DO	NOT	OPEN	THIS	TEST	BOOKLET	UNTIL	YOU	ARE	ASKED	70	DO	SO
----	-----	------	------	------	---------	-------	-----	-----	-------	----	----	----

Booklet Serial No. :

0319

TEST BOOKLET AE (IT) MPPP

Time	Allowed : 2 Hours) Maximum Marks : 10
	All questions carry equal marks.
-	INSTRUCTIONS
1.	Immediately after the commencement of the examination, you should check that test bookle does not have any unprinted or torn or missing pages or items, etc. If so, get it replaced by a complete test booklet.
2.	There are three parts of Question Paper and the candidate holding degree either in Information & Technology and Computer Science Engineering may opt Part-A (Question Nos. 1 to 80 and the candidate holding degree Electronics & Communication Engineering may opt Part-I (Question Nos. 1 to 80). Whereas Part-C comprising question Nos. 81 to 100 are compulsor and common for all the candidates. Therefore, the candidate may opt either Part-A of Part-B of the Question Paper and encode the relevant part (opted) in place of BOOKLE.
2	SERIES' in the answer-sheet.
3.	Write your Roll Number only in the box provided slongside. * Do not write unything else on the Test Booklet.
1.	This Test Booklet contains 100 items (questions). Each item comprises four response (answers). Choose only one response for each item which you consider the best.
5.	After the candidate has read each item in the Test Booklet and decided which of the give responses is correct or the best, he has to mark the circle containing the letter of the selected response by blackening it completely with Black or Blue ball pen. In the followin example, response "C" is so marked:
at 1	(A) (B) (D)
6.	Do the encoding carefully as given in the illustrations. While encoding your particular

- 6. Do the encoding carefully as given in the illustrations. While encoding your particulars or marking the answers on answer sheet, you should blacken the circle corresponding to the choice in full and no part of the circle should be left unfilled.
- 7. You have to mark all your responses ONLY on the ANSWER SHEET separately given according to INSTRUCTIONS FOR CANDIDATES already supplied to you. Responses marked on the Test Booklet or in any paper other than the answer sheet shall not be examined.
- All items carry equal marks. Attempt all items. Your total marks will depend only on the number of correct responses marked by you in the Answer Sheet. There will be no negative marking.
- Before you proceed to mark responses in the Answer Sheet, fill in the particulars in the front portion of the Answer Sheet as per the instructions sent to you.
- After you have completed the test, hand over the Answer Sheet only, to the Invigilator.

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

P.T.O.

There are three parts of Question Paper and the candidate holding degree either in Information & Technology and Computer Science Engineering may opt Part-A (Question Nos. 1 to 80) and the candidate holding degree Electronics & Communication Engineering may opt Part-B (Question Nos. 1 to 80), whereas Part-C comprising question Nos. 81 to 100 are compulsory and common for all the candidates. Therefore, the candidate may opt either Part-A or Part-B of the Question Paper and encode the relevant part (opted) in place of 'BOOKLET' SERIES' in the answer-sheet.

PART A

INFORMATION & TECHNOLOGY AND

COMPUTER SCIENCE ENGINEERING

1.	What is the sm	nallest possible	cardinality	of a matching	g in a bipartite graph
	$G = \{L, R, E\}$	with N vertice	ces in each	vertex set L	and R and at least
	N edges ?				

(A) 1

(B) 0

(C) N/2

- (D) N 1
- 2. Cleanroom Software Engineering involves :
 - (A) Formal design

- (B) Statistical testing
- (C) Correctness verification
- (D) All of these

AE (IT) MPPP

3.	Which one is the most appropris	te data type in C language for th	e variable
	AvgSalary which is used to con	pute the average salary of empl	oyees in a
	program ?		
4	(A) int	(B) char	
	(C) float	(D) All of these	
4.	Suppose you are given:		
	try		198
	{ int x = Integer.parseInt	,"four");	
147			
	then which could be used to ca	eate an appropriate catch block	7
	(A) NumberFormatException	(B) IllegalArgumentExcep	tion
	(C) ClassCastException	(D) ExceptionInInitializer	Error
5.	Which one of the following sen	tence that can be generated by	grammar
	G \rightarrow aG, G \rightarrow	$bA, A \rightarrow d, A \rightarrow ccA$	
	(A) ababced	(B) abbbd	
	(C) beeddd	(D) aabeed	5
AE.	(IT) MPPP	3	P.T.C

		int $x = 22$;						
					3			
		int *y;						
		y = &x						
	(A)	x = y;			(B)	$y = x_i$		
	(C)	*y = 45;			(1))	All of these		
		I language, which of to store a string						tring name
	(A)	char HpSc[19]	100	8	(B)	char HpSc/1	31	
	(C)	char HpSe[25];			(D)	char HpSc 1	71	
		at will be the output m@Selection.@HP*	of the	follow	ing, wh	ion user enter	s the text	: "Appearin
		main()					·	
		(char text[60];						
		scanf("%[^@]s",	ext);					
ij.		printf("%s",text);					
		La						
	(A)	Appearing Exam						
	(B)	Appearing Exam	@ Sele	etion.)HP			
	(C)	Selection.						
	(D)	нР						

In C language an array X[], then ith element can be accessed by : (A) *(X + i) (B) *(i + X) (D) All of these (C) X[i] How many number of 1's present in binary representation of 15 × 128 + 5 10. \times 16 + 5 ? (A) 10 (B) 9 (C) (D) None of these 6 Consider the following: 11. import java.io.*; class Vehicle | class Wheels[] class Car extends Vehicle implements Serializable() class Ford extends Car() class Dodge extends Carl Wheels w = new Wheels(); Instances of which class(es) can be serialized ? (A) Wheels (B) Vehicle Dodge (D) Ford (C) AE (IT) MPPP P.T.O. 5

 Which is true about client serve 	er architecture :
(A) The front-end task and be	ack-end task have fundamentally different
requirements	
(B) The Client & Server's en	vironment is typically heterogeneous and
multivendor	
(C) Client Server architecture	e is scatable
(D) All of the above	
13. In Domain Name System which	h record is responsible for mapping a domain
name to an IP address?	
(A) NS record	(B) A record
(C) PTR record	(D) AAA record
14. An IP Network subnet has been	en assigned a subnet mask of 255,255,255,192.
What is the maximum number	er of hosts that can be possibly belong to this
subnet ?	
(A) 62	(B) 14
(C) 30	(D) 126
15. Which data structure may b	be used in RDBMS ?
(A) Tree	(B) Graph
(C) Array	(D) All of these
AE (IT) MPPP	6

0.	WIN	on one is the correct binary	represen	itation of the gray code 11111(2.00
	(A)	111111	(B)	101011	
	(C)	010100	(D)	000001	
7,	The	total number of comparison	s binary	search algorithm does to sear	ch
	an i	tem key that does not exist,	in the a	rray S which contains 1024 iter	ms
	15 1		*		
	(A)	11	(B)	10	
Jill I	(C)	512	(D)	None of these	
8.	Whi	ch of the following parame	eter(s) a	are negotiated during the TCI	P's
	thre	e-way handshake process?			
	(A)	Initial sequence number	(B)	Maximum segment size	
	(C)	Window scale option	(D)	All of these	ja J
9.	A se	erious problem can arise	in the s	sliding window operation wh	en
	eithe	er the sending application pr	ogram cr	reates data slowly or the receivi	ng
9	appl	ication program consumos	data sl	lowly, or both. This problem	is
	calle	d the:		February Control	
	(A)	silly window syndrome	(B)	bug	# C
	(C)	unexpected syndrome windo	w (D)	none of these	
E (T	T) MÏ	PP	7	P.T.	О.
					İ

20.	Rapid Development is possible w	vith	of Software Engineering
	(A) Waterfall Model	(B)	Spiral Model
	(C) Prototyping Model	(D)	Incremental Model
21.	When the new node inserted in	the right	subtree of the left subtree of the
	critical node then which rotation	on may ap	ply ?
	(A) LL	(B)	LR
	(C) RR	(D)	RL
22.	Pre-order traversal of Binary	tree als	o corresponds to which of the
	following ?		
	(A) In order traversal	(B)	Depth First traversal
	(C) Breadth First traversal	(D)	None of these
23.	What will be the balance factor	when the	left sub-tree of the tree is on level
	lower than that of the right su	b tree ?	
	(A) 2	(B)	0
	(C) 1	(D)	-1
24.	When any fragment of an IP data	agram is le	ost, what does the destination host
	do to the other fragments ?		
	(A) they are accepted	(B)	they are discarded
*	(C) they are buffered	(D)	None of these
AE (IT) MPPP	8	

25.	Every internal node of a multi	way sea	irch t	ree of order M consists of p	ointers
	to M sub-trees and contains .		******	key fields where $M > 2$	2,
	(A) M - 1		(B)	M + 1	
	(C) M		(D)	All of these	
26.	Hamming distance between	1001 00	10 1	101 and 1010 0010 0010	is:
	(A) 1		(B)	12	
	(C) 5		(D)	None of these	
27.	How many articulation verti	ces a b	iconn	ected graph may contain	?
	(A) 1		(B)	0	
	(C) 2		(D)	infinite vertices	4
28.	Number of bits in a memory	having	12 k	oit address register and 8	bit data
	register is :		103		
	(A) 32768		(B)	256	
	(C) 4096		(D)	2048	
29.	Which one of the open ad	ldressii	ng te	chnique is free from cl	ustering
	problems ?				- 12
	(A) double hashing	18	(B)	linear probing	¥
	(C) quadratic probing		(D)	All of these	
AE	(IT) MPPP	9			P.T.O

30.	Which of the files used by	the system and can't be removed or altered from
	the disk ?	
	(A) Archived file	(B) Hidden file
34	(C) System file	(D) All of these
31.	Which one of the followin	g is used to connect a WAN with a LAN?
	(A) Switch	(B) Bridge
	(C) Router	(D) Hub
32.	The number of address	ses assigned to an organization in classless
	addressing ;	
	(A) must be a multiple	of 256 (B) must be a power of 2
	(C) any number	(D) all of these
33.		ows in relation R(A, B, C) is 200 and in relation
		bute A in relation R is a foreign key referencin
		A is the primary key of S, then the estimated siz
417	of resultant table when	cross-product between relation R and S performe
	in a SQL query is:	
	(A) 200	(B) 100
e =	(C) 20000	(D) 10000
AE	(IT) MPPP	10

34.	which sorting	technique is s	rante sorung		SERVICE SER
	(A) Insertion	Sort	. (B)	Heap Sort	a nexes .
	(C) Quick So	rt	(D)	Radix Sort	
35:	100			es M1 and M2. If be the order of a	
	(A) $f(n) + g(n)$	n).	(B)	$f(n) \times g(n)$	
ane.	(C) max(f(n),	g(n))	(D)	min(f(n), g(n))	
36.	The source po	ort and destina	tion port in	a TCP header is	
	(A) used to	identify the sou	irce and des	tination host on	the network
	(B) used to	identify the sou	irce protocol	and destination	protocol
		dentify the application proto	The state of the s	source protocol ar	nd the application
	(D) All of th	e above			* - * 101-5
37.	Output of the	following C co	ode is :		
	main()	ehar ch = 's'	n'		
		while(ch < `	w')		
		printf(*%c*,	ch++);	A. S.	
		printf("%c",	ch);		
		1			California and
	(A) stuvw	A Property of	(B)	stuv	
	(C) tuvw		(D)	None of these	SHIP SEE THE
AE (T) MPPP		11		P.T.O.

38.	What will be the valu	of the	following	expression	according t	o Ç	language
	rules ?		- 6				

(A) 3.25

(B) 3

(C) 3.3

(D) 4

39. A code for A, B, C, D, E is given by A : 00, B : 01, C : 101, D : x10, E : yz1 where x, y, z are in 0, 1; then x, y and z will have which one of the following values so that the given codes become prefix code?

(A)
$$x = 1$$
, $y = 1$, $z = 1$

(B)
$$x = 0$$
, $y = 0$, $z = 0$

(C)
$$x = 1$$
, $y = 0$, $z = 0$

(D)
$$x = 0$$
, $y = 0$, $z = 1$

40. Which of the following is correct if C and C' be distinct strongly connected components in a directed graph C(V, E) and there is an edge (u, v) ∈ E, where u ∈ C and v ∈ C'?

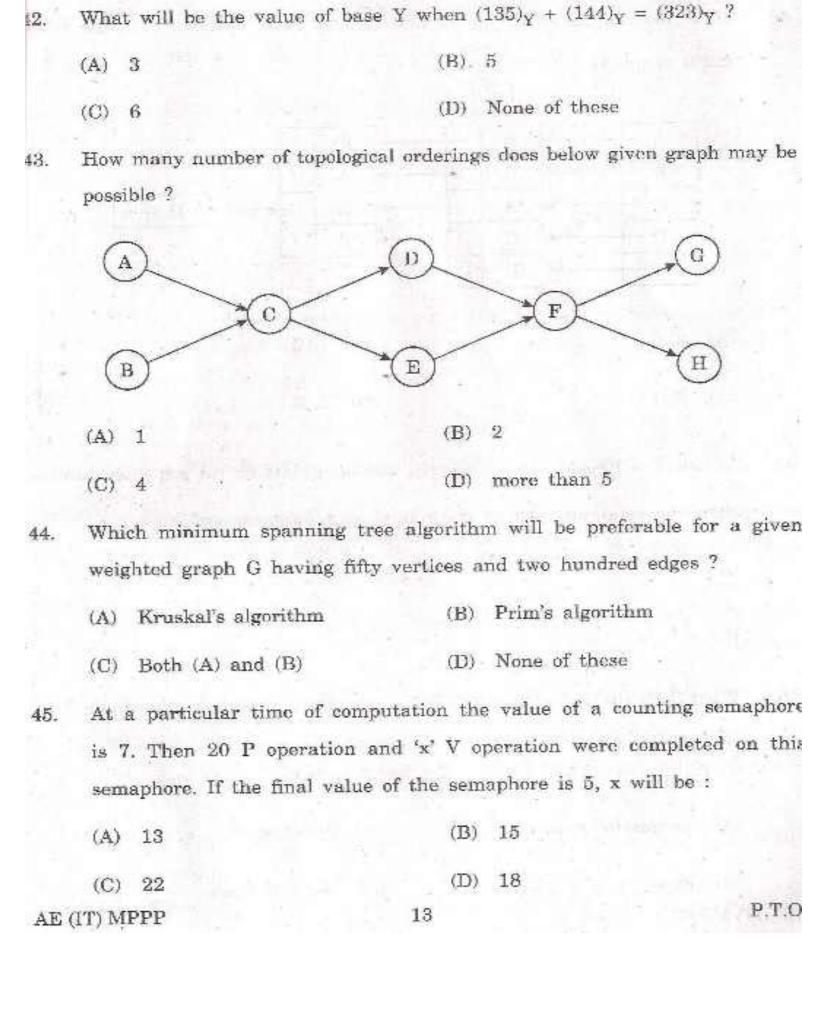
 $(A) \quad f(C) < f(C').$

(B) f(C) > f(C')

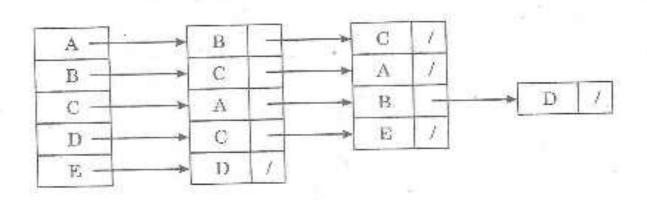
(C) f(C) = f(C')

(D) All of these

41. Which one of the following algorithms finds augmenting path with breadth first search?


(A) Ford-Fulkerson

(B) Edmonds-Karp


(C) Both (A) and (B)

(D) None of these

AE (IT) MPPP

46. How many articulation points and bridges respectively are in the below given graph G ?

(A) 2, 2

(B) 1, 2

(C) 2, 1

(D) 4, 5

47. In Selective Repeat ARQ, if 5 is the number of bits for the sequence number, then the maximum size of the receive window must be :

(A) 1

(B) 15

(C) 31

(D) 16

48. What does the following conditional expression statement determine?

(A) Largest of a, b, c

(B) Smallest of a, b, c

(C) Equality of a, b, c

(D) None of these

AE (IT) MPPP

Let consider : 49,

m = "Juan is a math major,"

e = "Juan is a computer science major,"

g = "Juan's girlfriend is a literature major,"

h = "Juan's girlfriend has read Hamlet," and

t = "Juan's girlfriend has read The Tempest."

Which of the following expresses the statement "Juan is a computer science major and a math major, but his girlfriend is a literature major who hasn't read both The Tempest and Hamlet?"

$$(A) \quad e \wedge m \wedge (g \vee (-h \vee \sim t)) \qquad \qquad (B) \quad e \wedge m \wedge g \wedge (\sim h \wedge \sim t))$$

(C)
$$c \wedge m \wedge g \wedge (-h \vee \sim t)$$
 (D) $c \wedge m \wedge g \vee (-h \wedge \sim t)$

- Consider the statement form $p \rightarrow q$, where p = "If Tom is Jane's father then 50. Jane is Bill's niece" and q = "Bill is Tom's brother." Which of the following statements is equivalent to this statement?
 - (A) If Bill is Tom's Brother, then Tom is Jane's father and Jane is not Bill's niece
 - (B) If Bill is not Tom's Brother, then Tom is Jane's father and Jane is not Bill's niece
 - (C) If Bill is not Tom's Brother, then Tom is Jane's father or Jane is Bill's niece
 - (D) If Bill is Tom's Brother, then Tom is Jane's father and Jane is Bill's niece

AE (IT) MPPP

P.T.O.

1.	Whic	h one is correc	ct asymptotic e	rder from	n smallest to	largest ?	
		n log	$n, 2^4, n + n^2$	+ n ³ , n ⁰	0.5, e ⁴ , n ^{1/lgn}		
	(A)	n ^{1/lgn} , n log i	$n, n + n^2 + n^2$	3 , 2^4 , e^4			
	(B)	n log n, n ^{1/lg}	n , $n + n^2 + n^3$	3 , e^4 , 2^4			
	(C)	$n^{1/lgn}$, $n log i$	$n, n + n^2 + n$	3 , e^4 , 2^4			
	(D)	n ^{1/lgn} , n log	$n_1 2^4, n + n^2$	$+ n^3, e^4$			
52.	Whi	ch one operate	es up to the A	pplication	layers?	AM	
	(A)	Routers		(B)	Switches	we to have	
	(C)	Gateways		(D)	All of these		2
53.	The	Q output of a	J-K flip flop i	s 0 which	changes to 1	when a clock	pulse
	is a	pplied. The inp	out J and K ar	e respecti	ively (X-denote	es don't care st	ate)
	(A)	0 and X		(B)	X and 0		
	(C)	1 and X		(D)	X and 1		
54.	Suj	ppose a relatio	on R(A, B, C,	D, E) h	ave the follow	ving FD's AB	→ C
40	BC	\rightarrow D, CD \rightarrow	E, then the pr	rimary ko	ey of relation	R is:	
	(A)	AB		(B)	BC	(e)	
	(C)	CD		(D)	BE	The State of	
AE	(IT) M	MPPP		16			

5.	How	many minimum number of .	NAND gates are required to implement th	0
	Boole	ean function A + AB' + AE	C ?	
	(A)	7	(B) 1	
	(C)	4	(D) 0	
56.	pack	Commence of the control of the contr	o-Back-N ARQ system in which S send Packet 3 received at R corrupted, the other next?	
	(A)	R sends ACK-3, S then sen	nds just packet 3	
	(B)	R sends ACK-2, S then set	nds just packet 3	
	(C)	R sends ACK-3, S then sen	nds packets 3, 4, 5, 6, 7, 0 and 1	
	(D)	R sends ACK-2, S then set	nds packets 3, 4, 5, 6, 7, 0 and 1	
57.	How	many times will the progr	am given below print HPSC ?	
		#include <stdio.h></stdio.h>		
		int main()		
		{ fork();		
		fork();		
		fork();		
		printf("HPSC\n");		
		1		
7	(A)	7	(B) 6	
	(C)	4	(D) 8	
ΛE ((IT) M	PPP	17 P.T.	0.

- Which is correct about data scrubbing?
 (A) A process to upgrade the quality of data after it is moved into a data warehouse.
 (B) A process to reject data from the data warehouse and to create the necessary indexes.
 (C) A process to upgrade the quality of data before it is moved into a data warehouse.
 - (D) A process to load the data in the data warehouse and to create the necessary indexes.
- 59. Let R and S be binary relations on a set A. Suppose that R is reflexive, symmetric, and transitive and that S is symmetric, and transitive but is not reflexive. Which statement is always true for any such R and S?
 - (A) R ∪ S is symmetric but not reflexive and not transitive
 - (B) R ∪ S is symmetric but not reflexive
 - (C) R ∪ S is transitive and symmetric but not reflexive
 - (D) R ∪ S is reflexive and symmetric
- 60. Given the cardinality of table Players, Match, Bating and Bowling (each to be 100), which one is the true number of rows in the fact table ?
 - (A) 100

(B) 100000000

(C) 10000

(D) 1000000

AE (FT) MPPP

- Errors recovery mechanism of TCP is suitably categorized as :
 - (A) Stop-Wait protocol
 - (B) Selective Repeat protocol
 - (C) Go-Back-N protocol
 - (D) Hybrid of Go-Back-N and Selective Repeat protocols
- 62. Let A = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} and consider the divides relation on A. Let C denote the length of the maximal chain, M the number of maximal elements, and m the number of minimal elements. Which is true?
 - (A) C = 3, M = 8, m = 6
- (B) C = 4, M = 8, m = 6
- (C) C = 3, M = 6, m = 6
- (D) C = 4, M = 6, m = 4
- 63. Which of the following statements is correct?
 - (A) An unsigned binary number is multiplied by 2^K by shifting it left by K bit positions and adding K zeros to the right of the least significant bit.
 - (B) An unsigned binary number is divided by 2^K by shifting it right by K bit positions and adding K zeros to the left of the most significant bit.
 - (C) A signed binary number is divided by 2^K by shifting it right by K bit positions and adding the sign bit K times to the left of the most significant bit.
 - (D) All of the above

4.	Which one specifies the specific number of entity occurrences associated with
	one occurrence of the related entity ?
	(A) Connectivity of relationship (B) Cardinality of relationship
	(C) Degree of relationship (D) None of these
65.	Consider a system having N resource of same type. These resources are
	shared by 3 processes X, Y and Z, which have peak demands of 3, 4 and
	6 respectively. For what value of N deadlock will not occur ?
	(A) 13 (B) 10
	(C) 7 (D) None of these
66.	In a two-dimensional parity check method three errors affects:
	(A) three parities (B) two parities
	(C) one parity (D) four parities
67.	Which one is the function of a distributed DBMS?
	(A) Distributed data recovery (B) Replicated data management
	(C) Distributed query processing (D) All of these
68.	. When an AND gate is implemented as a CMOS gate then how many tra-
	sistors are required ?
	(A) 6 (B) 2
	(C) 4 (D) All of these
A	E (IT) MPPP

69. A combinational circuit has inputs A, B and C and its Karnaugh map is as shown below. Which one gives the output of the circuit ? AB 00 01 11 10 1 1. 0 1 1 1 (A'B + AB')C'(A'B + AB')C(B) A'B'C' ABBBC (C) (D) Let R = R(A, B, C, D) and functional dependencies $F = \{AB \rightarrow C, C \rightarrow D,$ 70. D → Al, then which one is candidate key(s) of relation R ? (A) AB (B) BC All of these (C) BD (D) Size of window for the host H when value of receiver window is 3000 bytes 71. and the value of congestion window is 3500 bytes is : 3500 bytes 6500 bytes (B) (A) None of these (C) 3000 bytes (D) 72. A containership implements: inheritance (A) polymorphism (B) (C) abstraction aggregation (D) P.T.O. AE (IT) MPPP 21

73.	When performing the following	operations involving 8-bit 2's complement
	number then in which arithme	tic overflow occurs ?
	(A) 01110101 + 11011110	(B) 00110110 + 01000101
	(C) 01110101 - 11010110	(D) 11010011 - 11101100
74.	Which of the following testing	methods is normally used as the acceptance
	test for a software system?	
	(A) Integration testing	(B) Unit testing
	(C) Functional testing	(D) Regression testing
75.	When number of address bit	ts in a memory is reduced by two and th
	addressability is doubled, the	n the size of the memory i.e. number of bit
	stored in the memory will :	
	(A) Halve	(B) Remain unchanged
	(C) Double	(D) None of these
76	. Which one of the followi	ng translate and execute an instructi
	simultaneously?	The second of th
	(A) Assembler	(B) Compiler
	(C) Operating system	(D) Interpreter
A	E (IT) MPPP	22

77.	Let we have two algorithms	for the same problem and time complexity of
	first algorithm is 100 N and	$0.01\ \mathrm{N}^2$ for the second algorithm. The value
W.	of N for which first algorithm	n start to show its better performance is:
	(A) N > 10000	(B) N < 10000
	(C) N > 1000	(D) No such value of N possible
78.	When the memory chip size is	256×1 bits then the number of chips required
	to make up 1 K bytes of me	emory is
	(A) 4	(B) 8
	(C) 32	(D) 24
79.	function	ons cannot use recursion.
1	(A) user defined	(B) friend
	(C) inline	(D) polymorphic
80.	A class having a pure virtu	al function is called as:
	(A) abstract class	(B) friend class
	(C) base class	(D) All of these
AE	(IT) MPPP	23 P.T.O

PART B

ELECTRONICS AND COMMUNICATION ENGINEERING

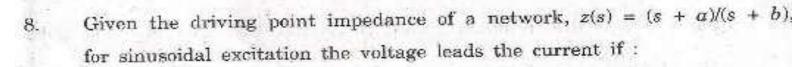
For writing state equations for a network, the following set is used as state variables:

- (A) Capacitor voltage and inductor voltage
- (B) Capacitor current and inductor voltage
- (C) Capacitor voltage and inductor current
- (D) Capacitor current and inductor current
- 2. The relation between quality factor (Q) of a coil and the frequency (f) is :
 - (A) Q varies linearly with f
- (B) Q varies inversely with f
- (C) Q is independent of f
- (D) None of these
- 3. If the current in a 20 Ω resistor is given by :

$$i(t) = 4 + 5\sin \omega t - 3\cos 3\omega t \text{ Amps},$$

the power consumed in watts by the resistor is :

(A) 660


(B) 320

(C) 250

(D) 90

AE (IT) MPPP

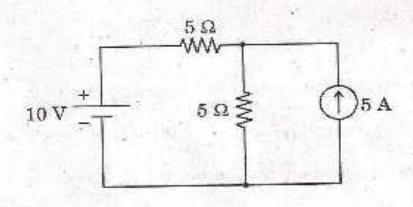
4.	For a parallel RLC resonant circuit, the damped frequency, $\omega_{cl}=\sqrt{8}$ rad/sec					
	and bandwidth = 2 rad	sec, the reson	ant frequency in rad/sec is given			
	by:					
	(A) √10	В	√7			
	(C) 2	(D) 3			
5.	The unit of $\nabla \times H$ is :					
	(A) Ampere	(B) Ampere – Meter			
	(C) Ampere/Moter	- (D) Ampere/Meter ²			
6.	An inductor L, 5 Ω and 10 Ω resistors are all connected in series across					
	a 50 cos out voltage source. If the power consumed by the 5 Ω resistor is					
	10 watts, the power fact	or of the circui	t is:			
	(A) 0.3	(B	0.4			
	(C) 0.6	(D	0.8			
7.	For a two terminal netwo	ork, if the appli	ed voltage is, $v(t) = 160 \sin(\omega t + 10^{\circ})$			
	velts and the resulting	g current is,	$i(t) = 5 \sin(\omega t - 20^{\circ})$ Amps. The			
	reactive power absorbed	by the circuit	in Vars is:			
	(A) 136.8	(1	3) 346.4			
	(C) 400	a	0) 200			
AE (IT) MPPP	25	P.T.O.			

- (A) α and b are real positive and α > b
- (B) a and b are real positive and a < b
- (C) a is real positive and b is real negative
- (D) none of the above is correct
- 9. If two-port network is reciprocal, which of the following is not true ?

(A)
$$z_{21} = z_{12}$$

(B)
$$y_{21} = y_{12}$$

(C)
$$h_{21} = h_{12}$$


(D)
$$AD = BC + 1$$

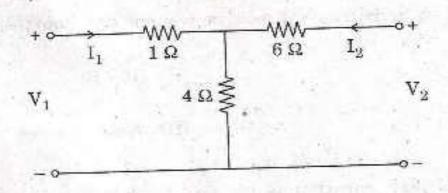
- 10. If $f(t) = \sin 10t + \sin 20t$, what is the r.m.s. value of f(t)?
 - (A) 1

(B) 0.5

(C) n

- (D) 1.414
- 11. The voltage across 5 A source in the given circuit is :

(A) 25 V


(B) 20 V

(C) 17.5 V

(D) 15.5 V

ÁE (IT) MPPP

12. For the network shown, the parameters h_{11} and h_{21} are :

(A) 5 Q and -2/3

(B) 3.4 and -2/5

(C) 3.4 and -3/5

(D) none of these

13. The d.c. gain of a circuit having its transfer function $\frac{25}{(s+2)(s+3)}$ is:

(A) 25

(B) 10

(C) 25/6

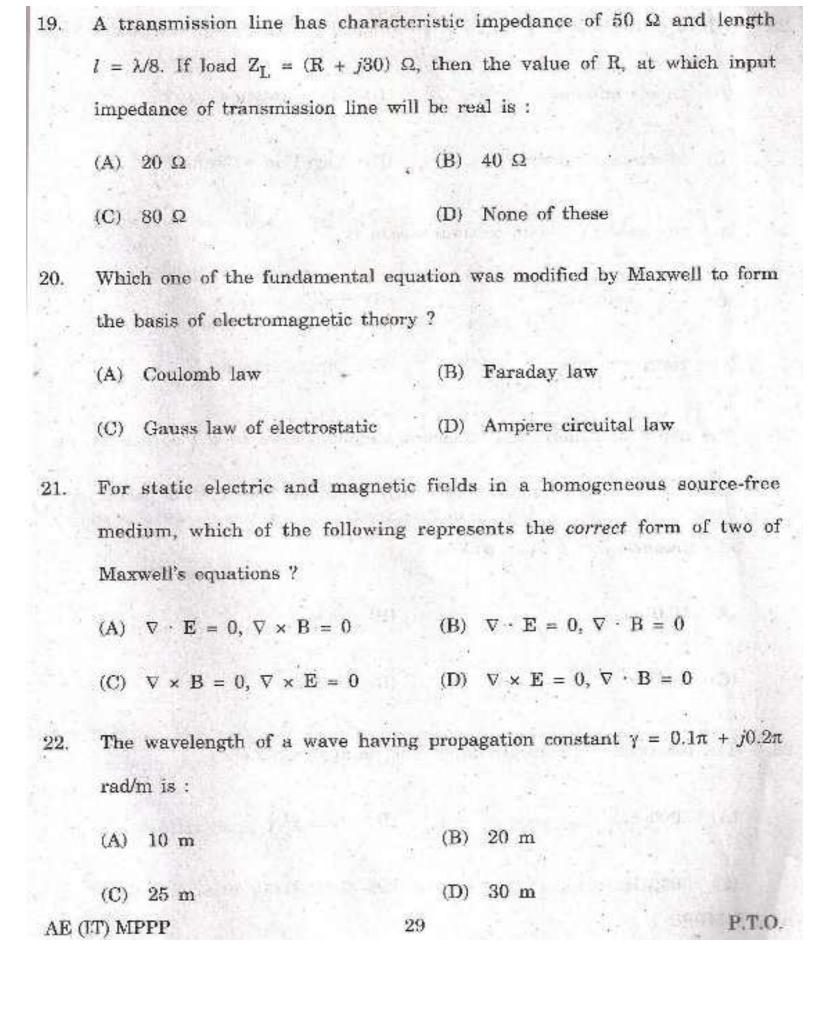
(D) 5/6

14. The value of current I flowing through 1 Ω resistor for the circuit shown is:

(A) 10 A

(B) 6 A

(C) 5 A


(D) 4 A

AE (IT) MPPP

27

P.T.O.

15.	A drawn wire of resistance 5 5	2 is further drawn so that its diameter becomes
681 11	one-fifth, its resistance will r	now be (volume remaining same) :
	(A) 625 Ω	(B) 125 Ω
	(C) 25 Ω	(D) None of these
16.	A parallel plate capacitor is	made of two circular plates separated by a
	distance of 5 mm and with	a dielectric of dielectric constant 2.2 between
	them. When the electric field	in the dielectric is 3×10^4 V/m, charge density
	of the positive plate will be	close to :
	(A) $3 \times 10^{-7} \text{ C/m}^2$	(B) $6 \times 10^4 \text{ C/m}^2$
	(C) $3 \times 10^4 \text{ C/m}^2$	(D) $6 \times 10^{-7} \text{ C/m}^2$
17.	The magnetic field in a trav	velling (in free-space) electromagnetic wave ha
	a peak value of 20nT. The	peak value of electric field strength is :
	(A) 3 V/m	(B) 6 V/m
	(C) 9 V/m	(D) 12 V/m
18.	A rectangular waveguide a	cts as a :
	(A) low-pass filter	(B) high-pass filter
	(C) band-pass filter	(D) band-stop filter
AÉ	(IT) MPPP	28

23.	Which of the following antenna	is designed by modifying waveguides ?
	(A) Dipole antenna	(B) Horn antenna
	(C) Microstrip antenna	(D) Yagi-Uda antenna
24.	Antenna used in mobile commu	nication is:
	(A) Dish antenna	(B) Patch antenna
	(C) Horn antenna	(D) Dipole antenna
25.	The depth of penetration of e	lectromagnetic wave in a medium havin
: =1	conductivity o at a frequency o	f 1 MHz is 25 cm. The depth of penetration
	at a frequency of 4 MHz will	be t
	(A) 50.0 cm	(B) 25.0 cm
	(C) 12.5 cm	(D) 6.25 cm
26.	The bandwidth of voice grade	channel is approximately:
	(A) 3000 Hz	(B) 4000 Hz
	(C) 5000 Hz	(D) 6000 Hz
AĖ	(IT) MPPP	30

27.	Bit rate is always	to the baud rate.	
-	(A) equal	(B) more	
	(C) equal or more	(D) none of these	
28.	A signal of bandwidth 4 kHz is	recorded in a tape recorder at normal s	peed.
	If for transmission purposes, t	ne recorder is replayed at 4 times the no	rmal
3	speed, then the transmission	bandwidth will be :	
1	(A) 1 kHz	(B) 4 kHz	
	(C) 8 kHz	(D) 16 kHz	
29.	In a 100% modulated AM sig	nal with carrier power 100 W, the pow	er in
	the upper sideband is :		
	(A) 75.5	(B) 50	
	(C) 25	(D) none of these	
30.	Medium wave AM radio broa	deast band is :	
it.	(A) 3 MHz to 10 MHz	(B) 10 MHz to 30 MHz	
	(C) 88 MHz to 108 MHz	(D) 530 kHz to 1600 kHz	
AE (IT) MPPP	31 I	P.T.O.

31.	The topology used by a contral co	ntroller	or hub is:
*	(A) Mesh	(B)	Star
	(C) Bus	(D)	Ring
32.	In FM modulation, when the n	nodulati	ion index increases, transmitted
	power is:		
	(A) increased	(B)	decreased
	(C) constant	(D)	none of these
33.	An earth station transmitter cons	ists of :	
	(A) RF to IF down converter	(B)	IF to RF converter
	(C) Power to RF converter	(D)	None of these
34,	The maximum power in AM, who	en modi	ulation index is :
	(A) 0.1	(B)	0.5
	(C) 0.7	(D)	1.0
35.	An AM demodulator can be imple	emented	with a linear multiplier followed
	by the following filter:		
	(A) low-pass	(B)	high-pass
	(C) band-pass	(D)	band-stop
AE	(IT) MPPP	32	

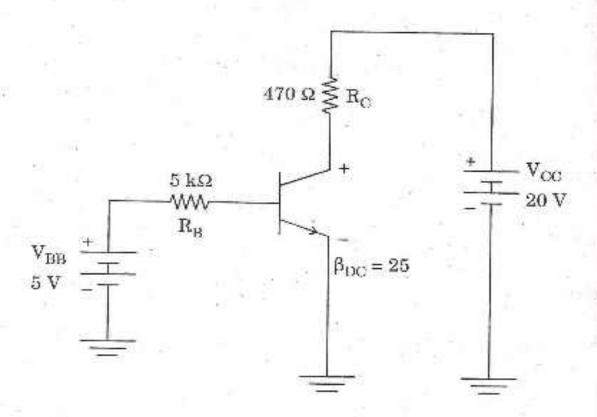
6.	The following is not associated with a p-n junction?
	(A) junction (B) depletion capacitance
	(C) charge storage capacitance (D) channel length modulation
37.	A Zener diode, when used as voltage regulator, is biased in :
	(A) forward bias region
2.	(B) reverse breakdown region
	(C) forward bias current mode
	(D) reverse bias region below breakdown voltage
38.	The phenomenon of "Early Effect" in BJT refers to reduction of effective
	base-width caused by:
	(A) electron-hole recombination at the base
	(B) the forward biasing of emitter-base junction
	(C) the reverse biasing of base-collector junction
	(D) the early removal of stored base charge
39.	The action of a JFET in its equivalent circuit can best be represented
	as:
	(A) Current controlled current source
	(B) Current controlled voltage source
	(C) Voltage controlled current source
	(D) Voltage controlled voltage source
AE	(IT) MPPP 33

40.	If t	he differential volta	ige gain	and t	he co	ommon mode gain of a differentia
1	am	plifier are 50 db ar	nd 4 db	respe	ctivel	y, then its CMRR is:
						Billian Co. S.
	(A)	54. db			(B)	12.5 db
			+1			
	(C)	46 db		200	(D)	∞ db
						540.500-55
41.	The	minimum number	of diad	no in	o ful	l wave rectifier is ;
			or anom	as III	a lui	wave rectifier is ;
	(A)	1			(B)	2
		3	361			
	(C)	3	-	400	(D)	4
42.	Pra	ctically in order to	rronte e	n elec	tron_	hole pair in p-n diode, the energy
			or care a	LI CICL	LI OIL-	note pair in p-n diode, the energy
	of t	he incident photon	should	be -		
				7.00-A		
	(A)	Taxas Albasa III		2.5	ZW65	
	(A)	Less than E _g			(B)	Equal to Eg
	(C)	Greater than Eg			(D)	Much greater than E _g
43.	Give	en that germanium ((Ge) has	a ban	d gar	o of 0.67 eV, what is the maximum
34.				22	- 0-1	and the state of t
	wav	elength that will be	e absorb	ed by	it ?	
9		Mention Access to the control of the	00/14/10/10/00/00/11/11	- 1200 A TO 100		
	(4)	7090	4.8		2700	4500
	(A)	7080 nm			(B)	4560 nm
				V.5.	-	
	(C)	1850 nm			(D)	1100 nm
AE (I	T) MI	PPP		34		The state of the s
111						

nity	gain frequency of op-amp.	741 is :	THE PARTY OF THE P	
A)	100 MHz	(B)	1 MHz	
C)	100 kHz	(D)	10 Hz	
los	ssy integrator exhibits a freq	uency r	response similar to a :	
A)	low-pass filter	(B)	high-pass filter	786
(C)	band-pass filter	(D)	band-stop filter	
ln a	piecewise linear diode mode	el, the d	liode resistance is :	
(A)	low for all biases			
(B)	high for all biases			
(C)	low for biases greater than	cut in v	oltage and high for biases less	than
À	cut in voltage			
(D)	high for biases greater than	cut in	voltage and low for biases less	than
	cut in voltage			
In	a p-n-p transistor biased i	n the	active region, in the n-type	base,
hol	es:			
(A)	drift			
(B)	diffuse and recombine			
(C)	are injected from collector			
(D	experience avalanche mul-	tiplicati	on	
T) N	MPPP .	35		P.T.O.

- 48. The Cascade amplifier is a multi-stage configuration of :
 - (A) CC-CB

(B) CE-CB


(C) CC-CE

- (D) CC-CC
- 49. Three identical amplifiers with each having a voltage gain of 50 are cascaded.
 The open loop circuit voltage gain of the combined amplifier is:
 - (A) 48 db

(B) 51 db

(C) 98 db

- (D) 102 db
- 50. Refer to Fig., the value of $V_{\rm BE}$ is :

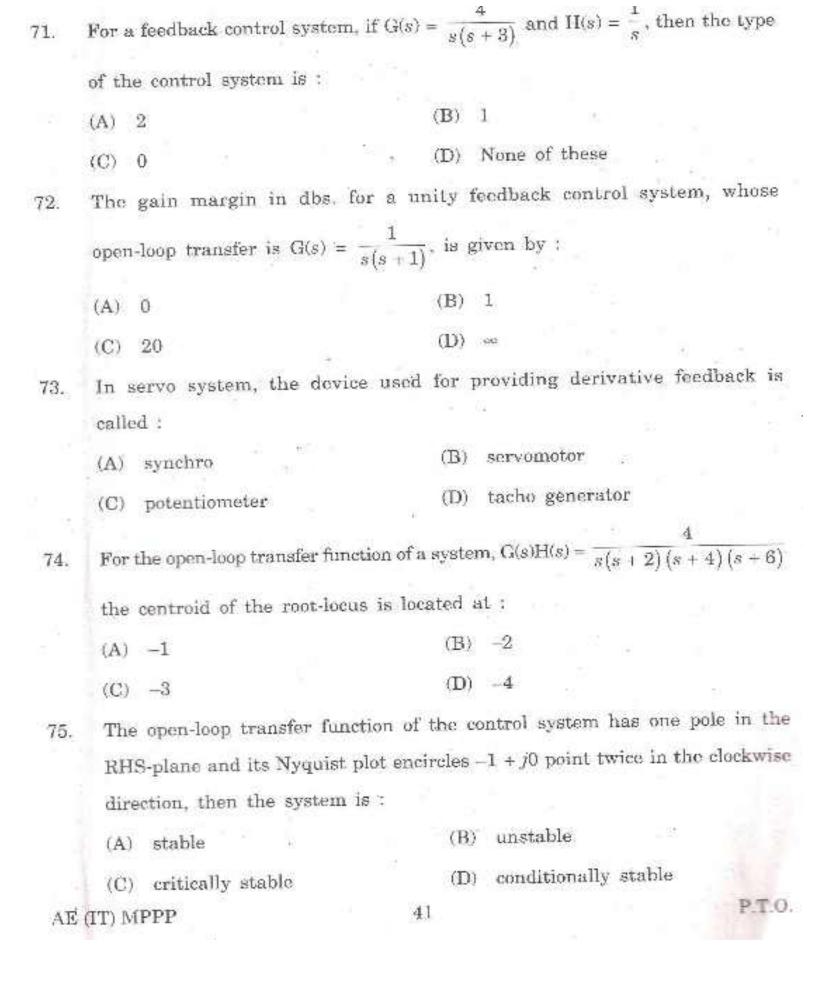
(A) 0.2 V

(B) 0.6 V

(C) 0.7 V

(D) 1.2 V

AE (IT) MPPP


51.	The	width of the depletion re	egion of a p	n junction :	10.5
	(A)	increases with reverse b	ias voltage		
	(B)	decreases with reverse l	oias voltage	98	
	(C)	is not affected by voltag	ge _		
	$\langle D \rangle$	increases with forward !	bias voltage		
52.	A M	IOSFET acts as a voltag	e controlled	variable resistor in the	\$
	(A)	cut-off region	(B)	linear region	
	(C)	saturation region	(D)	sub-threshold region	
53.	Bias	sing in integrated circuits	s is done usi	ng :	
	(A)	self-biasing circuit	(B)	reverse biased diode	
	(C)	current source	(D)	sinusoidal voltage	10
54.	A B	3JT can be used for lines	r amplificati	on of small signals in	the:
	(A)	cut off region	(B)	active region	
	(C)	saturation region	(D)	reverse active region	*
55.	Wh	ich of the following state	ments is <i>tru</i>	e 7	5
	(A)	A BJT has a higher tr	ansconductar	nce than a MOSFET	20
	(B)	A MOSFET has a high	ner transcond	luctance than a BJT	
	(C)	Both have the same tr	ansconductar	ice	
	(D)	None of the above is c	orrect		
AE (IT) M	PPP	37		P.T.O
				V.	

56.	Ins	struction LHLD 2000 E	elongs to		- The
	(A)	Data transfer group		(B)	Logical group
	(C)	Branching group	-	(D)	Arithmetic group
57.	808	35 microprocessor is ha	iving addi	ress li	ines :
	(A)	8		(B)	16
	(C)	32		(D)	None of these
58.	Wh	ich of the following is	an interr	upt o	f microprocessor 8085 ?
	(A)	READY		(B)	SOD
	(C)	CLK		(D)	TRAP
59.	Sta	ck pointer in 8085 mic	roprocesso	or is a	1-2
	(A)	4-bit register		(B)	8-bit register
	(C)	16-bit register		(D)	None of these
60.	Whi	ch flag will be affected	d by givir	g the	instruction DCXRP ?
	(A)	Panty flag		(B)	Carry flag and sign flag
	(C)	No flag is affected		(D)	All flags will be affected
AE (I	T) MI	PPP	-38		

61.	If one in	put to an 1	OR gate	is A a	nd th	ne other	is 1, th	e outp	ut is	0
	(A) 0	3 0	- Tu		(B)	1			97)	(2)
	(C) A		8		(D)	A'	†); }:==:::			
				4						
62.	A logic f	unction ma	y be imple	mente	d usi	ing:				
	(A) ROI	M		0.13	(B)	Decode	r			
	(C) Mul	ltiplexer			(D)	All of	these			
63,	The num	aber of logic	functions	of N	varle	ibles ar	е: .			
	(A) N	4	= . 1		(B)	2^{N}				
	(C) 2 ^{2^N}	- 2		**	(D)	N log P	N		10	
				3						
64.	Which lo	ogic family	is the fast	est ?						
	(A) DT	L .			(B)	NMOS				
	(C) EC	l.		*	(D)	TTL.	59			
	W. F. CLASS	E.	8 1					.00		
65.	A combi	national sys	stem has :							
	(A) two	states	65		(B)	one st	ate		555	
	(C) zer	o state			(D)	infinit	e number	r of sta	ites	
AE (IT) MPPP			39				65		P.T.C

The inverse Laplace transform of $X(s) = \frac{-3}{(s+2)(s-1)}$ ROC : -2 < Re(s) < 118 : (A) $e^{-2t}u(t) - e^{-t}u(t)$ (B) $e^{-t}u(t) + e^{t}u(-t)$ (C) $e^{-2t}u(t) + e^{t}u(-t)$ (D) $-e^{-2t}u(-t) + e^{t}u(-t)$ For a system with input $x[n] = \delta[n-1]$ and impulse response $h[n] = \delta[n+1]$, 67. the z-transform of the output is : (A) z (B) z^{-1} (C) 0 (D) 1 A finite length signal has $X(z) = 0.5 + 0.2z^{-1} + 0.7z^{-2} + 0.5z^{-3}$, its ROC 68. is : (A) inside the unit circle (B) on the unit circle outside the unit circle (D) entire z-plane except z = 0 The frequency response of a system with $h[n] = \delta[n] - \delta[n-1]$ is given 69.by : (A) $\delta(e^{jw}) = \delta(e^{j(w-1)})$. (B) $1 - e^{jw}$ (C) $u(e^{jw}) = u(e^{j(w-1)})$ (D) $1 - e^{-\mu \theta}$ The Fourier transform of a signal x(t) is, $X(f) = 1/j\pi f$, then x(t) is equal 70.to : (A) u(t) (B) 1 (C) 2u(t) - 1AE (IT) MPPP 40

66.

70.	when the roots of the charact	eristic equ	ation of a feedback system a	1
	conjugate and on the imaginary	axis, the	response is of the type :	
	(A) Ae ^{nt}	(B)	$A \sin(\omega t + \theta)$	
	(C) Ae ^{-σt}	, (D)	A	
77.	The poles of a stable system he	in which	region of the s-plane ?	
	(A) right half plane	(B)	left half plane	
#476 #8	(C) imaginary axis	(D)	lower half plane	
78.	If ramp input is applied to a ty	pc-2 syste	m, the steady state error is :	
	(A) Positive constant	(B)	Negative constant	
	(C) Zero	(D)	Positive infinity	
79.	The response of a second order	system to	a step input is obtained as:	
	c(t) = 1.66e	$-8t \sin(6t +$	+ 37°)	
-53	the damping ratio is:			
	(A) 0.4	(B)	0.5	
2	(C) 0.8	(D) :	1.0	
80.	A phase lead network has $G_{\rho}(s)$	= 10(1 +	0.04s)/(1 + 0.01s), the maximum	
	phase lead occurs at :			
	(A) $w_m = 50 \text{ rad/sec}$	(B) a	$w_m = 25 \text{ rad/sec}$	
	(C) $\omega_m = 10 \text{ rad/sec}$	(D) u	$v_m = 4 \text{ rad/sec}$	
AE (I	T) MPPP	42		

PART C

COMPULSORY AND COMMON FOR ALL CANDIDATES

81.	Which of the following dances is not correctly matched with the area it is
	specifically performed ?
	(A) Gee and Burah dance — Sirmaur
	(B) Shunto dance — Lahaul and Spiti
	(C) Dangi dance — Kinnaur
	(D) Cholamba dance — Ropa valley
82.	Which of the following fairs is not correctly matched with the area?
	(A) Minjer fair — Chamba
	(B) Renuka fair — Sirmaur
	(C) Lavi trade fair — Rampur
	(D) Naina Devi fair — Mandi
83.	Jhoori is :
	(A) A type of song
	(B) A type of dance
	(C) A type of musical instrument
	(D) A string puppet
84.	Which of the following is not a scheduled tribe in Himachal Pradesh?
	(A) Gaddis (B) Pangawals
	(C) Kennets (D) Kinnars
AE	(IT) MPPP 43 P.T.O.

C	dress of :
(A) Rajputs
(B) Scheduled tribes of Lahaul Spiti
(C) Kolis
C	D) Brahmins
86. V	Who of the following is the Chairman of the HP Society for promotion of IT
	nd E-Governance (SIYEG) ? -
(2	A) Chief Secretary
(1	3) Secretary, IT, Government of India
((C) Director-General, NIC
(1	O) Chief Minister
87. H	P State Co-operative Agriculture and Rural Development Bank Ltd. is :
(A	Registered as a cooperative society under the HP Co-operative Societies
	Act, 1956
(18	Registered as public limited company
(C	Registered as a private limited firm
(1)	Registered as a joint sector company
AE (IT)	

88	. Who of the following was elec	ted unopposed as the President of the l	HP Olympic
	Association in 2012 ?		
	(A) DD Thakur	(B) Anurag Thakur	
	(C) Sanjeev Katwal	(D) Sushil Bhardwaj	
89.	The biggest hazard that pos	ses the biggest threat to the state o	f HP is :
	(A) Drought	(B) Dam failures	
	(C) Earthquakes	(D) Flash floods	(e
90.	How much area of HP is un	nder cultivation ?	
	(A) About 25%	(B) About 20%	
	(C) About 15%	(D) About 10%	
91.	Disaster Management Act wa	as passed in the year :	
	(A) 2000	(B) 2002	
	(C) 2003	(D) 2005	
92.	Who is the Chief Minister of	Haryana since October, 2014 ?	
	(A) Rao Virendra Singh	(B) Manohar Lal Khattar	
	(C) Rao Inderjit Singh	(D) Captain Abhimanyu	
AE (I	T) MPPP	45	
			Part

93.	Wh	ich of the following i	s <i>not</i> one of	the	expenditure refor	ms introduced	by
	the	Union Finance Min	istry under	the l	Modi Government	?	
	(A)	An administrative r	ninistry can	appro	ove projects upto 1	.00 crores witho	ut
		the prior approval	of the Fina	nce l	Ministry		
	(B)	Only projects costin Union Cabinet	ng rupees 10	100 cı	ore would require	e approval by the	he
	(C)	Schemes shall be a	valuated us	ing 1	neasurably define	ed outcomes	
	(D)	Union Cabinet's app	roval is neces	sary	for projects costing	rupees 300 cror	es
94.	Acc	ording to a review in	Journal Na	ature	, a university is	supposed to be	: ;
	(1)	Centre of education	1 -		180	ilian II	
	(2)	Centre of discovery	and resear	ch			
95	(3)	Engine of economic	growth		277		
	(4)	Beacon of social ju	stice				
	Sele	ect the correct answe	r from the	codes	given below:		
	(A)	1, 2, 3 and 4	**	(B)	1, 2 and 3		
	(C)	2, 3 and 4		(D)	1, 2 and 4		
95.	Who	of the following was	s awarded "	Vlan .	Booker Internatio	nal Prize 2013'	?
	(A)	Lydia Davis	- 5 🖫	(B)	Richard Flanag	au	
	(C)	Marino Warner	8	(D)	Nadeem Aslam		
∂6.	The	Warsaw Climate Co	nference wa	as he	ld in :		
	(A)	November 2011		(B)	December 2012		
	(C)	October 2013		(D)	November 2013		
AE (I	T) M1	ppp	46				
			12	:±:			

	(B)	United Nations Human Rights Commission UNESCO FAO
	(C)	
		FAO
	CTV	
	(30)	International Court of Justice
98.		ich of the following statements about Swasthya Bima Yojna is not ect ?
	(A)	It is a scheme under the Ministry of Labour
	(B)	It is a scheme under the Ministry of Health
	(C)	It is a scheme that benefits unorganized workers
	(D)	It is a scheme that is in operation since 2008
99.	fron	ch of the following is <i>not</i> a proposal regarding debarring candicates a contesting elections was submitted by the Election Commission in ober, 2014?
	(A)	All those against whom charges have been framed in serious crimes involving punishments of 5 years
	(B)	Such charges should have been framed by a competent court at least 6 months before the date of elections
	(C)	False Affidavits should become a ground for disqualification for being an MP or MLA
	(D)	There should be no bar to contest election to the Lok Sabha or the State Assembly on a person declared as proven insolvent
100.	Civil	Nuclear Agreement between India and the USA was signed in :
	(A)	2006 (B) 2007
	(C)	2008 (D) 2009
AE (IT) MP	PP 47 P.T.O.