RUHS

display

RUHS Entrance Examination

2021

Question Paper

BPT 2021

Q. No. 1 0032001	The position vector of a particle is given by $\vec{r} = 3t\hat{\imath} + t^2\hat{j}$, find out the velocity vector of the particle.
Option A	$3t\hat{i} + 2t\hat{j}$
Option B	$3\hat{\imath} + 2t\hat{j}$
Option C	$3t\hat{\imath} + 2t\hat{j}$
Option D	$3\hat{\imath} + t^2\hat{j}$
Correct Option	В

Q. No. 2 0032002	The dimensional formula of magnetic flux is, [Given, mass=M, length=L, time=T, current=A]
Option A	[ML ³ T ⁻² A ⁻¹]
Option B	[ML ² T ⁻² A ⁻²]
Option C	[ML ¹ T ⁻³ A ⁻¹]
Option D	[ML ² T ⁻² A ⁻¹]
Correct Option	D

Q. No. 3 0032003	Moment of inertia of a rod of mass 'm' and length 'l' about its one end is 'I'. If one- fourth of its length is cut away. Find out the moment of inertia of the remaining rod about its one end.
Option A	$\frac{3}{4}I$
Option B	$\frac{9}{16}I$
Option C	$\frac{1}{16}I$
Option D	$\frac{27}{64}I$
Correct Option	D

Q. No. 4 0032004	Find out the height 'h' at which the value of 'g' becomes $1/49$ of its value at the surface of the earth. Given the radius of earth is 'R'.
Option A	3R
Option B	2R
Option C	6R
Option D	4R
Correct Option	C

Γ

Q. No. 5 0032005	According to Kepler's law of planetary motion, if 'T' is the time-period and 'r' is the orbital radius, then for two planets these are related as
Option A	$(\frac{T_1}{T_2})^{3/2} = \frac{r_1}{r_2}$
Option B	$(\frac{T_1}{T_2})^2 = (\frac{r_1}{r_2})^3$
Option C	$(\frac{T_1}{T_2})^{1/2} = \frac{r_1}{r_2}$
Option D	$(\frac{T_1}{T_2})^3 = \frac{r_1}{r_2}$
Correct Option	В

Q. No. 6 0032006	An artificial satellite moves in a circular orbit around the earth. Total energy of the satellite is given by 'E'. Find out the potential energy of the satellite.
Option A	-2E
Option B	2E
Option C	$\frac{2}{3}E$
Option D	$-\frac{2}{3}E$
Correct Option	Α

Q. No. 7 0032007	A particle executing simple harmonic motion covers a distance equal to half its amplitude in one second. Calculate the time period of the simple harmonic motion.
Option A	3 s
Option B	4 s
Option C	8 s
Option D	12 s
Correct Option	D

Q. No. 8 0032008	A body oscillates with SHM according to the equation, $x = 5\cos(2\pi t + \frac{\pi}{4})$. instantaneous displacement at t=1 sec. [Use S.I units]
Option A	$\frac{\sqrt{2}}{5}$
Option B	$\frac{5}{\sqrt{2}}$
Option C	$\frac{\sqrt{3}}{2}$
Option D	$\frac{1}{\sqrt{2}}$

Correct Option B

Q. No. 9 0032009	Young's modulus (Y) and rigidity modulus (G) for most of the materials is related as
Option A	G=2Y
Option B	$G = \frac{Y}{3}$
Option C	$G = \frac{Y}{5}$
Option D	$G = \frac{Y}{8}$
Correct Option	В

Q. No. 10 0032010	Water flows in a streamlined manner through a capillary tube of radius 'r' at the pressure difference 'P' and at the rate of flow 'Q'. What will be the rate of flow if the radius is reduced to 'r/2' and the pressure increased to '2P'.
Option A	2Q
Option B	Q
Option C	Q/4
Option D	Q/8
Correct Option	D

Q. No. 11 0032011	If 1000 drops are combined to form a larger drop, then the ratio of surface energy of smaller drop to the larger drop will be
Option A	1:10
Option B	1:1000
Option C	1:100
Option D	0.2:1
Correct Option	c

Q. No. 12 0032012	A gas with $\gamma = 1.4$ undergoes the adiabatic process of compression, if the pressure is increased by 0.5%, then the volume decreased by
Option A	0.5%
Option B	1%
Option C	0.1%
Option D	0.25%
Correct Option	Α

Q. No. 13 0032013	One mole of gas expands with temperature T such that its volume $V=kT^2$, where k is a constant. If the temperature of the gas changes by 60 ⁰ C, Calculate the work done by the gas.
Option A	120R
Option B	R In60

Option C	kR In60
Option D	60kR
Correct Option	Α

Q. No. 14 0032014	Two stars 'X' and 'Y' radiate maximum energy at the wavelength of 360 nm and 480 nm respectively. Then the ratio of the surface temperature of 'X' and 'Y' is
Option A	3:4
Option B	81:256
Option C	4:3
Option D	256:81
Correct Option	c

Q. No. 15 0032015	If 1 g of steam is mixed with 1 g of ice, then what will be the resultant temperature of the mixture?
Option A	50°C
Option B	100° c
Option C	230° C
Option D	270° C
Correct Option	В

Q. No. 16 0032016	Find out the amplitude of a wave represented by displacement equation $y = \frac{1}{\sqrt{a}} \sin \omega t \pm \frac{1}{\sqrt{b}} \cos \omega t.$
Option A	$\frac{a+b}{ab}$
Option B	$\frac{\sqrt{a} + \sqrt{b}}{ab}$
Option C	$\frac{\sqrt{a} \pm \sqrt{b}}{ab}$
Option D	$\sqrt{\frac{a+b}{ab}}$
Correct Option	D

Q. No. 17 0032017	Calculate the path difference between two waves, $y_1 = p_1 \sin(\omega t - \frac{2\pi x}{\lambda})$ and $y_2 = p_2 \cos(\omega t - \frac{2\pi x}{\lambda} + \varphi)$.
Option A	$\frac{2\pi}{\lambda}[\varphi]$
Option B	$\frac{2\pi}{\lambda}\left[\varphi-\frac{\pi}{2}\right]$
Option C	

	$\frac{\lambda}{2\pi}[\varphi]$
Option D	$\frac{\lambda}{2\pi}\left[\varphi+\frac{\pi}{2}\right]$
Correct Option	D

Q. No. 18 0032018	If a closed organ pipe has the same third harmonic frequency as that of an open organ pipe, then find out the ratio of their lengths.
Option A	4:5
Option B	3:4
Option C	1:2
Option D	1:1
Correct Option	c

Q. No. 19 0032019	Two condensers of capacity 0.3μ F and 0.6μ F respectively are connected in series. The combination is connected is connected across a potential of 6V. The ratio of the energies stored by the condensers will be
Option A	4:1
Option B	1:4
Option C	2:1
Option D	1:2
Correct Option	c

Q. No. 20 0032020	The dielectric constant of pure water is 81. Calculate the permittivity.
Option A	7.16*10 ⁻¹⁰ MKS unit
Option B	8.86*10 ⁻¹² MKS unit
Option C	1.02*10 ¹³ MKS unit
Option D	4.36*10 ¹² MKS unit
Correct Option	Α

Q. No. 21 0032021	A capacitor of ${}^{2\mu F}$ is charged to 200V and then plates of the capacitor are connected to a resistance wire. Calculate the heat produced in joule unit
Option A	2*10 ⁻²
Option B	4*10 ⁻²
Option C	4*10 ⁴
Option D	4*10 ¹⁰
Correct Option	В

Q. No. 22 0032022	The dimension of mobility of charge carriers. [given, M= mass, T=time, A= Current]
Option A	M ⁻² T ² A

Option B	M ⁻¹ T ² A
Option C	M ² T ⁻¹ A ⁻¹
Option D	MT ⁻² A ⁻¹
Correct Option	В

Q. No. 23 0032023	The magnetic induction produced at the centre of a circular loop carrying current is 'B'. The magnetic moment of the loop of radius 'R' is
Option A	$\frac{BR^2}{2\pi\mu_0}$
Option B	$\frac{2\pi BR^3}{\mu_0}$
Option C	$\frac{BR^2}{2\pi\mu_0}$
Option D	$\frac{2\pi BR^2}{\mu_0}$
Correct Option	В

Q. No. 24 0032024	If a steel wire of length 'L' and magnetic moment 'M' is bent into a semi-circular arc, what will be the new magnetic moment
Option A	MXL
Option B	$\frac{M}{L}$
Option C	$\frac{2M}{\pi}$
Option D	Μ
Correct Option	c

Q. No. 25 0032025	A proton and a Helium nucleus are shot into a magnetic field at right angles to the field with the same kinetic energy. calculate the ratio of their radii.
Option A	1:1
Option B	1:2
Option C	2:1
Option D	1:4
Correct Option	Α

Q. No. 26 0032026	What will happen if you heat a ferromagnetic substance above Curie temperature
Option A	becomes paramagnetic
Option B	becomes diamagnetic
Option C	remains ferromagnetic

Option D	becomes electromagnetic
Correct Option	Α

Q. No. 27 0032027	In an AC circuit, Voltage (V) and current (I) is given by, V=150sin(150t)V, and $I = 150 \sin(150t + \frac{\pi}{3})A$. Calculate the power dissipation in the circuit.
Option A	2500 W
Option B	2430 W
Option C	5625 W
Option D	5650 W
Correct Option	с

Q. No. 28 0032028	The power factor of an R-L circuit is $\frac{1}{\sqrt{2}}$. If the frequency of the AC is doubled, calculate the power factor
Option A	1/√11
Option B	1/√7
Option C	1/√5
Option D	1/√3
Correct Option	C

Q. No. 29 0032029	An air core coil and an electric bulb are connected in the series with an AC source. If an iron rod is put in the coil, then the intensity of the bulb will be
Option A	remain same
Option B	increase
Option C	decrease
Option D	first decrease and then increase
Correct Option	c

Q. No. 30 0032030	The rms current in an AC circuit is 2 A. If the wattless current be $\sqrt{3}$ A, what is the power factor of the circuit?
Option A	$\frac{1}{3}$
Option B	$\frac{1}{2}$
Option C	$\frac{\sqrt{3}}{2}$
Option D	$\frac{1}{4}$
Correct Option	В

display

Q. No. 31 0032031	Which part of the electromagnetic spectrum is used to cook food?
Option A	Ultraviolet rays
Option B	X - rays
Option C	Infrared rays
Option D	Microwave rays
Correct Option	D

Q. No. 32 0032032	The ratio of contributions made by electric field and magnetic field components to the intensity of an EM wave is
Option A	c:1
Option B	c ² :1
Option C	1:1
Option D	\sqrt{c} :1
Correct Option	C

Q. No. 33 0032033	The transverse nature of electromagnetic wave is proved by which of the following
Option A	Interference phenomena
Option B	Diffraction phenomena
Option C	Dispersion phenomena
Option D	Polarisation phenomena
Correct Option	D

Q. No. 34 0032034	The angle of minimum deviation for a glass prism with $\mu = \sqrt{3}$, equals the refracting angle of the prism. Calculate the angle of the prism.
Option A	30 ⁰
Option B	60 ⁰
Option C	45 ⁰
Option D	65 ⁰
Correct Option	В

Q. No. 35 0032035	A concave lens of focal length 'f' forms an image which is $1/3$ times the size of the object. Calculate the distance of the object from the lens.
Option A	2f
Option B	3f
Option C	$\frac{2}{3}f$
Option D	$\frac{3}{2}f$
Correct Option	Α

Q. No. 36 0032036	The diameter of the objective of a telescope is 200 cm. Calculate the resolving power of the telescope. [Given, wavelength $(\lambda)=5000\text{\AA}$]
Option A	3.28 X 10 ⁵
Option B	3.28 X 10 ⁶
Option C	1.5×10^{6}
Option D	1 X 10 ⁶
Correct Option	В

Q. No. 37 0032037	In Young's double slit experiment, the locus of the point 'P' lying in a plane with a constant path difference between two interfering waves is
Option A	a hyperbola
Option B	a straight line
Option C	an ellipse
Option D	a parabola
Correct Option	Α

Q. No. 38 0032038	In Young's double slit experiment, the ratio of maximum and minimum intensities in the fringe system is 9:1. The ratio of amplitudes of the coherent sources is
Option A	9:1
Option B	3:1
Option C	2:1
Option D	1:1
Correct Option	C

Q. No. 39 0032039	Sodium and copper have work functions 2.3 eV and 4.5 eV respectively. Then the ratio of their threshold wavelengths is nearest to
Option A	1:2
Option B	2:1
Option C	1:4
Option D	4:1
Correct Option	В

Q. No. 40 0032040	Find out the maximum wavelength of light that can cause photoelectric effect in a specific material whose work function is 2.5 eV. [given $h=4.14*10^{-15}$ eV-s]
Option A	237 nm
Option B	749 nm
Option C	397 nm
Option D	497 nm
Correct Option	D

Q. No. 41 0032041	An electron of mass 'm' and photon have same energy 'E'. The ratio of the de-Broglie wavelengths associated with them is [given, c= velocity of light]
Option A	

	$\left(\frac{E}{2m}\right)^{\frac{1}{2}}$
Option B	$c(2mE)^{\frac{1}{2}}$
Option C	$\frac{1}{c}\left(\frac{2m}{E}\right)^{\frac{1}{2}}$
Option D	$\frac{1}{c}\left(\frac{E}{2m}\right)^{\frac{1}{2}}$
Correct Option	D

Q. No. 42 0032042	The wavelength λ_e of an electron and λ_p of a photon of same energy E are related by
Option A	$\lambda_p \propto \lambda_s^2$
Option B	$\lambda_p \propto \lambda_s$
Option C	$\lambda_p \propto \sqrt{\lambda_e}$
Option D	$\lambda_p \propto rac{1}{\sqrt{\lambda_s}}$
Correct Option	Α

Q. No. 43 0032043	Which series of hydrogen spectrum corresponds to ultraviolet region?
Option A	Balmer series
Option B	Brackett series
Option C	Paschen series
Option D	Lyman series
Correct Option	D

Q. No. 44 0032044	In Bohr model of Hydrogen atom, the force on the electron depends on the principal quantum number (n) as
Option A	independent of n
Option B	$F \propto 1/n^5$
Option C	$F \propto 1/n^4$
Option D	$F \propto 1/n^3$
Correct Option	C

Q. No. 45 0032045	The control rods used in a nuclear reactor can be made up of
Option A	graphite
Option B	cadmium
Option C	lead

Option D	barium
Correct Option	В

Q. No. 46 0032046	The relationship between decay constant ' λ ' and half-life 'T' of a radioactive substance is
Option A	$\lambda = \log_{10}(2)/T$
Option B	$\lambda = \log_{\theta}(2)/T$
Option C	$\lambda = \log_2(10)/T$
Option D	$\lambda = \log_2(e)/T$
Correct Option	В

Q. No. 47 0032047	Which one of the following is called the universal gate?
Option A	OR gate
Option B	NAND gate
Option C	AND gate
Option D	XOR gate
Correct Option	В

Q. No. 48 0032048	When a p-n junction is reversed, then the current through the junction is mainly due to
Option A	only diffusion charges
Option B	neither drift nor diffusion charges
Option C	both drift and diffusion charges
Option D	only drift of charges
Correct Option	D

Q. No. 49 0032049	If the current gain () of a transistor is 0.98, then what is the value of current gain (β) of the transistor?
Option A	0.49
Option B	49
Option C	4.9
Option D	5
Correct Option	В

Q. No. 50 0032050	What is the value of $ar{A}+A$ in Boolean algebra
Option A	A
Option B	0
Option C	1
Option D	$ar{A}$
Correct Option	C

E.

Q. No. 51 0062051	The -ve charged particles is called.
Option A	Anion
Option B	Cation
Option C	Radical
Option D	Atom
Correct Option	Α

Q. No. 52 0062052	If 40g NaOH dissolve in 250ml water, then what is the molarity of the solution
Option A	4.0 M
Option B	5.0 M
Option C	8.0 M
Option D	6.0 M
Correct Option	Α

Q. No. 53 0062053	The magnetic quantum number (m) specifies
Option A	Size of orbitals
Option B	Shape of orbitals
Option C	Orientation of orbital
Option D	Nuclear stability
Correct Option	c

Q. No. 54 0062054	From the following sets of quantum numbers $n=3$, $l=2$, $m=-2$, $s=-1/2$. Choose the correct orbital
Option A	3s
Option B	Зр
Option C	3d
Option D	3f
Correct Option	c

Q. No. 55 0062055	has the atomic number 52
Option A	Ι
Option B	Те
Option C	Xe
Option D	Br
Correct Option	В

Q. No. 56 0062056	Einsteinium is of which family element ?
Option A	Actinides

display

Option B	Lanthanides
Option C	Nobel gases
Option D	Transition elements
Correct Option	Α

Q. No. 57 0062057	Which of the following is paramagnetic?
Option A	СО
Option B	0 ₂
Option C	CN [−]
Option D	NO ⁺
Correct Option	В

Q. No. 58 0062058	Which one of the following has highest bond angle?
Option A	CH ₄
Option B	NH ₃
Option C	H ₂ O
Option D	CO ₂
Correct Option	D

Q. No. 59 0062059	The states of matter that shows the uniformity of behaviour
Option A	Gases
Option B	Super cooled liquid
Option C	Plasma
Option D	Solids
Correct Option	Α

Q. No. 60 0062060	The volume of 5.6g of carbon monoxide gas at 27°C and 0.0821 atm is
Option A	6L
Option B	60L
Option C	0.6L
Option D	3L
Correct Option	Α

Q. No. 61 0062061	Best on the first law of thermodynamics, which one of the following is correct?
Option A	For an isothermal process, $q = +W$
Option B	For an isochoric process, $\Delta U = -q$
Option C	For an adiabatic process, $\Delta U = -W$
Option D	For acyclic process, $q = -W$

localhost/ruhsqdisp/display.aspx

Correct Option D

Q. No. 62 0062062	Which orbital among the following has the highest energy?
Option A	n = 4, l = 1
Option B	n = 4, l = 0
Option C	n = 3, l = 2
Option D	n = 3, l = 1
Correct Option	Α

Q. No. 63 0062063	Which of the following aqueous solution will have highest Ph?
Option A	NaCl
Option B	CH ₃ COONa
Option C	K ₂ CO ₃
Option D	NH ₄ Cl
Correct Option	c

Q. No. 64 0062064	Solubility of Mg(OH) ₂ is S mol/L. Its K _{sp} is
Option A	S ²
Option B	2S ²
Option C	4S ²
Option D	4S ³
Correct Option	D

Q. No. 65 0062065	The oxidation state of Cr in CrO ₅ is
Option A	+6
Option B	+8
Option C	+5
Option D	-5
Correct Option	Α

Q. No. 66 0062066	H_2O_2 used in rocket has the concentration
Option A	50%
Option B	90%
Option C	70%
Option D	30%
Correct Option	В

Q. No. 67

Water shows anomalous behaviour between

0062067	
Option A	0° to -4°C
Option B	0° to 4°C
Option C	0° to 5°C
Option D	0° to 6°C
Correct Option	В

Q. No. 68 0062068	Solvays process used for the manufacture of
Option A	NaOH
Option B	(Na ₂ CO ₃ .10H ₂ O)
Option C	K ₂ CO ₃
Option D	NaO ₂
Correct Option	В

Q. No. 69 0062069	Carnallite is the mineral of
Option A	Na
Option B	Са
Option C	Mg
Option D	Cu
Correct Option	c

Q. No. 70 0062070	Which of the ions are present in KHF2 ?
Option A	K ⁺ , F ⁻ , H ⁺
Option B	K ⁺ , F ⁻ , HF ⁻
Option C	K ⁺ and (HF2) ⁻
Option D	$(KHF)^+$ and F^-
Correct Option	C

Q. No. 71 0062071	$P_4 + 3NaOH + 3H_2O \rightarrow 3NaH_2PO_2 + PH_3$ this reaction is an example of
Option A	Disproportionation Reaction
Option B	Neutralisation Reaction
Option C	PyroliticReaction
Option D	Pyrolysis Reaction
Correct Option	Α

Q. No. 72 0062072	Which of the following compound can form three types of salt?
Option A	H ₃ PO ₂

Option B	H ₃ PO ₃
Option C	H ₃ PO ₄
Option D	H ₃ PO ₃
Correct Option	C

Q. No. 73 0062073	IUPAC name of CHO CH ₂ CHO CH ₂ CHO
Option A	2-formylmethylcyclohexane-1,4-dicarbaldehyde
Option B	(cyclohexan-2,5-dialyl)ethanol
Option C	Cyclohexane-1,2,4-carbaldehyde
Option D	Cyclohexane-2-formylmethyl-1,4-dial
Correct Option	Α

Q. No. 74 0062074	The structure of 3-formylpentane-1,2-dioic acid is
Option A	HO CHO O HO H
Option B	H H
Option C	но сно о о о о о о о о о о о о о о о о о
Option D	H COOH O
Correct Option	с

Q. No. 75 0062075	Which of the following is aaromatic compound
Option A	
Option B	\bigtriangleup

Option C	
Option D	
Correct Option	Α

Q. No. 76 0062076	How many chloride ions are surrounding sodium ion in Sodium chloride?
Option A	4
Option B	8
Option C	6
Option D	12
Correct Option	C

Q. No. 77 0062077	Which of the following compound does not exhibit Frenkel defect?
Option A	AgBr
Option B	AgCl
Option C	KBr
Option D	ZnS
Correct Option	c

Q. No. 78 0062078	What is the packing efficiency of Body Centred Cubic unit cell ?
Option A	0.52
Option B	0.68
Option C	0.74
Option D	0.82
Correct Option	В

Q. No. 79 0062079	Which of the following solutions shows positive deviation from Raoult's law?
Option A	Ethanol + Water
Option B	Acetone + Chloroform
Option C	Water + Nitric acid
Option D	Pyridine + Acetic acid
Correct Option	Α

Q. No. 80 0062080	Which of the following aqueous solution has highest value of depression of freezing point?
Option A	KCI
Option B	C ₆ H ₁₂ O ₆

Option C	Al ₂ (SO ₄)
Option D	K ₂ SO ₄
Correct Option	c

Q. No. 81 0062081	If 4 amp current passes through a acidified water for 30 min. Then what volume ${\rm H_2}$ gas will form in STP?
Option A	1100.84 ml
Option B	835.52 ml
Option C	1671.3 ml
Option D	927.4 ml
Correct Option	В

Q. No. 82 0062082	What time will required for the 99% completion of 1^{st} order reaction, if rate constant of the reaction is K
Option A	t = 2.303/K
Option B	t = 0.693/K
Option C	t = 6.909/K
Option D	t = 4.606/K
Correct Option	D

Q. No. 83 0062083	For the voltaic cell: $Fe(S) Fe^{2+} Ag^+ Ag(S) Find E^{\circ}_{cell} \cdot E^{\circ}(Fe^{2+}/Fe) = -0.44V$, $E^{\circ}(Ag^+/Ag) = 0.80V$
Option A	0.36V
Option B	0.63V
Option C	1.24V
Option D	2.48V
Correct Option	C

Q. No. 84 0062084	Kohlrausch's Law is applicable :
Option A	To aqueous solution of strong electrolytes
Option B	Applicable to electrolyte dissolved in a solvent of low polarity only
Option C	To electrolytes at temperature above room temperature
Option D	To electrolytic solution at infinite dilution
Correct Option	D

Q. No. 85 0062085	What is the chemical formula of 'Fool's gold? ?
Option A	FeS ₂
Option B	FeO ₂
Option C	CrO ₃
Option D	MnO ₂

Correct Option

Q. No. 86 0062086	Which one of the following is emulsion ?
Option A	Milk
Option B	Gum
Option C	Fog
Option D	Blood
Correct Option	Α

Q. No. 87 0062087	The formation of micelles take place only above
Option A	Critical temperature
Option B	Inversion temperature
Option C	Absolute temperature
Option D	Kraft temperature
Correct Option	D

Q. No. 88 0062088	What is the shape of XeO ₂ F ₂ ?
Option A	T-shape
Option B	Bend shape
Option C	See-saw
Option D	Tetrahedral
Correct Option	c

Q. No. 89 0062089	What is the Effective Atomic Number (EAN) of [Fe(CN) ₆] ³⁻ ?
Option A	36
Option B	35
Option C	54
Option D	50
Correct Option	В

Q. No. 90 0062090	$[Pt(NH_3)_2Cl_2]$ what is the IUPAC name of the following compound?
Option A	Diamminedichloridoplatinum(II)
Option B	Diamminedichloridoplatinum(IV)
Option C	Diamminedichloridoplatinum(0)
Option D	Diamminedichloridoplatinum(IV)
Correct Option	Α

	CI F Britter C Britter F Which of the following statement is correct?
Option A	Chiral molecule with R-Configuration
Option B	Achiral molecule with R-Configuration
Option C	Chiral molecule with S-Configuration
Option D	Achiral molecule with S-Configuration
Correct Option	C

Q. No. 92 0062092	NBS/CCL ₄
Option A	Br
Option B	CH ₂ Br
Option C	CH ₃ Br
Option D	CH2Br
Correct Option	D

Q. No. 93 0062093	Which of the following alcohols will give the most stable carbocation during dehydration?
Option A	2-butanol
Option B	2-methyl-1-butanol
Option C	Butanol
Option D	Methanol
Correct Option	В

Which of the following alcohols does not reacts with the Lucas Reagent?

0062094	
Option A	CH ₃ -CH ₂ -CH ₂ -OH
Option B	(CH ₃) ₂ CH-OH
Option C	(CH ₃) ₃ C-OH
Option D	(CH ₃) ₂ CH-CH ₂ -OH
Correct Option	Α

Q. No. 95 0062095	Which of the intermediate form in ReimerTiemann reaction?
Option A	Nitrenes
Option B	Carbene
Option C	Ylides
Option D	Carbocation
Correct Option	В

Q. No. 96 0062096	Which of the following does not give positive haloform reaction?
Option A	H ₃ C Ph
Option B	Ph Ph
Option C	C ₂ H ₅ CH ₃
Option D	
Correct Option	В

Q. No. 97 0062097	The S in Buna-S refers to
Option A	Sulphur
Option B	Styrene
Option C	Sodium
Option D	Silicon
Correct Option	В

E

Q. No. 98 0062098	The two functional group present in typical carbohydrate are
Option A	-CHO & -COOH
Option B	-SO ₃ H & -OH
Option C	-OH & -CHO
Option D	-OH & -COOH
Correct Option	c

Q. No. 99 0062099	The class of medicinal products used to treat stress is
Option A	Analgesics
Option B	Tranquillizers
Option C	Antioxidants
Option D	Antihistamines
Correct Option	В

Q. No. 100 0062100	Amides may be converted into amines by a reaction named after
Option A	Hofmann Bromides
Option B	Claisen
Option C	Perkin
Option D	Kekule
Correct Option	Α