BEL Placement Paper 4

Technical- Electronics

1. VSWR on a transmission line is always
2. Equal to 1
3. Equal to 0
4. Less than 1
5. Greater than 1
6. In a amplitude modulated wave, the value of Vmax is 10 V and Vmin is 5 V . The $\%$ modulation in this case is:
7. 2% b. 33.3% c. 50% d. 100%
8. The signal to noise ratio at the input of an amplifier can be improved:
9. By decrease the source impedance or resistance
10. By increasing the source impedance
11. By matching the source impedance with the input impedance of the amplifier
12. None of these
13. If the bandwidth of an amplifier is reduced, the thermal noise in the amplifier will:
14. Increase
15. Decrease
16. Not to be affected at all
17. Become random in nature
18. For the distortion to be minimum in a transmission line at audio frequencies, the condition is
19. $\mathrm{L}=\mathrm{CR} / \mathrm{G}$
20. $\mathrm{L}=\mathrm{GR} / \mathrm{C}$
21. $\mathrm{LG}=\mathrm{R}$
22. $L R=G$
23. When electromagnetic waves are propagated in a waveguide
24. They travel along the broader walls of the waveguide
25. They travel through the dielectric without touching the wall
26. They are reflected from the walls but they do not travel along them
27. None of these
28. Communication between satellite and ground station is through
29. Tropospheric scatter
30. Ground wave
31. Sky wave
32. Line of sight propagation
33. A mast antenna is used mainly for
34. UHF
35. Short wave
36. Medium wave
37. VHF
38. A crystal which has a sensitivity of -55 dBm with 1 MHz BW amplifier will have a sensitivity at 4 MHz BW amplifier equal to:
39. -55 dBm b. -58 dBm c. -52 dBm d. -60 dBm
40. Electromagnetic waves are refracted when they
41. Pass into a medium of different dielectric constant
42. Are polarized at right angles to the direction of propagation
43. Encounter a perfectly conducting surface
44. Pass through a small slot in a conducting medium
45. An aerial is fed from an amplitude modulation amplifier. Both the modulating voltage and modulated voltage are sinusoidal. The aerial current (rms) before modulation is 5 A and it increases to 5.8 A after modulation. The percentage of modulation index will be
1.88% b. 80% c. 81.21% d. 83.14%
46. In a frequency demodulation, Foster-Seeley discriminator uses a
47. Single tuned circuit
48. Double tuned circuit in which both the primary and secondary are tuned to the same frequency
49. Double tuned circuit in which both the primary and secondary are tuned to to different frequencies
50. Combination of two transistors in push-pull operation
51. The wavelength of an electromagnetic wave in wave guide
52. Is directly proportional to the phase velocity
53. Is inversely proportional to the phase velocity
54. Is greater than that in free space
55. Depends only on the wave guide dimensions and the free space wavelength
56. The scale used for moving coil meter is
57. Non-linear scale
58. Linear scale
59. A square scale
60. A log scale
61. To double the circuit range of a $50 \mathrm{~mA}, 2000 \mathrm{~W}$ meter movement, the shunt resistance requires is 1.40 W b. 50 W c. 2000 W d. 25 KW
62. A voltmeter utilizes a 20 mA meter movement. The sensitivity of the voltmeter is
63. 50 meg ohms per volt
64. 20 K ohms per volt
65. 50 kilo ohms per volt
66. 20 meg ohms per volt
67. A transformer, with a $20: 1$ voltage step-down ratio has 6 V across 0.6 ohm in the secondary, then Is and Ip given by
68. $10 \mathrm{~A}, 5 \mathrm{~A}$
69. $5 \mathrm{~A}, 10 \mathrm{~A}$
70. $10 \mathrm{~A}, 0.5 \mathrm{~A}$
71. $1 \mathrm{~A}, 0.5 \mathrm{~A}$
72. The temperature coefficient of resistance of a resistor is
73. Negative
74. Positive
75. Zero
76. Infinity
77. To prevent loading of the circuit under test, the input impedance of the oscilloscope
78. Be low
79. Be high
80. Capacitive
81. Inductive
82. If the retrace is visible on the CRT display, then the trouble may be that
83. The fly back time of the time base saw tooth wave is not zero
84. The blanking control is not set properly
85. There is loss of SYNC signal
86. The intensity is too high
87. The lissajous pattern on CRO for two sinusoidal of frequency ratio $1: 2$ differing in phase by 90 degrees, is
88. A straight line
89. A circle
90. An ellipse
91. An eight-shaped
92. When an electron starts from rest under the influence of electric and magnetic fields perpendicular to each other, the path traversed by it will be
93. Ellipse
94. A parabola
95. Straight line
96. A cycloid
97. Frequency multipliers are usually
98. Class A amplifiers
99. Class B amplifiers
100. Class C amplifiers
101. Class AB amplifiers
102. The feedback network of a phase shift oscillator is usually consists of
103. RC circuit
104. RL circuit
105. LC circuit
106. C alone
107. Common base amplifier is most suitable for use in
108. Very high frequency circuits
109. Low frequency circuits
110. Medium frequency circuits
111. Low current circuits
112. If two amplifiers having identical bandwidth are cascaded, then the bandwidth of the resulting amplifier will be
113. Less than that of each stage
114. Greater than that of each stage
115. Same as that of each stage
116. Double of each stage
117. Which one of the following amplifier has largest bandwidth
118. RC coupled amplifier
119. Difference amplifier
120. Transformer coupled amplifier
121. Direct coupled amplifier
122. In an amplifier, the emitter resistance by passed by a capacitor
123. Reduces the voltage gain
124. Increases the voltage gain
125. Causes thermal run away
126. None of these
127. The term free running is usually associated with
128. Bistable multivibrator
129. Astable multivibrator
130. Monostable multivibrator
131. None of these
132. The signal fed at the input of an ideal push-pull amplifier has frequency components 150 Hz '
$300 \mathrm{~Hz}, 450 \mathrm{~Hz}$ and 600 Hz . The output signal will contain
133. Only 150 Hz frequency component
134. Only 150 Hz and 450 Hz frequency component
135. Only 300 Hz and 600 Hz frequency components
136. All the frequency components
137. For which of the following configuration [s] does the input resistance of the amplifier depend strongly on the load resistance
138. CE b.CC c. CB d. CE and CB
139. An important advantage of the RC coupling scheme is
140. Economy
141. Excellent frequency reponse
142. High efficiency
143. Good impedance matching
144. The AC input to transistor oscillator is obtained from
145. The previous stage
146. A signal generator
147. DC power source
148. Its own internal circuit
149. The low frequency cut-off in an amplifier is due to
150. Only coupling capacitor
151. Only bypass capacitor
152. Both coupling and bypass capacitors
153. The internal transistor junction capacitances
154. In a half-wave rectifier the peak value of AC voltage across the secondary of the transformer is
$20 / 2 \mathrm{~V}$. If no filter circuit is used, the maximum DC voltage across the load will be
1.28 .28 V b. 20 V c. 14.14 V d. None of these
155. Heat sinks ate used in a transistor working as power amplifier so as to
156. Increase the output power
157. Reduce the heat losses in toe transistors
158. Increase the voltage gain of the amplifier
159. Increase the collector dissipation rating of the transistors
160. In a power amplifier, the output power is proportional to
161. Vi b. Vi2 c. Vi3 d. Ö Vi
162. At half power frequencies the reduction in voltage gain of an amplifier equals
1.6 dB b. 2 dB c. $3 \mathrm{~dB} \mathrm{d}$.
163. the frequency of the ripple voltage at the output of a bridge rectifier operating from a 50 Hz supply is
164. 25 Hz b. 50 Hz c. 100 Hz d. 200 Hz
165. Darlington pair is used for
166. High current gain
167. High power gain
168. High frequency operation
169. Low distortion
170. The function of a bleeder resistor in a power supply is
171. Same as that of a load resistor
172. To ensure a minimum current drain in the circuit
173. To increase the output current
174. To increase the output DC voltage
175. A JFET has a potential divider bias arrangement. By mistake the resistor between the gap and the
power supply terminal is removed. The JFET will
176. Continue to work as an amplifier
177. Have a forward bias gate with respect to source
178. Not work as an amplifier but will work as a switch
179. Immediately burn out
180. The ripple factor of half-wave rectifier is
181. 0.482 b. 1.11 c .1 .21 d .1 .57
182. In the high frequency region of an RC coupled amplifier the circuit behave like a
183. Differentiator
184. A current amplifier
185. Low pass filter
186. High pass filter
187. Astable multivibrator can be used as
188. Squaring circuit
189. Comparator circuit
190. Voltage to frequency converter
191. Frequency of voltage converter
192. If the gain of the amplifier as A and the voltage feed back is fraction B of the amplifier output voltage, the condition for maintenance of oscillation is
193. $\mathrm{AB}=1180 \mathrm{o}$
194. $\mathrm{AB}=$ infinity
195. $\mathrm{AB}=10 \mathrm{o}$
196. $\mathrm{AB} \ll 1$
197. Nominal gain of an amplifier is 240 . The noise level in the output without feed back is 300 mV . If a feed back Beta $=1 / 60$ used, the noise level in the output will be
198. 1.66 mV b. 2.4 mV c. 4 mV d. 20 mV
199. A zener diode is primarily used for
200. Rectification
201. Producing constant current
202. Producing constant voltage
203. Reverse bias
204. Cross over distortion is eliminated in a push-pull amplifier by
205. Using a transformer with a large step-up ratio
206. Using a transformer with a large step-down ratio
207. Providing a small forward bias to the transistors
208. Supplying both transistors with inphase signals
209. When a PNP transistor is saturated
210. Its base, emitter, and collector are all essentially at the same potential
211. Its emitter is at higher potential than the collector
212. Its collector is at higher potential than both base \& emitter
213. None
214. For a RC high pass circuit
215. $\mathrm{RC} \ll \mathrm{t}$
216. $\mathrm{RC} \gg \mathrm{t}$
217. $\mathrm{RC}=\mathrm{t}$
218. None
219. An inverter is an equipment for transforming
220. AC to DC
221. AC to AC
222. DC to DC
223. DC to AC
224. Suppose you wish to amplify the potential difference between two points in a circuit when neither of these points is grounded. Which one the following will you prefer?
225. RC coupled amplifier
226. Transformer coupled amplifier
227. Difference amplifier
228. Direct coupled amplifier
229. In an emitter follower, the output voltage is
230. 180o out of phase from the input voltage
231. 90 o out of phase from the input voltage
232. in phase with the input voltage
233. None
234. A silicon controlled rectifier can be considered to be:
235. Two pnp transistor connected back to back
236. Two npn transistor connected back to back
237. One npn and one pnp transistor connected back to back
238. Two zener diodes connected back to back
239. A rf signal contains three frequency components $870 \mathrm{KHz}, 875 \mathrm{KHz} 880 \mathrm{KHz}$. This signal needs to be amplified. The amplifier used should be
240. Audio frequency amplifier
241. Wide band amplifier
242. Push pull amplifier
243. None
244. In the emitter follower circuit
245. The output current and voltage are inphase with the input current and voltage respectively
246. The input and output impedances are equal
247. There is current series negative feedback
248. The output impedance is much higher than the input impedance
249. The frequency response of a system is the range of frequencies between the upper and lower
1.1 dB points
250. 6 dB points
251. 3 dB points
252. None
253. In a class C amplifier the output current is zero for
254. Half cycle
255. Full cycle
256. Less than half cycle
257. More than half cycle
258. When RL [load resistance] equals the internal resistance of a generator, which of the following is maximum:
259. Power in RL
260. Current through RL
261. Voltage across RL
262. Efficiency of the circuit
263. negative feedback in an amplifier results in:
264. increased gain and increased bandwidth
265. increased gain and reduced bandwidth
266. reduced gain and increased bandwidth
267. reduced gain and reduced bandwidth
268. A class B push-pull amplifier suffers from
269. Cross-over distortion
270. Excessive harmonic distortion
271. Inter modulation distortion
272. None
273. An oscillator of the LC type that has split capacitor in the tank circuit is
274. Hartely oscillator
275. Wein bridge oscillator
276. Colpitts oscillator
277. None
278. Clamping circuits are also known as
279. AC restorer
280. DC restorer
281. Voltage to frequency converter
282. None
283. Which of the following has the greater mobility
284. Positive ion
285. Negative ion
286. Electrons
287. Holes
288. An N type semiconductor as a whole is
289. Positively charged
290. Electrically neutral
291. Negatively charged
292. None
293. In a semiconductor, the forbidden energy gap is of the order
1.1 ev b. 6 ev c. 7 ev d. 0.1 ev
294. In LED, light is emitted because
295. Recombination of charges take place
296. We make the light fall on LED
297. Diode emits light when heated
298. None
299. UJT is also called
300. A voltage controlled device
301. A current controlled device
302. A relaxation oscillator
303. None
304. The transistor configuration which provides higher output impedance is
305. CC b. CB c. CE d. None
306. Tunnel diodes are fabricated from
307. Silicon
308. Germanium
309. Either silicon or germanium
310. Either germanium or gallium
311. N channel FETs are superior to P channel FETs because
312. They have a higher input impedance
313. They have a high switching time
314. They consume less power
315. Mobility of electrons is greater than that of holes
316. Diac is a solid state device which works as a
317. 2 terminal bidirectional switch
318. 2 terminal unilateral switch
319. 3 terminal bidirectional switch
320. None
321. Triac is a solid device which works as a
322. 2 terminal bidirectional switch
323. 3 terminal bidirectional switch
324. 4 terminal bidirectional switch
325. 2 terminal unilateral switch
326. Compared to a CB amplifier, a CE amplifier has
327. Lower input resistance
328. Higher output resistance
329. Lower current amplification
330. Higher current amplification
331. The input and output signals of a common emitter amplifier are:
332. Always equal
333. Out of phase
334. In phase
335. Always negative
336. The operation of a JEET involves
337. A flow of minority carriers
338. A flow of majority carriers
339. Recombination
340. Negative resistance
341. Solar cell is an example of a
342. Photo conductive device
343. Photo emissive device
344. Photo voltage device
345. None
346. Bretters and bolometers are used in the measurement of
347. Microwave power
348. VSWR
349. Transmission losses
350. None
351. A klystron operates on the principle of
352. Velocity modulation
353. Amplitude modulation
354. Pulse modulation
355. Frequency modulation
356. The unit of the amplification factor of a triode is
357. Decibels
358. Volt
359. Neper
360. None
361. A change in base current from 30 to 40 mA changes the collector current from 500 to 900 mA . The B factor for this power transistor equals
362. 900 b. 500 c. 3 d. 40
363. The field effect transistor can be used as
364. Variable capacitance
365. A constant voltage source
366. A variable resistance
367. A constant current source
368. Why NPN transistor are preferred over PNP transistor
369. NPN transistor have low heat dissipation
370. NPN transistor can handle large power
371. NPN transistor are cheap and easily available
372. None
373. The germanium transistors are seldom used above
1.60 oC b. 75 oC c. 125 oC d. 175 oC
374. In a FET the drain voltage above which there is no increase in the drain current is called
375. Pick off voltage
376. Critical voltage
377. Pinch off voltage
378. Break down voltage
379. A reflex klystron has
380. Only one cavity working both as the buncher \& the catcher
381. Two cavities one for buncher and one for the catcher
382. Three cavities, two for buncher and one for catcher
383. No cavity at all
384. Bipolar junction transistors are seldom used as switching devices because
385. BJTs are not economical fro using as switching devices
386. They can handle only high voltage but not high currents
387. They need separate circuits when used as switching device
388. Of slow response and inability to withstand high voltage
389. The voltage at which the electron flow starts from the anode is called
390. Break down voltage
391. Peak inverse voltage
392. Peak voltage
393. Pinch off voltage
394. The heater filament of a vacuum tube is generally supplied with AC voltage (and not DC voltage) for heating because
395. It results in a uniform heating of filament so that the electron emission also uniform
396. It is very easy to obtain AC voltage from AC power mains
397. The DC voltage that would be required for heating has much greater magnitude than the AC voltage
398. When DC is used for heating, a different type of filament is required which very expensive
399. The dopant used for P type semiconductor is
400. Phosphorous
401. Boron
402. Carbon
403. Sodium
404. An example of negative resistance characteristic device
405. BJT b. MOSFET c. UJT d. PINdiode
406. The average DC voltage obtained from a bridge rectifier with a sine wave input $\mathrm{V} \sin \mathrm{wt}$ is 1. V / 2 b. 2 V c. 4 V d. V
407. The maximum theoretical efficiency of a class B amplifier is
408. About 20%
409. About 50\%
410. About 75%
411. 100%
412. A cascade amplifier is
413. A CE amplifier followed by CC amplifier
414. A CE amplifier followed by CB amplifier
415. A CC amplifier followed by CB amplifier
416. A CB amplifier followed by CE amplifier
417. Toggle switches can be debounced using
418. Astable multivibrator
419. Shift register
420. RS flip flop
421. None
422. A band pass filter has a centre frequency at 5 KHz . The 3 dB cut off frequencies are 4.5 KHz and
5.5 KHz . The Q factor of the filter is
423. 5 b. 0.2 c. 5.2 d. 0.45
424. The domestic buzzer makes use of
425. Hall effect
426. Tunneling effect
427. Natural resonance
428. Piezoelectric effect
429. The device which uses avalanche breakdown is
430. PIN diode
431. Zener diode
432. Impart diode
433. GUNN diode
434. The correct relation between Alpha and Beta of a transistor is
435. $a / b-1 b \cdot b=a-1 c . b=a / 1-a d . a=b+1 / b$

Answer

1. d
2. b
3. a
4. b
5. a
6. b
7. d
8. c
9. c
10. a
11. d
12. c
13. c
14. b
15. c
16. c
17. c
18. a
19. b
20. d
21. d
22. d
23. c
24. a
25. a
26. b
27. d
28. d
29. b
30. d
31. b
32. a
33. d
34. c
35. d
36. d
37. b
38. a
39. c
40. a
41. b
42. c
43. c
44. c
45. c
46. c
47. d
48. c
49. c
50. a
51. a
52. d
53. c
54. c
55. c
56. d
57. c
58. c
59. c
60. a
61. c
62. a
63. c
64. b
65. c
66. b
67. a
68. a
69. a
70. b
71. d
72. d
73. a
74. b
75. d
76. b
77. b
78. c
79. a
80. a
81. d
82. d
83. c
84. d
85. b
86. c
87. a
88. d
89. b
90. b
91. b
92. c
93. d
94. b
95. b
96. c
97. a
98. d
99. c
100.c
