	Represent isomerism through structures	Discuss the isomerism exhibited by nitroalkanes.
Learns preparation and properties	20.2.1 Preparation of aliphatic nitroalkanes.	Preparation from alkanes and alkyl halides.	Give the suitable chemical equations	What happens when methyl bromide is heated with silver nitrite in ethanol.
	20.2.2 Properties	Physical properties Chemical properties Reduction, hydrolysis, halogenation, reaction with alkali, nitrous acid, aldehydes and ketones	Represent the chemical reactions with equations.	Discuss different reduction products of nitromethane
Recognises the uses	20.2.3 Uses	Mention the synthetic uses of nitroalkanes		
	20.3 Aromatic	Draws Structure		

Learns the mechanism of	nitro compounds 20.3.1 Preparation	and names aromatic nitrocompounds Nitration of benzene	Explain the mechanism	Give the mechanism of
nitration	·			nitration of benzene
Understands the reduction of nitrobenzene under different conditions.	20.3.2 Properties	Reduction of nitrobenzene	Show the experiments to illustrate the properties of nitrobenzene	
Identifies the uses of nitrobenzene	20.3.3 Uses			
Distinguishes based on tests	20.3.4 Distinction between aliphatic and aromatic nitro compounds.	Tabulate the distinguishing tests		Mention the tests to distinguish between aliphatic and aromatic nitro compounds.
	20.4 Amines	0.	- I : 4	
Recalls the structure	20.4.1 Aliphatic amines	Structure, nomenclature and classification into 1°,2°, and 3° amines.	Explains the general formula, structure and classification	
Learns the general methods of preparation of aliphatic amines.	20.4.2 General methods of preparation.	Give the general methods of preparation	Write the chemical equations	Give the mechanism of Hoffmann method of preparation of methylamine
Learns to write the chemical equations to explain the various reactions of amines	20.4.3 Properties	Physical properties chemical proerties	Explain the basic nature and important chemical reactions of amines.	Give short notes on the basic nature of aliphatic primary amines.
Distinguishes between three types of amines	20.4.4 Distinction between 1°,2°, and 3° amines.	Give distinguishing test between 1°,2°, and 3° amines.	Tabulate the differences between 1°,2°, and 3° amines.	Distinguish between aliphatic primary, secondary and tertiary amines.
Recall the structure and types of aromatic amines.	20.4.5 Aromatic amines.	Types of aromatic amines.		

	20.4.6	Give the	Gives equation of	How is
	Synthesis of	preparation of	preparation	benzylamine
	benzylamine	benzylamine	proposition:	prepared?
	20.4.7	Physical	Explain the	p. opa. ou
	Properties	properties	reaction with	
		Chemical	acids,	
		properties	alkylhalides, acid	
		proportion	chloride and	
			nitrous acid	
	20.4.8 Aniline	Synthesis of	Explain the	How is aniline
	-preparation.	aniline from	chemical	synthesised
	proparation.	nitrobenzene,	reactions.	from nitro
		chlorobenzene,	Todollons.	benzene?
		and benzamide		Delizerie:
Recognises the	20.4.9	Physical	Demonstrates the	Compare the
properties of	Properties	properties	reactions of	basic nature of
aromatic amines	Froperties	Chemical	aniline and	
aromanc amines				aliphatic and
		properties	explain the basic nature of aniline.	aromatic amines.
	20.4.40 Hans	Montion the	Hature of arilline.	arrilles.
	20.4.10 Uses	Mention the uses of aniline.		
	20.4.11	Distinguish	Tabulate the	Differentiate
	Distinction	between	differences	aliphatic and
	between	athylamine and	differences	aromatic
	aliphtic and	aniline		amines.
	aromatic			arrilles.
	amines.	benzylamine and aniline		
	II.	Structure and	Give equation for	How is methyl
	20.5 Alipahtic nitrices	nomenclature of		nitrile
	Tillices		all the preparation and reactions.	
		aliphatic nitriles.	and reactions.	prepared? Mention its
	20.5.1	Give the		properties
	Preparation	general		
		methods of		
	20.5.2	preparation		
		Physical and		
	properties	chemical		
	00.5.0.11	properties		
	20.5.3 Uses	Give the synthetic uses		
Pacagniage	20.6	General formula	Impresses the	
Recognices benzene	Diazonium	and structure	conditions of	
diazonium chloride	salts	and structure	diazotisation	
ulazorilum chilonde	20.6.1	By diazetication	uiazulisaliuli	How is
		By diazotisation reaction of		benzediazoniu
	Preparation of	aniline		
	benzene	ai iiiii i C		m chloride
	diazoniumchlor			prepared
	ide.			explain its
				synthetic
	20.6.2	Chemical	Explain with	importance.
			chemical	
	Properties	properties reactions in	equations	

which nitrogen		
gas is liberated		
and reactions in		
which nitrogen		
atoms are		
retained.		

UNIT - XXI Biomolecules

Recognises the importance of carbohydrates, protein, amino acids and lipids	21.1 Carbohydrates	Classification of carbohydrates	Tabulate the list of classification	How are carbohydrates classified?
	21.2 structural elucidation	Structural elucidation of glucose and fructose.		Elucidate the structure of fructose
	21.3 Di- saccharides and polysaccharide s	Mention the sources and their structure units	List the di- saccharides	Write the structure of sucrose
	21.4 Proteins	Sources and their basic chemical units	Classifies the proteins	How are proteins classified?
	21.4.1 Amino acids	Peptide linkage and formation of dipeptide	Illustrate the formation of peptide linkage by chemical equation	What is meant by peptide bond?
	21.5 structure of proteins	Primary and secondary structure of proteins	Represents primary and secondary structure through diagrams	Discuss primary and secondary structure of protein
	21.6 Nucleic acids	RNA and DNA elementary idea	Explains the functions of nucleic acid	What are RNA and DNA? Mention their functions
	21.7 Lipids	Classification, structure and functions in biosystems	Tabulate the classification	What are lipids?

UNIT - XXII CHEMISTRY IN ACTION

Recognises the importance of chemicals used as drugs	22.1 Medicinal chemistry	Anaesthetic, analgesics, Antipyretics, Antiseptics Antimalarials, antibiotics, Antacids, Antispasmodics.	Tabulate the drugs and their effects on curing of diseases	Mention the name of the drug and explain its action 1) antibiotics 2) anaesthetic s
Impresses dauger of drug absue.	22.1.1 Drug abuse	Explains the bad effects of drug abuse is impressed	Consequences of drug abuse tabulated	What is the impact of drug abuse and how can it be prevented.
Proposes the importance of dyes, cosmetics, creams, talcum powders and deodorants.	22.2 Dyes – classification and uses	Give the characteristics and classification of dyes and uses.	Tabulate the type of dyes, example and their uses.	What are dyes? How are they classified?
	22.3 Cosmetics – creams, perfumes, talcum powder and deodorants.	Explains the preparation and their functions		What are perfumes? Explain their functions
Learns the chemicals used in food.	22.4 chemical s in food 22.4.1 Preservatives artificial sweetening agents, antioxidants and edible colours.	Mention the names and their functions.		What are sweetening agents? Give examples.
Recognises the importance of insect repellants and sex attractants	22.5 Insect repellant – pheromones and sex attractants	Explains the function and limitations		Mention the function of pheromones
Proposes importance of rocket fuels.	22.6 Rocket fuels	Mentions the names of rocket fuels and their efficiency.		Explain the function of rocket fuels with examples.
Learns about polymers	22.7 Types of polymers, preparation and uses.	Different methods of preparation of polymers and their properties.	List the polymers, explaining their nature, monomer and uses	

UNIT XXIII – PROBLEMS IN CHEMISTRY

Impresses the	23.1 Problems	Explains to	Worked-	An organic compound
concept of	in Organic	identify the	examples in	(A) of molecular formula
chemistry through	Chemistry.	nature of all	each and every	C₂H ₇ N is warmed with
calculations	Oncimony.	functional	type of functional	Sodium nitrate and
Calculations		groups in	groups.	hydrochloric acid, it gives
			groups.	
		Organic		compound (B) of
		chemistry and		molecular formula
		"name –		C ₂ H ₆ O. (A) also gives an
		reactions"		offensive smelling liquid
				with CHCl ₃ and alcoholic
				KoH. Strong oxidation of
				compound (B) gives
				compound (C) of
				molecular formula
				C ₂ H ₄ O ₂ . The calcium salt
				of (C) on dry distillation
				gives (D) of molecular
				formula C ₃ H ₆ O. Identify
				the compounds (A), (B),
				(C) and (D). Explain the
				reactions involved.
	23.1 Problems	Represents	Worked	(A) Metal belongs to 6 th
	in Inorganic	Inorganic	examples in	group and occupies 4 th
	chemistry	problems	p Block and d	poles extracted from its
		covering metals	Block elements	oxide ores. This element
		and non-metals.	- and their	form an oxide (B) at
		and non motalo.	compounds as	2000° C. The metals also
			specified in the	forms an important
			text.(+2)	compound (C) in which
			toxt.(12)	the oxidation number of
				the metal is +6. The
				compound (C) reacts
				with Nacl in presence of
				conc. H2SO4 giving red
				vapours (D) . Identify
				A,B,C and D and explain
				its reactions.
	23.3 Problems	Guides to work	Worked-out	3.42 gms of Sucrose
	in Physical	out problems in	examples from	$(C_{12}H_{22}O_{11})$ is dissolved
	Chemistry	atomic –	portions +1 and	in 100 gms of water.
		Structure,	+2.	Calculate the Bpt of
		Chemical		solution if Kb of water is
		Equilibrium,		0.51 kg ⁻¹ k mole ⁻¹ and
		Thermodynamic		B.Pt of pure water is
		s, Kinetics and in		373k.
		Electrochemistry		
	l	•		

CHEMISTRY PRACTICALS FOR STD XII

I. Detection of Nitrogen, Halogen and Sulphur in organic compounds.

II. Detection of Functional groups present in organic compounds.

- a) Saturation and Unsaturation
- b) Aromatic and aliphatic
- c) aldehydes, Carboxylic acids, diamides, phenolic groups-(Nature of any one functional group is identified)

III. Qualitative analysis

Determination of two cations and two anions in a given mixture.

 $\underline{Cations:} \ Pb^{++}, \ Cu^{++}, \ AL^{3+}, \ Fe^{3+}, \ Zn^{2+}, \ Mn^{2+}, \ Ca^{++}, \ Ba^{2+}, \ Mg^{2+}, \ NH_4^+$

Anions: Borate, Sulphide, Sulphate, Carbonate, Nitrate, Chloride, Bromide.

(Insoluble and interfering ions are to be excluded. Also, two cations of the same group and anions of the following) Combinations such as $(Cl^{-} + Br^{-})$ and $(CO_{3}^{2-} + C_{2}O_{4}^{2-})$ Should be avoided.

IV. Volumetric analysis

- a) Permanganemetry
 - 1. Titration of Oxalic acid Vs KmnO₄
 - 2. Titration of ferrous ammonium sulphate against KmnO₄ solution.
- b) Dichrometry
 - 1. Standardization of K₂Cr₂O₇ solution.
 - 2. Any one estimation using $K_2Cr_2O_7$ as one of the oxidant.

Report should contain two acid radicals and two basic radicals, without mentioning the name of the salt. Confirmatory test should be exhibited.

Mode of Examination (XII Std)

1) Organic analysis	(10)	
2) Volumetric analysis	(10)	
3) Qualitative analysis	(20)	
4) Internal assesment	(10)	
(Practical - 5 & Projects -5)		
		50

Investigatory Suggested Projects

- A) I) Analysis of Soil
 - ii) Water analysis Hardness, Softness
 - iii) Analysis of dissloved oxygen in Sewage water
 - iv) Analysis of salts in ground water

- v) Preparation of Soap, Shampoo, talcum powder, inks, detergents, tooth powder, chalk, snow, redoxide, indelible ink, phenyle, candle, agarbathi, perfumes, rosewater, sodawater. Preparation of biscuts, cakes, ice-creams.
- B) Study of common food adultrants in fat, oil, butter, sugar, turmeric powder, chilly powder, coffee powder, tea dust and dye-vegetables.

Note: Any other innovative projects :-

Can be performed which involves about Periods of work with the approved of the teacher.

The investigatory projects should be given to +2 students and Internal marks should be alloted from and among the projects. This scheme is introduced so as to enable the students acquiring knowledge about cottage industries and to update their practical knowledge.