DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO					
COMBINED COMPETITIVE (PRELIMINARY) EXAMINATION, 2013					
Serial	No.	MATHEMATICS Code No. 13	Α		
Time A	Time Allowed : Two Hours Maximum Marks : 300				
		INSTRUCTIONS			
 IMMEDIATELY AFTER THE COMMENCEMENT OF THE EXAMINATION, YOU SHOULD CHECK THAT THIS TEST BOOKLET DOES NOT HAVE ANY UNPRINTED OR TORN OR MISSING PAGES OR ITEMS, ETC. IF SO, GET IT REPLACED BY A COMPLETE TEST BOOKLET. ENCODE CLEARLY THE TEST BOOKLET SERIES A, B, C OR D AS THE CASE MAY BE IN THE APPROPRIATE PLACE IN THE RESPONSE SHEET. 					
3. Y T	You have to enter your Roll Test Booklet in the Box prov DO NOT write anything els	Number on this vided alongside.	Your Roll No.		
4. T <i>o</i> c					
5. In case you find any discrepancy in this test booklet in any question(s) or the Responses, a written representation explaining the details of such alleged discrepancy, be submitted within three days, indicating the Question No(s) and the Test Booklet Series, in which the discrepancy is alleged. Representation not received within time shall not be entertained at all.					
R	6. You have to mark all your responses ONLY on the separate Response Sheet provided. <i>See directions in the Response Sheet.</i>				
	7. All items carry equal marks. Attempt ALL items. Your total marks will depend only on the number of correct responses marked by you in the Response Sheet.				
h					
	9. While writing Centre, Subject and Roll No. on the top of the Response Sheet in appropriate boxes use "ONLY BALL POINT PEN".				
с	10. After you have completed filling in all your responses on the Response Sheet and the examination has concluded, you should hand over to the Invigilator only the Response Sheet. You are permitted to take away with you the Test Booklet.				
	DO NOT OPEN	THIS TEST BOOKLET UNTIL YOU ARE	ASKED TO DO SO		

1.	If $A = \{x, y\} x^2 + y^2 = 25\}$ and $B = \{x, y\} x^2 + (A)$. One point			
	(A) One point		Two points	
	(C) Three points	(D)	Four points	
2.	The number of subsets of a set containing n eleme			
	(A) n	• •	$2^{n} - 1$	
	(C) n^2	(D)	2 ⁿ	
3.	20 teachers of a school either teach Maths or Phy both the subjects. The number of teachers teachin			
	(A) 12	(B)	8	
	(C) 16	(D)	None of these	
4.	If a relation R is defined on the set Z of integers as fo	llows	:	
	Domain(R) =			
	(A) $\{3, 4, 5\}$	(B)	$\{0, 3, 4, 5\}$	
	(C) $\{0, \pm 3, \pm 4, \pm 5\}$	(D)	None of these	
5.	If R is a relation on a finite set having n elements,	then th	ne number of relations on A is :	
	(A) 2^{n}	(B)		
	(C) n^2	(D)	n ⁿ	
6.	R is a relation on the set Z of integers and it is give	en by	Then R is :	
6. (\$\$\$\$\$})€ R -€	R is a relation on the set Z of integers and it is give 3^{-4} (A) Refer to and Transitive	en by (B)	Then R is : Reflexive and Symmetric	
6. ፼æ}€€ ₽ ₽	R is a relation on the set Z of integers and it is give (A) Referred to (A) Re			
6. ∰7777€₽€-€ 7.	(C) Symmetric and Transitive	(D)	Reflexive and Symmetric	
	(C) Symmetric and Transitive	(D) repres	Reflexive and Symmetric An equivalence relation	
	(C) Symmetric and TransitiveThe equation(A) 5	(D) repres (B)	Reflexive and Symmetric An equivalence relation sents a circle of radius : $2\sqrt{5}$	
	(C) Symmetric and Transitive The equation	(D) repres (B)	Reflexive and Symmetric An equivalence relation sents a circle of radius :	
	(C) Symmetric and TransitiveThe equation(A) 5	(D) repres (B)	Reflexive and Symmetric An equivalence relation sents a circle of radius : $2\sqrt{5}$	
7.	(C) Symmetric and Transitive The equation (A) 5 (C) $\frac{5}{2}$	(D) repres (B) (D)	Reflexive and Symmetric An equivalence relation sents a circle of radius : $2\sqrt{5}$ None of these	
7.	(C) Symmetric and Transitive The equation (A) 5 (C) $\frac{5}{2}$ If Z ₁ , Z ₂ , Z ₃ are complex numbers such that :	 (D) repress (B) (D) Z₂ + Z₂ 	Reflexive and Symmetric An equivalence relation sents a circle of radius : $2\sqrt{5}$ None of these	
7.	(C) Symmetric and Transitive The equation (A) 5 (C) $\frac{5}{2}$ If Z_1, Z_2, Z_3 are complex numbers such that : $ Z_1 = Z_2 = Z_3 = \left \frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3}\right = 1$ then $ Z_1 + Z_2 = 1$	(D) repres (B) (D) $Z_2 + Z_2$ (B)	Reflexive and Symmetric An equivalence relation sents a circle of radius : $2\sqrt{5}$ None of these	
7.	(C) Symmetric and Transitive The equation (A) 5 (C) $\frac{5}{2}$ If Z_1, Z_2, Z_3 are complex numbers such that : $ Z_1 = Z_2 = Z_3 = \left \frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3}\right = 1$ then $ Z_1 + Z_3 = 1$ (A) Equal to 1	(D) repres (B) (D) $Z_2 + Z_2$ (B)	Reflexive and Symmetric An equivalence relation sents a circle of radius : $2\sqrt{5}$ None of these ³ is : Less than 1	
7.	(C) Symmetric and Transitive The equation (A) 5 (C) $\frac{5}{2}$ If Z_1, Z_2, Z_3 are complex numbers such that : $ Z_1 = Z_2 = Z_3 = \left \frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3}\right = 1$ then $ Z_1 + Z_3 $ (A) Equal to 1 (C) Greater than 1	 (D) repress (B) (D) Z₂ + Z₂ (B) (D) 	Reflexive and Symmetric An equivalence relation sents a circle of radius : $2\sqrt{5}$ None of these ³ is : Less than 1	
7.	(C) Symmetric and Transitive The equation (A) 5 (C) $\frac{5}{2}$ If Z_1, Z_2, Z_3 are complex numbers such that : $ Z_1 = Z_2 = Z_3 = \left \frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3}\right = 1$ then $ Z_1 + Z_3 $ (A) Equal to 1 (C) Greater than 1 The locus of point Z satisfying Re(Z ²) = 0 is :	 (D) repres (B) (D) Z₂ + Z₂ (B) (D) (B) 	Reflexive and Symmetric An equivalence relation sents a circle of radius : $2\sqrt{5}$ None of these ³ is : Less than 1 Equal to 3	
7. 8. 9.	(C) Symmetric and Transitive The equation (A) 5 (C) $\frac{5}{2}$ If Z_1, Z_2, Z_3 are complex numbers such that : $ Z_1 = Z_2 = Z_3 = \left \frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3}\right = 1$ then $ Z_1 + Z_3 $ (A) Equal to 1 (C) Greater than 1 The locus of point Z satisfying Re(Z ²) = 0 is : (A) A pair of straight lines	 (D) repres (B) (D) Z₂ + Z₂ (B) (D) (B) 	Reflexive and Symmetric An equivalence relation sents a circle of radius : $2\sqrt{5}$ None of these $ _{3} $ is : Less than 1 Equal to 3 A circle	er

10. If
$$Z_r = \cos\left(\frac{2r\pi}{5}\right) + i \sin\left(\frac{2r\pi}{5}\right)$$
, $r = 0, 1, 2, 3, 4$ then $Z_0 \times Z_1 \times Z_2 \times Z_3 \times Z_1$
(A) -1
(B) 0
(C) 1
(D) None of these

11. If α , β , γ are the roots of the equation $x^3 + 4x + 1 = 0$. Then $(\alpha + \beta)^{-1} + (\beta + \gamma)^{-1} + (\gamma + \alpha)^{-1} =$ (A) 2 (B) 3 (C) 4 (D) 5

12. Let A, G and H be the Arithmetic mean, Geometric mean and Harmonic mean of two positive numbers a and b. The quadratic equation whose roots are A and H is :

(A) $Ax^{2} - (A^{2} + G^{2})x + AG^{2} = 0$ (B) $Ax^{2} - (A^{2} + H^{2})x + AH^{2} = 0$ (C) $Hx^{2} - (H^{2} + G^{2})x + HG^{2} = 0$ (D) None of these

13. G is a group under \otimes_7 where G = {1, 2, 3, 4, 5, 6}. If $5 \otimes_7 x = 4$ then x = (A) 0.8 (B) 4 (C) 3 (D) 5

14. In the group $G = \{1, 3, 7, 9\}$ under multiplication module 10, $(3 \times 7^{-1})^{-1}$ is equal to : (A) 9
(B) 5
(C) 7
(D) 3

15. The identity element in the group $M = \left\{ \begin{pmatrix} x & x \\ x & x \end{pmatrix} \middle| x \neq 0 \text{ and } x \text{ is real} \right\}$ with respect to matrix multiplication is:

(A) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ (B) $\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$

(C) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ (D) None of these

16. If
$$a * b = a^{2} + b^{2}$$
, then the value of $(4*5)*3$ is:
(A) $(4^{2} + 5^{2}) + 3^{2}$
(B) $(4+5)^{2} + 3^{2}$
(C) $41^{2} + 3^{2}$
(D) $(4+5+3)^{2}$

17. In Z, the set of all integers, the inverse of -7 with respect to defined all $a, b \in Z$ is:		t to defined by	
	(A) -14	(B)	7
	(C) -7	(D)	None of these
18.	The units of the field $F = \{0, 2, 4, 6, 8\}$ under		are :
	(A) $\{0\}$	(B)	{2, 4, 6, 8}
	(C) F	(D)	None of these
19.	$(Z_n, \oplus_n, \otimes_n)$ is a field if and only if n is :		
	(A) Even	` '	Odd
	(C) Prime	(D)	None of these
20.	The ideals of a field F are :	-	
	(A) Only {0}		Only F
	(C) Both $\{0\}$ and F	(D)	None of these
21.	Every finite integral domain is :		
	(A) Not a field	(B)	Field
	(C) Vector space	(D)	None of these
22.	The order of i in the multiplicative group of fourth re-		•
	(A) 4	(B)	
&pbanW a⊛₁b	(C) 2	(D)	1
23.	The non-zero elements a, b of a ring $(R, +, .)$ are called a state of a ring $(R, +, .)$ are called a state of a ring $(R, +, .)$ are called a state of a ring $(R, +, .)$ are called a state of a ring $(R, +, .)$ are called a state of a ring $(R, +, .)$ are called a state of a ring $(R, +, .)$ are called a state of a ring $(R, +, .)$ are called a state of a ring $(R, +, .)$ are called a state of a ring $(R, +, .)$ are called a state of a ring $(R, +, .)$ are called a state of a ring $(R, +, .)$ are called a state of a ring $(R, +, .)$ and $(R, +, .)$ are called a state of a ring $(R, +, .)$ are called a state of a ring $(R, +, .)$ are called a state of a ring $(R, +, .)$ and $(R, +, .)$ are called a state of a ring $(R, +, .)$ and $(R, +, .)$ are called a state of a ring $(R, +, .)$ are called a state of a ring $(R, +, .)$ and $(R, +, .)$ are called a state of a ring $(R, +, .)$ and $(R, +, .)$ are called a state of a ring $(R, +, .)$ and $(R, +, .)$ are called a state of a ring $(R, +, .)$ are called a state of a ring $(R, +, .)$ and $(R, +, .)$ are called a state of a ring $(R, +, .)$ are called a state of a ring $(R, +, .)$ are called a state of a ring $(R, +, .)$ and $(R, +, .)$ are called a state of a ring $(R, +, .)$ and $(R, +, .)$ are called a state of a ring $(R, +, .)$ and $(R, +, .)$ are called a state of a ring $(R, +, .)$ and $(R, +, .)$ are called a state of a ring $(R, +, .)$ and $(R, +, .)$ are called a state of a ring $(R, +, .)$ and $(R, +, .)$ are called a state of a ring $(R, +, .)$ are called a state of a ring $(R, +, .)$ are called a state of a ring $(R, +, .)$ are called a state of a ring $(R, +, .)$ and $(R, +, .)$ are called a state of a ring $(R, +, .)$ are called a state of a ring $(R, +, .)$ are called a state of a ring $(R, +, .)$ are called a state of a ring $(R, +, .)$ are called a state of a ring $(R, +, .)$ are called a state of a ring $(R, +, .)$ are called a state of a ring $(R, +, .)$ are ca	alled	zero divisors if :
	(A) $a.b=0$	(B)	
	(C)	(D)	
24.	If the ring R is an integral domain then :		
	(A) $R[x]$ is a field	. ,	R[x] is an integral domain
	(C) $R[x]$ is not an integral domain	(D)	None of these
25.	The product of an even permutation and an odd per (A)		
	(A) Even	` '	Odd
	(C) Neither ever nor odd	(D)	None of these

for

5 ⇔ 26. If

(A) $\begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$ (B) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (D) None of the above

:

- 27. If AB = A and BA = B where A and B are square matrices then :
 - (A) $A^2 = A$ and $B^2 = B$ (B) $A^2 \neq A$ and $B^2 = B$ (C) $A^2 = A$ and $B^2 \neq B$ (D) $A^2 \neq A$ and $B^2 \neq B$

28. If
$$A = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$$
, then the value of $|adj A|$ is :
(A) a^{27} (B) a^{9}
(C) a^{6} (D) a^{2}

29. If
$$A = \begin{bmatrix} 1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1 \end{bmatrix}$$
, then $|adj (adj A)|$ is :
(A) 14^4
(B) 14^3
(C) 14^2
(D) 14

- 30. If $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, and $A^{T} + A = I_{2}$ where A^{T} is the transpose of A and I_{2} is the 2×2 Unit matrix. Then:
 - (A) $\theta = n \pi, n \in \mathbb{Z}$ (B)
 - (C) $\theta = 2n\pi + \frac{\pi}{3}, n \in \mathbb{Z}$ (D) None of these

31. The matrix
$$A = \begin{bmatrix} 1 & -3 & -4 \\ -1 & 3 & 4 \\ 1 & -3 & -4 \end{bmatrix}$$
 is nilpotent of index :
(A) 2 (B) 3
(C) 4 (D) None of these
32. The rank of the matrix $A = \begin{bmatrix} 2 & 3 & 1 & 4 \\ 0 & 1 & 2 & -1 \\ 0 & -2 & -4 & 2 \end{bmatrix}$ is :
(A) 2 (B) 3
(C) 1 (D) Indeterminate
33. For what value of λ , the system of equations
 $x + y + z = 6$
 $x + 2y + 3z = 10$
 $x + 2y + \lambda z = 12$ is Inconsistent ?
(A) $\lambda = 1$ (B) $\lambda = 2$
(C) $\lambda = -2$ (D) $\lambda = 3$
34. If A is a 3×3 matrix and B is its adjoint such that $|B| = 64$, then $|A| =$
(A) 64 (B) ± 64
(B) ± 64
(C) $1 = A$
(D) 18
35. If $A^3 = 0$, then $1 + A + A^2$ equals :
(A) $1 - A$ (B) $(1 - A)^{-1}$
(C) $(1 + A)^{-1}$ (D) None of these

36. If A =

equals to :

(A)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 (B) $\begin{bmatrix} -1 & -2 \\ -3 & -4 \end{bmatrix}$
(C) $\begin{bmatrix} \frac{1}{2} & -\frac{1}{3} \\ -\frac{1}{2} & 0 \end{bmatrix}$ (D) $\begin{bmatrix} -\frac{1}{4} & \frac{1}{3} \\ \frac{1}{2} & 0 \end{bmatrix}$

EIJ-49862-A

[Turn over

37. If
$$s = a + b + c$$
 then the value of $\Delta = \begin{vmatrix} s+c & a & b \\ c & s+a & b \\ c & a & s+b \end{vmatrix}$ is :
(A) $2s^2$ (B) $2s^3$
(C) s^3 (D) $3s^3$
38. $\lim_{n \to \infty} \left[\frac{4^n}{n-1} \right]_{\frac{1}{3^n} - 1} \right]$ is equal to :
(A) $\log_4 3$ (B) $\log_3 4$
(C) 1 (D) None of these
39. The value of $\lim_{n \to \infty} \left[\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots + \frac{1}{(2n+1)(2n+3)} \right]$ is :
(A) 1 (B) $\frac{1}{2}$
(C) $-\frac{1}{2}$ (D) None of these
40. $\lim_{x \to \infty} \left[\frac{\int_{-\infty}^{x} xe^{x^2} dx}{e^{4x^2}} \right] =$

$$\begin{bmatrix} & & \\ &$$

41. The function
$$f(x) = \begin{cases} 1 - 2x + 3x^2 - 4x^3 + \dots + \infty & \text{if } x \neq -1 \\ 1 & \text{if } x = -1 \end{cases}$$
 is:

- (A) Continuous and differentiable at x = -1
- (B) Neither continuous nor differentiable at x = -1
- (C) Continuous but not differentiable at x = -1
- (D) None of the above

42. Let $f(x) = \begin{cases} \frac{\sin \pi x}{5x} & , x \neq 0 \\ K & , x = 0. \end{cases}$ If f(x) is continuous at x = 0, then the value of K is : (A) $\frac{\pi}{5}$ **(B)** (C) 1 (D) 0 43. If f(x) is differentiable and strictly increasing function, then the value of $\lim_{x \to 0} \left| \frac{f(x^2) - f(x)}{f(x) - f(0)} \right|$ is : (A) 1 **(B)** 0 (C) -1 (D) 2 44. The number of points at which the function f(x) = |x-3| + |x+1| does not have a derivative in the interval [-4, 4] is : (A) 1 (B) 2 (C) 3 (D) None of these 45. If f(x) satisfies the conditions of Rolle's theorem in [1, 2] and f(x) is continuous in [1, 2], then $\int_{0}^{2} f'(x) dx$ is equal to : (A) 3 (B) 0 (C) 1 (D) 2 46. Let $f(x) = e^x$, $x \in [0,1]$, then a number 'c' of the Lagrange's mean value theorem is : (A) $\log_{e}(e-1)$ (B) $\log_{e}(e+1)$ (C) 1 (D) None of these 47. The maximum value of xy subject to x + y = 8 is : (A) 8 (B) 16 (D) 24 (C) 20 48. The series $n - \frac{n^2}{2} + \frac{n^3}{3} - \frac{n^4}{4} + - + \dots - 1 < n \le 1$ represents the function : (A) sin n (B) $\cos n$ (C) $(1+n)^n$

EIJ-49862-A

5

π

[Turn over

9 \$

(D) $\log(1+n)$

49. Expansion of sin x in powers of $\left(x - \frac{\pi}{2}\right)$ is :

(A)
$$\left(x - \frac{\pi}{2}\right) - \frac{\left(x - \frac{\pi}{2}\right)^{3}}{\underline{13}} + \frac{\left(x - \frac{\pi}{2}\right)^{5}}{\underline{15}} - + \dots$$

(B) $\left(x - \frac{\pi}{2}\right) + \frac{\left(x - \frac{\pi}{2}\right)^{3}}{\underline{13}} + \frac{\left(x - \frac{\pi}{2}\right)^{5}}{\underline{15}} + \dots$
(C) $1 - \frac{\left(x - \frac{\pi}{2}\right)^{2}}{\underline{12}} + \frac{\left(x - \frac{\pi}{2}\right)^{4}}{\underline{14}} - + \dots$
(D) None of these

50. The equation of tangent to the curve $x = t^3 - 4$, $y = 2t^2 + 1$ at the point where t = 2 is :(A) 2x - 3y - 19 = 0(B) 2x - 3y + 19 = 0(C) 2x + 3y - 19 = 0(D) 3x + 2y + 6 = 0

51. If the normal to the curve y² = 5x - 1 at the point (1, -2) is of the form ax - 5y + b = 0. Then 'a' and 'b' are :
(A) 4, -14
(B) 4, 14

(C) -4, 14 (D) -4, -14

52. The least value of
$$f(x) = 2x + \frac{8}{x^2}$$
, $x > 0$ is :

(A)	4	(B)	6
(C)	8	(D)	None of these

53. The radius of curvature for the curve $\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2} - \frac{r^2}{a^2b^2}$ is :

(A)
$$\frac{p^2}{a^2b^2}$$
 (B) $\frac{a^2p^2}{b^2}$
(C) $\frac{a^2b^2}{p^3}$ (D) $a^2b^2p^2$

54. The centre of curvature of the curve $y = x^2 at (0,0) is$:

(A)
$$\left(0,\frac{1}{2}\right)$$

(B) $\left(\frac{1}{2},\frac{1}{2}\right)$
(C) $\left(\frac{1}{2},0\right)$
(D) None of these

- 55. The radius of curvature of the curve $r = a \sin n \theta$ at origin is :
 - (A) na (B)
 - (C) 2an (D) $\frac{2na}{3}$

56. The asymptote parallel to co-ordinate axes of the curve $(x^2 + y^2) x - ay^2 = 0$ is : (A) y - a = 0 (B) y + a = 0

- (C) x a = 0 (D) x + a = 0
- 57. The asymptote of the curve $y = e^x$ is given by : (A) y = 0 (B) x = 0(C) y = e (D) x = e
- 58. For the curve $y^2(1 + x) = x^2(1 x)$, the origin is a :
 - (A) Node(B) Cusp(C) Conjugate point(D) None of these
- 59. The curve $y = x^3 3x^2 9x + 9$ has a point of inflexion at :
 - (A) x = -1(B) x = 1(C) x = -3(D) x = 3
- 60. The curve $y = \log x$ is :
 - (A) Concave upwards in $(0, \infty)$ (B) Concave downwards in $(0, \infty)$ (C) Concave upwards in $(-\infty, \infty)$ (D) Concave downwards in $(-\infty, \infty)$

11

 $\langle \Rightarrow \rangle$

- 61. The points of inflexion on the curve $x = (\log y)^3$ are :
 - (A) (0, 1) and $(8, e^2)$ (B) (1, 0) and $(8, e^2)$ (C) (0, 1) and $(e^2, 8)$ (D) (1, 0) and $(e^2, 8)$
- 62. The graph of $x = \frac{1-t^2}{1+t^2}$, $y = \frac{2t}{1+t^2}$ is a: (A) Circle
 (B) Ellipse
 (C) Cycloid
 (D) None of these
- EIJ-49862-A

[Turn over

63. The number of leaves in the curve $r = a \sin 5\theta$ are :

(A) Two	(B) Five
(C) Ten	(D) None of these

64. If
$$u = f(y+ax) + \phi(y-ax)$$
 then $\frac{\partial^2 u}{\partial x^2} =$
(A) $\frac{\partial^2 u}{\partial y^2}$
(B) $a^2 \frac{\partial^2 u}{\partial y^2}$
(C) $-a^2 \frac{\partial^2 u}{\partial y^2}$
(D) $a \frac{\partial^2 u}{\partial y^2}$

65. If
$$Z = \log (x^2 + y^2)$$
 then $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} =$
(A) 0 (B) 1
(C) 2 (D) 3

66. If
$$y = \sqrt{\sin x} + \sqrt{\sin x} + \sqrt{\sin x} + \dots + \infty$$
 then $(2y-1)\frac{dy}{dx}$ is given by :
(A) $\sin x$
(B) $\cos x$
(C) $\tan x$
(D) $\cot x$

67. The series
$$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - + \dots$$
 is :
(A) Conditionally Convergent
(C) Divergent

68. The series
$$1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \dots$$
 is :
(A) Conditionally Convergent
(C) Oscillatory

- (B) Absolutely Convergent
- (D) None of the above

- (B) Absolutely Convergent (D) None of the above
- 69. The series $\sum_{n=1}^{\infty} \frac{(n-2\log n)^n}{2^n n^n}$ is : (A) Convergent
 - (C) Oscillatory

- (B) Divergent
- (D) None of these

70. The series
$$\sum_{n=1}^{\infty} \frac{|\underline{n} - 2^n}{n^n}$$
 is:
(A) Convergent (B) Divergent
(C) Oscillatory (D) None of these
71. The series $\sum_{n=1}^{\infty} \frac{4 \cdot 7 \cdot \dots \cdot (3x+1)}{1 \cdot 2 \cdot \dots \cdot x} x^n$ is Convergent if:
(A) $|x| < 1$ (B)
(C) $|x| < \frac{1}{4}$ (D) $|x| < \frac{1}{2}$
72. $\int_{-\infty}^{2} \frac{\sqrt{x}}{\sqrt{3-x} + \sqrt{x}} dx =$

(A) 0 (B)
$$\frac{1}{2}$$

(C) 1 (D) None of these

73.
$$\int_{0}^{\frac{\pi}{2}} \frac{2^{\sin x}}{2^{\sin x} + 2^{\cos x}} dx =$$

$$\lim_{x \to \infty} \left[\frac{1}{3n+1} + \frac{1}{(n+2)^{2}} \frac{\pi}{4} \frac{1}{n+3} + \dots + \frac{1}{2n} \right] =$$
(B)

(C)

74.

(A)	log _e 2	(B)	log _e 3
(C)	log _e 6	(D)	None of these

- 75. The entire length of the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ is :
 - (A) 8a (B) $4\sqrt{3}a$ (C) 6a (D) $\sqrt{8a}$

EIJ-49862-A

(D)

[Turn over

76.	The perimeter of $r = a (1 + \cos \theta)$ is :		
	(A) a	(B)	2a
	(C) 4a	(D)	8a
77.	The length of one arch of Cycloid $n = a(\theta + \sin\theta)$	•	
	(A) a	(B)	
	(C) 8a	(D)	32a
78.	The area bounded by the curve $y = 2x$, $\dot{x} - axis$ and		
	(A) 2	(B)	
	(C) 4	(D)	8
79.	The area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is :		
	(A) 2πab	(B)	πab
	πab		
	(C) $\frac{\pi ab}{2}$	(D)	None of these
80.	The area bounded by the curve $y^2 = x$ and $x^2 = y$ is	give	n by :
	(A) 0	(B)	
	2		
	(C) $\frac{2}{3}$	(D)	1
	J		

81. The whole area of the curve $r = a \cos 2\theta$ is :

(A)
$$\frac{\pi a^2}{2}$$
 (B) πa^2

- (C) $2\pi a^2$ (D) $\frac{2\pi a^2}{3}$
- 82. The line y = x + 1 is revolved about x-axis. The volume of solid of revolution formed by revolving the area covered by the given curve, x-axis and the lines x = 0, x = 2 is :
 - (A) $\frac{19\pi}{3}$ (B) $\frac{17\pi}{3}$ (C) $\frac{13\pi}{3}$ (D)

83. The volume generated by revolution of the ellipse

about major axis is

[assume that a > b]:

(A)
$$\frac{4\pi ab^2}{3}$$
 (B) $\frac{4\pi a^2 b}{3}$
(C) $\frac{4\pi a^2 b^2}{3}$ (D) None of these

- 84. The surface of the solid of revolution about x-axis of the area bounded by the curve y = x, x-axis and the ordinates x = 0 and x = 3 is equal to :
 - (A) $4\sqrt{2}\pi$ (B) $9\sqrt{2}\pi$ (C) $11\sqrt{2}\pi$ (D) $8\sqrt{2}\pi$

85. The value of
$$\int_{0}^{\frac{\pi}{2}} \sin^{6} x \, dx = :$$

(A) $\frac{5\pi}{8}$ (B)

87. Order and degree of the differential equation $\sqrt{2\left(\frac{dy}{dx}\right)^3 + 4} = \left(\frac{d^2y}{dx^2}\right)^{3/2}$ are respectively : (A) order 2, degree 3 (B) order 1, degree 3 (C) order 3, degree 2 (D) order 3, degree 1

EIJ-49862-A

[Turn over

15 ⇔

88.	If P, Q are functions of x, then solution of differential equation $\frac{dy}{dx} + Py = Q$ is:		
	(A) $ye^{\int Pdx} = \int Qe^{\int Pdx} dx + c$	(B)	$y = e^{\int P dx} \int Q e^{\int P dx} dx + C$
	(C) $y = \int Q e^{\int P dx} dx + C$	(D)	None of these
80	The differential equation of the form $\frac{dy}{dx} + Py = Q$	v ⁿ w	here P and O are functions of \mathbf{y} is called \cdot
07.	dx	<i>J</i> VV	nere i and Q are functions of x, is cance.
	(A) Auxiliary equation	(B)	Bessel's equation
	(C) Clairaut's equation	(D)	Bernoulli's equation
90.	The solution of $(y \cos x + 1) dx + \sin x dy = 0$ is :		
	(A) $x - y \sin x = cx$	(B)	$y + x \sin x = c$
	(C) $y - x \sin x = c$	(D)	$x + y \sin x = c$
			2
91.	If at every point of a certain curve the slope of the t	ange	int equals $\frac{-2x}{y}$, the curve is :
	(A) A straight line	(B)	A parabola
	(C) A circle	(D)	An ellipse
00		()	-

92. The integrating factor for the differential equation $(x^2y - 2xy^2) dx - (x^3 - 3x^2y) dy$ is given by :

(A) (B) xy
(C)
$$x^2y^2$$
 (D) $\frac{1}{x^2y^2}$

93. The general solution of
$$P = \log (px - y)$$
 is :

(A) $y = cx - e^{c}$	(B) $y + cx = e^{c}$
(C) $y + x = \log c$	(D) $y + c = e^x$

94. The general solution of a differential equation of first order represents :

(A) A family of surfaces(B) A pair of curves in xy plane(C) A family of curves in xy plane(D) None of these

95. The singular solution of the differential equation $P^3 + Px - y = 0$ is $\left[\text{where } P = \frac{dy}{dx} \right]$:

(A) $27y^2 + 4x^3 = 0$ (B) $y^2 = 4ax$ (C) $x^2 + y^2 = a^2$ (D) None of these

96. The orthogonal trajectory of the family of curves $ay^2 = x^3$ is :

- (A) $3y^2 2x^2 = \text{constant}$ (B) $2x^2 + y^2 = \text{constant}$
- (C) $3x^2 + y^2 = \text{constant}$ (D) $2x^2 + 3y^2 = \text{constant}$
- 97. Solution of $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = 0$ is: (A) $c_1e^{-2x} + c_2e^x$ (B) $c_1e^{2x} + c_2e^x$ (C) $c_1e^{2x} + c_2e^{-2x}$ (D) None of these
- 98. The general solution of the differential equation $D^2(D+1)^2 y = e^x$ is :
 - (A) $y = c_1 + c_2 x + (c_3 + c_4 x) e^x$ (B) $y = c_1 + c_2 x + (c_3 + c_4 x) e^{-x} + \frac{e^x}{4}$
 - (C) $y = c_1 + c_2 e^{-x} + (c_3 + c_4 x) e^{-x} + \frac{e^x}{4}$ (D) None of these
- 99. The particular integral of the differential equation $(D+2)(D-1)^3y = e^x$ is :
 - (A) $\frac{x^3 e^x}{18}$ (B) $x^3 e^x$ (C) $\frac{x^3 e^x}{3}$ (D) None of these

100. The equation of the cylinder whose generators are parallel to the line $\frac{x}{1} = \frac{y}{-2} = \frac{z}{3}$ and whose

guiding curve is $x^2 + 2y^2 = 1$, z = 0 is given by : (A) $(3z-x)^2 + 2(2z + 3y)^2 = 9$ (B) $(3x+z)^2 + 2(3y - 2z)^2 = 9$ (C) $(3x-z)^2 + 2(3y + 2z)^2 = 9$ (D) $(2z+3x)^2 + 2(3y - x)^2 = 9$