	अत्त	वेव्याख्याता जाणित	, शासकीम	तंत्र क्रितन	,गार-ब याक्ली	परीक्षा-
l l	Δ	परीक्षा दि-९-	3- 20 14	। प्रश्नपुस्तिका क्रमांक	CODE : QO3	2014
			प्रश्नपुस्तिका	BOOKLET NO.		
		7	त्राळणी परीक्षा		एकुण प्रश्न : 80	
वेळ	: 3 (तीन) ता	स	गणित		एकूण गुण : 200	
			सूचना			
(1)	सदर प्रश्नपुस्तिवे आहेत किंवा ना	त्त 80 अनिवार्य प्रश्न आहेत. उमे हीत याची खात्री करून घ्यावी. अ	दवारांनी प्रश्नांची उत्तरे 1स <u>ा तसेच</u> अन्य काही	लिहिण्यास सुरुवात करण्याप् दोष आढळल्यास ही प्रश्नपु	ूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न स्तिका समवेक्षकांकडून लगेच	
	बदलून घ्यावी.		परीक्षा-क्रमांक			
(2)	आपला परीक्षा-उ न विसरता बॉल	कमांक ह्या चौकोनांत 9 पेनने लिहावा.	۲ 		↑ शेवटचा अंक	मदो

- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.
- (4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचविली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराची क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रॅमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नाकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार पर्यायापैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशाय कोणात्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनधिकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

पर्यवेक्षकांच्या सूचनेविना हे सील SEAL

उघ दु

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

٠

.

١.

1. Changing the order of the integration in the double integral

` **A**

$$I = \int_{0}^{8} \int_{\frac{x}{4}}^{2} f(x, y) \, dy \, dx \text{ leads to } I = \int_{r}^{8} \int_{p}^{q} f(x, y) \, dx \, dy. \text{ What is } q ?$$
(1) $4y$ (2) $16y^2$ (3) x (4) 8

2. If $\int_{-a}^{b} f dx$ and $\int_{a}^{-b} f dx$ are lower and upper Riemann integrable on [a, b] then :

(1)
$$\int_{-a}^{b} f dx \ge \int_{a}^{-b} f dx$$

(2)
$$\int_{-a}^{b} f dx = \int_{a}^{-b} f dx$$

(3)
$$\int_{-a}^{b} f dx \le \int_{a}^{-b} f dx$$

(4) None of these

- 3. The application of Gram Schmidt process of orthonormalisation to $u_1 = (1, 1, 0) u_2 = (1, 0, 0) u_3 = (1, 1, 1)$ yields :
 - (1) $\frac{1}{\sqrt{2}}$ (1, 1, 0) (1, 0, 0) (0, 0, 1) (2) $\frac{1}{\sqrt{2}}$ (1, 1, 0), $\frac{1}{\sqrt{2}}$ (1, -1, 0), (0, 0, 1) (3) (0, 1, 0) (1, 0, 0) (0, 0, 1) (4) None of these
- 4. The value of the integral $\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-4)(z-2)} dz$ where C is circle |z|=3 traced anticlockwise : (1) $-2i\pi$ (2) $i\pi$ (3) $-i\pi$ (4) $2i\pi$

5. What is the value of n so that e^{ny^2} is an integrating factor of the differential equation

$$\begin{pmatrix} \frac{y^2}{2} \\ e^2 - xy \end{pmatrix} dy - dx = 0 ?$$
(1) -1 (2) 1 (3) $\frac{1}{2}$ (4) $-\frac{1}{2}$

SPACE FOR ROUGH WORK

QO	3				4					Â
6.	The	number of 5	5 Sylow sub	ogroups i	n a grou	p of o	order 45 :			
	(1)	1	(2)	2		(3)	3	(4)	4	
		·		J 1		- 1.1	$\omega = \frac{1}{2}$			
7.	Ine	image of (z -	$-a\eta = a unc$	ier the tra	ansiorm	anon	u^{-1} is:			
	(1)	Circle			(2)	Stra	ight line			
	(3)	Lemniscat	е		(4)	Equ	iangular spiral			
8.	The	close bound	ed sets are	compact	if :					<u> </u>
	(1)	A normed	vector space	ce is finite	e dimen	sional				
	(2)	A vector s	pace is finit	te dimens	sional					
	(3)	$\mathbf{P}'(\mathbf{x}) = \mathbf{P}(\mathbf{x})$)							
	(4)	None of th	lese							
9.	If x	, <i>y, z</i> are p	ositive re	al numb	ers the	n mir	nimum value	of x^2 +	$8y^2 + 27z^2$	where
	1_	1 + 1 = 1	ia .							
	$\frac{-}{x}$	y z	15 :			,		į		
	(1)	108	(2)	216		(3)	405	(4)	1048	
10.	The	probability	that two fri	iends sha	re the sa	ime bi	irth month is :		· · · · · ·	
		1		1			1		1	
	(1)	6	(2)	12		(3)	144	(4)	24	
			f = 1= cu			-(-)	^ ^ 2	^	^ (
11.	The	line integral	J v.ar of ti	ne vector i	runction	v(r)	$= 2xyz_1 + x^2$	$z_1 + x^{-1}$	yk from the	eorigin
	to th	ne point p (1	, 1, 1) is :							
	(1)	1								
	(2)	U 1								
	(3)	-1 Connot ho	dotormino	d withou	t on orifu	ina th	a nath			
	(4)						е раш			
12.	Wha	at is the valu	e of k if $\frac{1}{2}$	$\log(x^2 +$	y^2 + i	tan ⁻¹	$\frac{kx}{y}$ is analytic	:?		
	(1)	- 2	(2)	-1		(3)	1	(4)	2	
		<u> </u>						· ·		

SPACE FOR ROUGH WORK

--

QO3

13. Which of the following is an analytic function ?

A

(1)
$$\frac{Z}{1+Z^2}$$
 (2) $Z\overline{Z}$ (3) e^{-Z^2} (4) $e^{Z^{-2}}$
14. The particular solution for the differential equation $\frac{d^2 y}{dx^2} + 3 \frac{dy}{dx} + 2y = 5 \cos x$ is :
(1) 0.5 $\cos x + 1.5 \sin x$ (2) 1.5 $\cos x + 0.5 \sin x$
(3) 1.5 $\sin x$ (4) 0.5 $\cos x$
15. The fixed points of mapping $f(z) - \frac{3iz + 13}{z - 3i}$ are :
(1) $3i \pm 2$ (2) $3 \pm 2i$ (3) $2 \pm 3i$ (4) $-2 \pm 3i$
16. For matrix $M = \begin{bmatrix} 2 & 3+2i & -4 \\ 3-2i & 5 & 6i \\ -4 & -6i & 3 \end{bmatrix}$ which of the following statements are correct :
P: M is skew Hermitian and iM is Hermitian
Q: M is Hermitian and iM is Skew Hermitian
R: eigen values of M are real
S: eigen values of M are real
S: eigen values of M are real
(1) P and R only (2) Q and R only (3) P and S only (4) Q and S only
17. For which subspace $\chi \subseteq R$ with usual topology and with $[0, 1] \subseteq X$ with a continuous function
 $f: X \rightarrow [0, 1]$ (2) $X = (-1, 1)$ (3) $X = R$ (4) $[0, 1] \subset X$
18. If the dual of the problem has infeasible solution, then the value of objective function is :
(1) unbounded (2) bounded (3) no solution (4) none of these
19. The stationary points of $f(x, y) = x^3 + y^3 - 3x - 12y + 20$ are :
(1) $(1, 2)(I, -2)(-1, 2)(-1, -2)$ (2) $(-1, -2)(I, 2)(3, 1)(-1, 3)$
(3) $(0, 0)(I, 2)(2, -3)(-3, 1)$ (4) None of the above

and the second

SPACE FOR ROUGH WORK

QO:	3				6						Α
20.	If J _n	(x) is the Bessel f	unctio	n of the fi	rst kind	then	$\int x^{-2} J_3($	(x)dx is	s :		
	(1)	$x^{-2} J_2(x) + c$	(2)	x^2 J ₂ (x)	+ c	(3)	$-x^{-2} J_3$	$_{3}(x) + c$	(4)	-x~	f^{-1} J ₃ (x) + c
21.	Con and	u _t =0 at t=0 the	tion u _{tt} en u (]	$= 4u_{xx} 0 < \pi/2, \pi/2$ is	x < π s :	t > 0	with u (0,	t) = u	(π, t) :	= 0	$u(x,0) = \sin x$
	(1)	2	(2)	1		(3)	0		(4)	-1	
22.	The	extremum for	he va	riational j	problen	n $\int_{0}^{\frac{\pi}{8}}$	$\left[\left(y^1\right)^2+2\right]$	2 yy ¹	16y ²	dx v	vith y (0)=0
	у ('	$\left \frac{\pi}{8}\right = 1$ occurs for	or the	curve :							
	(1)	$y = \sin(4x)$			(2)	<i>y</i> =	$\sqrt{2} \sin (2$	<i>x</i>)			
	(3)	$y=1-\cos (4x)$			(4)	<i>y</i> =	$\frac{1-\cos(2\pi)}{2}$	<u>(8x)</u>			
23.	If u	is an ideal of rin	g R the	en :							
	(1)	u/R is a ring	(2)	R/u is a	ring	(3)	Ru is a 1	ring	(4)	Non	e of these
24.	If A (1) (3)	is an open subse A is complete Complement o	et of co	omplete m	etric sp (2) (4)	ace of A is Non	X then : incomple e of these	te			
25.	The	singular points o	of $f(z)$	$= \frac{1}{z^4 + 1}$	are giv	en by	•				
	(1)	-1, -1, -1,	-1								
	(2)	1, 1, 1, 1									
	(3)	$\cos \frac{(2n+1)\pi}{4}$	— i sin	$\frac{(2n+1)\pi}{4}$	n=0,	1, 2, 3	3				
	(4)	$\cos \frac{(2n+1)\pi}{4} +$	- i sin	$\frac{(2n+1)\pi}{4}$	n=0, 1,	2, 3					

SPACE FOR ROUGH WORK

-i

7 QO3 Α The volume of solid obtained by revolving the area under $y = e^{-2x}$ about the x axis is : 26. $\frac{\pi}{4}$ $\frac{\pi}{2}$ (1)(2) 2π (4) (3) π Let PID, ED, UFD denote set of all principal ideal domains, Euclidean domains, unique 27. factorisation domains respectively then : $UFD \subset ED \subset PID$ $PID \subset ED \subset UFD$ (1)(2) $PID \subset UFD \subset ED$ $ED \subset PID \subset UFD$ (3) (4)The value of $\int_{0}^{1} \int_{y^2}^{1} \int_{0}^{1-x} x \, dz \, dx \, dy$: 28. (3) $\frac{8}{35}$ (1) $\frac{4}{35}$ (2) $\frac{3}{35}$ $\frac{6}{35}$ (4) If $f(z) = \frac{z}{8-z^3}$, z = x + iy then $\frac{\text{Res}}{z \to 2} f(z)$ is : 29. (1) $\frac{-1}{8}$ (2) $\frac{1}{8}$ $\frac{1}{6}$ (3) $\frac{-1}{6}$ (4) Maximize 3x - 4y subject to constraint $-2x + y \le 12$, $x - y \le 2$, $x \ge 0$, $y \ge 0$. 30. (1)infinitely many solutions (2)no solution (3)unique solution (2, 0)(4)unique solution (0, 12)The 2 regression lines are 2x - 9y + 6 = 0 and x - 2y + 1 = 0. What is the correlation co-efficient 31. between x and y? (2) $\frac{2}{3}$ (3) $\frac{4}{9}$ $\frac{-2}{3}$ (1) (4)None of these 32. Let G be a cyclic group of order 8, then its group of automorphisms has order : 2 (2)4 (3) 6 8 (1)(4)

SPACE FOR ROUGH WORK

QO	3				8				A					
33.	Usiı	Using Euler's Method take step size $= 0.1$, find approximate value of y obtained corresponding												
	to x	=0.2 for initia	l value p	roblem $\frac{d}{d}$	$\frac{y}{x} = x^2$	+y ²	and y (0)=1							
	(1)	1.322	(2)	1.222		(3)	1.122	(4)	1.110					
34.	lf F	is a field its on	ly ideals	are A : F a	a field i	itself,	B : (0) then :							
	(1)	A and B are	true		(2)	A fa	alse B true							
	(3)	A true B fals	e		(4)	A a	nd B false							
35.	Let und	V be a vector s er T if :	pace and	T a linea	r opera	tor on	V. If W is a s	ubspace o	of V, W is invariant					
	(1)	$T(W) \subset W$			(2)	W c	= T (W)							
	(3)	T (W) = W			(4)	Nor	ne of the above	2						
36.	Let Let (1)	y be the soluti Laplace transfo <u>17</u> 5	on of ini orm of y (2)	itial value be F(S) the $\frac{13}{5}$	proble en valu	m $\frac{d}{dx}$ e of F (3)	$\frac{y}{z^2} + y = 6 \cos(1)$ (1) is : $\frac{11}{5}$	(4)	(0) = 3 and y'(0) = 1 $\frac{9}{5}$					
37.	The	value of a, b, c	is given	by		if vec	tor \overline{F} is given	by						
	F =	$(x+2y+az)\hat{i}$	+ (b <i>x</i> -3	y−z) ĵ +	(4 <i>x</i> +cy	(+2z)	$\stackrel{\wedge}{\mathbf{k}}$ is conservat	tive.						
	(1)	1, 4, 2	(2)	-1, 4, 2		(3)	-1, -4, -2	2 (4)	-1, 4, -2					
38.	For <i>x</i> 1, <i>x</i>	the L.P. probl $z_2 \ge 0$ then :	em Min	$z = x_1 + x_2$		that 5	$5x_1 + 10x_2 \le 0, x_2$	$x_1 + x_2 \ge 1$, $x_2 \ge 1$, $x_2 \le 4$ and					
	(1)	There is a bo	unded so	olution	(2)	The	re is no solutio	n						
	(3)	There is a inf	inite solu	ation	(4)	Non	ne of these							
39.	Neig	zhbourhood of	<i>x</i> is :					- <u> </u>						
	(1)	an open set l	U contair	ning x	(2)	an c	losed set U co	ntaining	x					
	(3)	a null set			(4)	non	e of these							
														

......

,

.

SPACE FOR ROUGH WORK

ан А

40. A topological space X is compact if every open covering of X contains :

- (1)a finite subcollection that covers X
- (2)a infinite subcollection that covers X
- (3)a finite subcollection that does not cover X
- (4) none of these

41. Which of the following Banach Spaces is not separable ? (1) $L^{1}[0, 1]$ (2) $L^{\infty}[0, 1]$ (3) $L^2[0, 1]$ C [0, 1] (4)

The solution of the differential equation $ydx + (x + x^2y) dy = 0$ is : 42.

(1)
$$\frac{-1}{xy} = c$$
 (2) $\frac{-1}{xy} + \log y = c$ (3) $\frac{1}{xy} + \log y = c$ (4) $\log y = cx$

43. The function
$$f(z) = \left\{ \sin\left(\frac{1}{z}\right) \right\}^{-1}$$
 has multiple poles all of which are isolated singularity.

- Which of the following matrix is not diagonalisable ? 44.
 - (1) $\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$ (2) $\begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix}$ (3) $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ (4) $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

Which one of the following does not satisfy the differential equation $\frac{d^3y}{dx^3} - y = 0$? **45**.

121

 $-\gamma$

(1)
$$e^{x}$$
 (2) e^{-x}
(3) $e^{-\frac{x}{2}} \sin\left(\frac{\sqrt{3}}{2}\right) x$ (4) $e^{-\frac{x}{2}} \cos\left(\frac{\sqrt{3}}{2}\right) x$

SPACE FOR ROUGH WORK

P.T.O.

.

QO3

- 46. To ensure the following system of equations $2x_1 + 7x_2 - 11x_3 = 6$ $x_1 + 2x_2 + x_3 = -5$
 - $7x_1 + 5x_2 + 2x_3 = 17$

Converges using Gauss Seidal Method, one has to rewrite as :

(1)
$$\begin{bmatrix} 2 & 7 & -11 \\ 1 & 2 & 1 \\ 7 & 5 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ -5 \\ 17 \end{bmatrix}$$

(2)
$$\begin{bmatrix} 7 & 5 & 2 \\ 1 & 2 & 1 \\ 2 & 7 & -11 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 17 \\ -5 \\ 6 \end{bmatrix}$$

(3)
$$\begin{bmatrix} 7 & 5 & 2 \\ 1 & 2 & 1 \\ 2 & 7 & -11 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ -5 \\ 17 \end{bmatrix}$$

(4) The equations cannot be rewritten in a form to ensure convergence

47. Using Cayley Hamilton Theorem express $2A^5 - 3A^4 + A^2 - 4I$ as a linear polynomial in A where $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ (1) 128 A - 400 I (2) 138 A - 403 I (3) 138 A + 403 I (4) 57 A + 403 I

48. The Fourier transform of $e^{ax} \cos(\alpha x)$ is equal to :

(1)
$$\frac{\omega - \alpha}{(\omega - \alpha)^2 + \alpha^2}$$
 (2) $\frac{\omega + \alpha}{(\omega - \alpha)^2 + \alpha^2}$ (3) $\frac{1}{(\omega - \alpha)^2}$ (4) None of these

49. The partial differential equation $5 \frac{\partial^2 z}{\partial x^2} + 6 \frac{\partial^2 z}{\partial y^2} = xy$ is classified as :

(1) elliptic (2) parabolic (3) hyperbolic (4) none of these

50. Hamilton's equation is :

(1) $q_k = \frac{\partial H}{\partial P_k}$ (2) $-P_k = \frac{\partial H}{\partial q_k}$

(3) Both (1) and (2) (4) None of these

SPACE FOR ROUGH WORK

11

52.

- 51. If an assignment problem consists of 6 workers and 7 projects :
 - (1) one worker will not get a project assignment
 - (2) one worker will be assigned two projects
 - (3) each worker will contribute work toward the seventh project
 - (4) one project will not get a worker assigned

If z = a is an isolated singularity of f and $f(z) = \sum_{n=1}^{\infty} a_n (z-a)^n$ in its Laurent expansion in

ann(a ; 0, R). Also if $a_n \neq 0$ for infinitely many negative integers n then :

- (1) z = a is a removable singularity
- (2) z = a is a pole of order m
- (3) z = a is an essential singularity
- (4) None of these

53.	The	value of com	plex integr	al∫	tan ($2\pi z$) d z wh	ere C is t	the curve $ z = 1$	l is :
				Č				
	(1)	0	(2)	2πi	(3)	$-2\pi i$	(4)	πi

54. Which of the following statements is true in respect of the convergence of Newton Raphson procedure ?

- (1) It converges under all circumstances.
- (2) It does not converge to a root where the second differential co-efficient changes sign.
- (3) It does not converge to a root where second differential co-efficient vanishes.
- (4) None of these.

55. In Neumann condition :

- (1) μ is prescribed by each point of boundary ∂D of a domain D
- (2) where value of normal derivative $\frac{\partial \mu}{\partial n}$ on the boundary ∂D are specified
- (3) $\left(\frac{\partial \mu}{\partial n} + au\right)$ is specified on ∂D
- (4) none of these

SPACE FOR ROUGH WORK

- **56.** A decision maker wishes to choose at least 2 projects out of a total of five. The appropriate constraint is :
 - (1) $x_1 + x_2 + x_3 + x_4 + x_5 \le 2$ (2) $x_1 + x_2 + x_3 + x_4 + x_5 \le 2$ (3) $x_1 + x_2 + x_3 + x_4 + x_5 \ge 2$ (4) $x_1 + x_2 + x_3 + x_4 + x_5 \ge 2$
- 57. Five jobs (A, B, C, D, E) are waiting to be processed. Their processing times and due dates are given below using the shortest processing time dispatching rule, in which order should the jobs be processed ?

Job	Process time (days)	Job due date (days)
Α	4	7
В	7	4
С	8	11
D	3	5
E	5	8

(1)	A, B, C, D, E	(2)	C, E, A, D, B

- (3) B, D, A, E, C (4) D, A, E, B, C
- 58. To use the Hungarian Method a profit maximization assignment problem requires :
 - (1) converting all profits to opportunity losses
 - (2) a dummy agent or task
 - (3) matrix expansion
 - (4) find maximum number of lines to cover all the zeroes in a reduced matrix

59. $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 12 (x+y)$ has the solution : (1) $z = f_1 (y+ix) + f_2 (y-ix)$ (2) $z = f_1 (y+ix) + f_2 (y-ix) + (x+y)^3$ (3) $z = (x+y)^3$ (4) None of these

- **60.** Let S be non empty Lebesque measurable subset of R such that every subset of S is measurable. Then the measure of S is equal to the measure of any :
 - (1) Subset of S (2) Countable Subset of S
 - (3) Bounded Subset of S (4) Closed Subset of S

SPACE FOR ROUGH WORK

13

61. The eigen values of the Sturm Liouville System $y'' + \lambda y = 0$ $0 \le x \le \pi y(0) = 0$, $y'(\pi) = 0$ are :

(1)
$$\frac{n^2}{4}$$
 (2) $\frac{(2n-1)^2 \pi^2}{4}$ (3) $\frac{(2n-1)^2}{4}$ (4) $\frac{n^2 \pi^2}{4}$

62. If $A = \begin{bmatrix} a+ic & -b+id \\ b+id & a-ic \end{bmatrix}$ is unitary matrix iff : (1) $a^2 + b^2 + c^2 = 0$ (2) $b^2 + c^2 + d^2 = 0$ (3) $a^2 + b^2 + c^2 + d^2 = 1$ (4) $a^2 + b^2 + c^2 + d^2 = 0$

63. The probability that A speaks a truth is $\frac{4}{5}$ while the probability for B is $\frac{3}{4}$. What is the probability that they contradict each other when asked to speak on a fact ?

(1) $\frac{3}{20}$ (2) $\frac{1}{5}$ (3) $\frac{7}{20}$ (4) $\frac{4}{5}$

64. The completeness axiom states :

Α

- (1) every non empty set S of real number which is bounded above has supremum.
- (2) every non empty set S of real number which is bounded has infimum.
- (3) every non empty set S of real number which is bounded has no supremum.
- (4) every non empty set S of real number which is bounded has no infimum.

The series $1 + \frac{1}{2^2} + \frac{1}{3^3} + \dots$ is : 65. (1)divergent (2) convergent (3) bounded (4)none of these 66. If T is a bounded linear operator on Hilbert space H, then : (1)T is normal iff $||T_x|| = ||T^* x||$ for every $x \in H$ T is normal iff $||T_x|| > ||T^* x||$ for every $x \in H$ (2)

- (3) T is normal iff $||T_x|| < ||T^* x||$ for every $x \in H$
- (4) None of these

SPACE FOR ROUGH WORK

QO	3				14					Α
67.	Whi	ich is incorr	ect among f	he follow	ing ?	D (
	(1)	$P_0(x) = 1$			(2)	$P_1(x)$) = x	·		
	(3)	$P_n(-x) =$	$(-1)^{n+1} P_r$	(x)	(4)	(1 –	$x^{2}) P_{n}''(x) -$	$2x P'_n$	(x) +	$P_n(x) = 0$
68.	Let (1)	G be a grou Zero	p of order 1 (2)	5. Then t One	he num	ber of (3)	Sylow subs Three	groups	of G (4)	of order 3 is : Five
69.	Let S : V	V, W and X \rightarrow W and	be three fir $T: W \rightarrow X$	iite dimen. are two lir	sional v near ma	ector ps su	spaces such ch that to S	that di : $V \rightarrow Z$	im V X is i	/=dim X. Suppose injective. Then :
	(1)	S and T a	re surjective	2	(2)	S is	surjective a	nd T is	injec	ctive
	(3)	S and T a	re injective	_	(4)	S is	injective and	d T is s	urjec	ctive
70.	If m	hatrix $A = \begin{bmatrix} \\ \\ \end{bmatrix}$	$\begin{bmatrix} 2 & 3 & 4 \\ 0 & 4 & 2 \\ 0 & 0 & 3 \end{bmatrix}$ the	en eigen v	values c	f adj .	A are :			
	(1)	4, 16, 9	(2)	2, 4, 3		(3)	8, 12, 6		(4)	$\frac{1}{2}, \frac{1}{4}, \frac{1}{3}$
 71.	The	real part is	$e^x \cos y$ the	n the anal	ytic fur	ction	is given by	:		
	(1)	ze ^z	(2)	$(1+z) e^{2}$		(3)	e ^z		(4)	$-e^{z}$
 72.	Four (1) (2) (3) (4)	rier transfor if $f(x)$ is a if $f(x)$ is p both (1) a none of th	rms of <i>f</i> (<i>x</i>) e ibsolutely in piecewise co nd (2) nese	exists : tegrable o ntinuous o	n positi on finite	ve x a e inter	xis val			
73.	Cov (1)	ariance (x,) 22	y) if $\Sigma x = 15$ (2)	, $\Sigma y = 40$, 2	$\Sigma xy = 1$	10 and (3)	1 n=5 is : -2		(4)	none of these
74.	The	minimal po	blynomial as	sociated v	vith the	matr	$\int_{1}^{0} \int_{0}^{0} \int_{0}^{3} \int_{0$	is :		

•

.

E FOR ROUGH WORK

. .

				15				QO3			
Whi	Which of the following is not an integrating factor of $xdy - ydx = 0$:										
(1)	$\frac{1}{x^2}$	(2)	$\frac{1}{x^2 + y^2}$	(3)	$\frac{1}{xy}$	(4)	$\frac{x}{y}$				
For	the n th Legend	dre polyn	omial $C_n \frac{d}{d}$	$\frac{x^n}{x^n} (x^2 -$	$1\Big)^n$, the valu	e of C _n is :					
(1)	$\frac{1}{n!2^n}$	(2)	$\frac{n!}{2^n}$	(3)	(n !) 2 ⁿ	(4)	$\frac{2^n}{n!}$				
Con (1) (3)	sider polynon maximal bu both maxim	nial ring (t not prim al and pr	(x) the ide ne ime	al of Q (x (2) pri (4) ne) generated b me but not n ther maxima	y x ² -3 is : naximal l nor prime					
Supj stan mea	pose an interv dard deviation n of the samp	val estima n was assu ble was :	te for the p umed to be 6	opulation 6.50, and a	mean was 6 sample of 10	2.84 to 69.4)0 observati	6. The poj ons was us	pulation ed. The			
(1)	56.34	(2)	62.96	(3)	6.62	(4)	66.15				
The	area enclosed	between	the parabol	a $y = x^2$ as	nd the straigh	t line $y = x$	is :				
	<u>1</u>	(2)	$\frac{1}{\epsilon}$	(3)	$\frac{1}{2}$	(4)	$\frac{1}{2}$				
(1)	8	(~)	6		3		2				
(1) If an for d	8 ad when we ar letermining th	e using a ne pivot ra	6 simplex tabl	le to solve egative, tl	a maximizati ien, we know	ion problem	, we find the find the first second s	ne ratios			
_	Whi (1) For (1) (1) (3) Sup stan mea (1) The	Which of the follo (1) $\frac{1}{x^2}$ For the n th Legend (1) $\frac{1}{n! 2^n}$ Consider polynom (1) maximal bur (3) both maxim Suppose an intervision mean of the samp (1) 56.34 The area enclosed	Which of the following is r (1) $\frac{1}{x^2}$ (2) For the n th Legendre polyne (1) $\frac{1}{n! 2^n}$ (2) Consider polynomial ring (2) (1) maximal but not prim (3) both maximal and prim (3) both maximal and prim (3) both maximal estimation was assume mean of the sample was : (1) 56.34 (2) The area enclosed between	Which of the following is not an integr (1) $\frac{1}{x^2}$ (2) $\frac{1}{x^2 + y^2}$ For the n th Legendre polynomial $C_n \cdot \frac{d}{d}$ (1) $\frac{1}{n! 2^n}$ (2) $\frac{n!}{2^n}$ Consider polynomial ring Q (x) the ider (1) maximal but not prime (3) both maximal and prime Suppose an interval estimate for the p standard deviation was assumed to be of mean of the sample was : (1) 56.34 (2) 62.96 The area enclosed between the parabole	15 Which of the following is not an integrating fact (1) $\frac{1}{x^2}$ (2) $\frac{1}{x^2 + y^2}$ (3) For the n th Legendre polynomial $C_n \frac{d^n y}{dx^n} \left(x^2 - \frac{1}{n! 2^n}\right)$ (2) $\frac{n!}{2^n}$ (3) (1) $\frac{1}{n! 2^n}$ (2) $\frac{n!}{2^n}$ (3) Consider polynomial ring Q (x) the ideal of Q (x) (1) maximal but not prime (2) prives (3) both maximal and prime (4) neither Suppose an interval estimate for the population standard deviation was assumed to be 6.50, and a mean of the sample was : (1) 56.34 (2) 62.96 (3) The area enclosed between the parabola $y = x^2$ and the sample was the parabola $y = x^2$ and the sample was the parabola $y = x^2$ and the sample was the parabola $y = x^2$ and	15 Which of the following is not an integrating factor of $xdy - y$. (1) $\frac{1}{x^2}$ (2) $\frac{1}{x^2 + y^2}$ (3) $\frac{1}{xy}$ For the n th Legendre polynomial $C_n \frac{d^n y}{dx^n} (x^2 - 1)^n$, the value (1) $\frac{1}{n! 2^n}$ (2) $\frac{n!}{2^n}$ (3) $(n!) 2^n$ Consider polynomial ring Q (x) the ideal of Q (x) generated b (1) maximal but not prime (2) prime but not prime (3) both maximal and prime (4) neither maximal Suppose an interval estimate for the population mean was 6 standard deviation was assumed to be 6.50, and a sample of 10 mean of the sample was : (1) 56.34 (2) 62.96 (3) 6.62 The area enclosed between the parabola $y = x^2$ and the straight	15 Which of the following is not an integrating factor of $xdy - ydx = 0$: (1) $\frac{1}{x^2}$ (2) $\frac{1}{x^2 + y^2}$ (3) $\frac{1}{xy}$ (4) For the n th Legendre polynomial C_n , $\frac{d^n y}{dx^n} (x^2 - 1)^n$, the value of C_n is : (1) $\frac{1}{n! 2^n}$ (2) $\frac{n!}{2^n}$ (3) $(n!) 2^n$ (4) Consider polynomial ring Q (x) the ideal of Q (x) generated by $x^2 - 3$ is : (1) maximal but not prime (2) prime but not maximal (3) both maximal and prime (4) neither maximal nor prime Suppose an interval estimate for the population mean was 62.84 to 69.4 standard deviation was assumed to be 6.50, and a sample of 100 observation mean of the sample was : (1) 56.34 (2) 62.96 (3) 6.62 (4) The area enclosed between the parabola $y = x^2$ and the straight line $y = x$	15 Which of the following is not an integrating factor of $xdy - ydx = 0$: (1) $\frac{1}{x^2}$ (2) $\frac{1}{x^2 + y^2}$ (3) $\frac{1}{xy}$ (4) $\frac{x}{y}$ For the n th Legendre polynomial $C_n \frac{d^n y}{dx^n} (x^2 - 1)^n$, the value of C_n is : (1) $\frac{1}{n! 2^n}$ (2) $\frac{n!}{2^n}$ (3) $(n!) 2^n$ (4) $\frac{2^n}{n!}$ Consider polynomial ring Q (x) the ideal of Q (x) generated by $x^2 - 3$ is : (1) maximal but not prime (2) prime but not maximal (3) both maximal and prime (4) neither maximal nor prime Suppose an interval estimate for the population mean was 62.84 to 69.46. The pop standard deviation was assumed to be 6.50, and a sample of 100 observations was us mean of the sample was : (1) 56.34 (2) 62.96 (3) 6.62 (4) 66.15 The area enclosed between the parabola $y = x^2$ and the straight line $y = x$ is :			

.

•

-000-

QO3

सूचना --- (पृष्ठ 1 वरून पुढे....)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणान्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82'' यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वतःबरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK