Bio-Chemistry(Ph.D.)

1.	What is the isoelectric point for phenylalanine given the p K_a for the COOH group is 1.83 and the NH ₃ ⁺ group is 9.13?										
	(A)	5.48	(B)	4.83	(C)	2.43	(D)	9.13			
2.	-	uence of amino		-	rotein is	s found to be	–Ser-G	ly-Pro-G	ly The		
	(A)	Alpha helix			(B)	Beta turn					
	(C)	Parallel beta s	heet		(D)	Anti-parallel	beta sh	eet			
3.		cose is called on at the anome D-galactose				•	ion is:	idation-re	eduction		
	(C)	D-gluconate			(D)	D-ribose					
4.	Side constants	hains of trypto _l se:	phan re	sidues in prote	ins can	interact with l	ectins.	Γhis is sι	ırprising		
	(A) (B)										
	(C) (D)	The side chain of tryptophan can make hydrogen bonds and lectins cannot The side chain of tryptophan is hydrophobic and lectins are generally hydrophilic									
5.		pKa of approx	imately	•	ous solut	ion, pH=7.0, s					
	(A) (B)	Be nonionic	cu zwii	terion with no	net chai	ge					
	(C)	Never be four	-								
	(D)	Not be optical	ly activ	re							
6.	Prosth (A)	etic groups in p Carbohydrate		known as Gly Lipids	coprotei (C)	ns are compos Metals	sed of: (D)	Phospl	nates		
7.	A major advance in the application of mass spectrometry to macromolecule came with the development of techniques to overcome which One of the following problems: (A) Macromolecules were insoluble in solvents used in mass spectrometry (B) Mass spectrometric analyses were too complex (C) Mass spectrometric analysis involved molecules in gas phase (D) Most macromolecules could not be purified to the degree needed for this										
		technique									

8.		An individual molecular structure within an antigen to which an individual antibody binds is:													
	(A)	Antigen	(B)	Epitope	(C)	Fab region	(D)	Fc region							
9.	The bi (A) (B) (C) (D)	ological role of restriction enzymes is: Restrict the damage to DNA by ultraviolet light Make bacteria resistant to antibiotics Degrade foreign DNA that enters a bacterium Restrict the size of DNA in certain bacterium in laboratory, you will introduce recombinant plasmids into bacterial cells by:													
10.	While (A)	of CaCl ₂													
	(B)	Mixing plasm	Mixing plasmids with an extract of broken cells												
	(C)	Electrophores	Mixing plasmids with an extract of broken cells Electrophoresis- a gentle low voltage gradient draws DNA into the cell												
	(D)														
11.		one of the for runction?	ollowing	g analytical te	echnique	s does NOT h	elp illu	minate a gene's							
	(A)	DNA microar	ray ana	lysis	(B)	Protein chip a	analysis								
	(C)	Southern blot	ting		(D)	Two-hybrid a	ınalysis								
12	Tay-Sa (A)	achs disease is Sterols	the resu	ılt of a genetic	defect i (B)	n the metabolis Gangliosides	sm of								
	(C)	Triacylglycer	ols		(D)	Vitamin D									
13.	Non st	teroidal anti-int	flamma	tory drugs (N	SAIDS)	like aspirin act	by bloo	cking production							
	(A)	Sphingolipids			(B)	Ceramides									
	(C)	Prostaglandin	s		(D)	Waxes									
14	 (C) Prostaglandins (D) Waxes Phosphatidylglycerol, bees wax and cholesterol were dissolved in chloroform and subjected to thin layer chromatography on silica gel using chloroform/methanol/water as developing solvent. Which statement is true for the given conditions: (A) Bees wax will move fastest, followed by cholesterol; phophatidylglycerol will be slowest 														

		(B)	Cholesterol will move fastest, follow slowest	ed by I	Bees wax; phophatidylglycerol will be
		(C)	Phophatidylglycerol will move fastes slowest	st, follo	wed by cholesterol; Bees wax will be
		(D)	Bees wax will move fastest, followed slowest	l by ph	ophatidylglycerol; cholesterol will be
	15.	-	helical DNA structures can restrions. These interactions are primarily Covalent bonds involving deoxyribos Covalent bonds involving bases Hydrogen bonds involving the bases Hydrophobic interactions involving t	r: se	om Hoogsteen (non Watson-Crick)
the			of the following statements about a plis Menten kinetics is false? At very high [S], initial velocity curv		V_o vs. [S] for an enzyme that follows mes a horizontal line that intersects
tiic			y-axis at Km		
		(B)	As [S] increases, initial velocity of re	action	Vo also increases
		(C)	Km is the [S] at which Vo=1/2 Vmax	ζ.	
		(D)	The shape of the curve is a hyperbola	ì	
	17.	Penicil	llin and related drugs inhibit the enzyr Beta lactamase, bacteria	ne (B)	_this enzyme is produced by Transpeptidase, human cells
		(C)	Transpeptidase, bacteria	(D)	Lysozyme, human cells
	18.	activity	· -	an 6.4. lved in ved in	
	19.	Which (A) (C)	of the following is a common compo- Alpha ketoglutarate Arginine	und sha (B) (D)	ared by TCA cycle and Urea cycle? Argino succinic acid Fumarate

20.	 20. A patient reports with polyuria, polydipsia, polyphagia and blood glucose levels of 320 mg/dl; characteristic of Diabetes mellitus. Which of the following would occur in this patient? (A) Increased conversion of fatty acids to acetyl CoA (B) Decreased synthesis of cholesterol in liver (C) Increased fatty acid synthesis from glucose in liver (D) Increased stores of triacylglycerol in adipose tissue 21. Which of the following is a compound formed from both: a hydroxylation with an 										
21.			-	a compound f and a subseque Creatinine			hydrox (D)	ylation with an Serotonin			
22.	2. Which of the following dairy products could be recommended to an individual with Lactose intolerance: (A) Condensed milk										
	(A)	Condensed mi	IK		(B)	Yogurt					
	(C)	Cheese			(D)	Ice cream					
23.		lism of 1 mol	_		n the g	lycolytic pathw	vay is a	accompanied by			
	(A)	2	(B)	0	(C)	4	(D)	8			
24.	4. As electrons are received and passed down the transport chain, the electron carriers are first reduced with the acceptance of the electron and then oxidized with loss of the electron. An individual poisoned by which of the following compounds has the most highly reduced state of most of the respiratory chain carriers? (A) Puromycin (B) Rotenone										
	(C)	Carbon monox	xide		(D)	Chlorampheni	col				
25.	Which (A)	of the followin	_	ents is rich in sl Peanut oil	nort and	medium chain Sunflower oil	•	eids: Almond oil			
26.	-	•	ouffer sy	stabilized by bostem at physio	-	pH? Protein buffer		ollowing buffers			
	(C)	Deoxyhemogl	obin		(D)	Bicarbonate bu	ıffer				
27.	-	ation of DNA g and this period is			occurs	only at a speci-	fied tim	ne during its life			
	(A)	S phase	(B)	M phase	(C)	G1	(D)	G2			
28.	The de (A)	erepression of l Double negati	_	•	nce of la (B)	actose is an exa Double positiv	-				
	(C)	Positive regula	ation		(D)	Negative regul	ation				

29.		of the following	_	-	-	•	(D)	TIC A			
	(A)	UAA	(B)	UAG	(C)	UGG	(D)	UGA			
30	DNA:	is assembled in	to nucle	eosomes with t	he help	of special prote	eins cal	led			
	(A)	Prolamines	(B)	Histones	(C)	Chaperones	(D)	Protamines			
31	Pasten	ur effect is due t	to inhih	ition of alveol	veie hy l	high concentrat	ion of ·				
31	(A)	ATP		itton of grycor	(B)	ADP					
	, ,				. ,						
	(C)	AMP			(D)	Creatine phos	sphate				
32	. Which	of the following	ng tests	is undertaken	to diffe	rentiate betwee	n Glucc	se and Fructose:			
	(A)	Benedict's tes	_		(B)	Seliwanoff's					
	(C)	Molisch test			(D)	Starch test					
	(C)	Wionsen test			(D)	Starch test					
33	. Sphing	gosine is not pr	esent in	1:							
	(A)	Gangliosides			(B)	Cerebrosides					
	(C)	Sphingomyeli	in		(D)	Plasmalogen					
34	4. Which essential nutrient participates as a coenzyme in the transport of high energy										
	electrons and H+ ions during oxidative phosphorylation in the mitochondria?										
	(A)	Folic acid	(B)	Thiamine	(C)	Niacin	(D)	Ascorbic acid			
35.	. Chole:	sterol is a precu	irsor of	all except:							
	(A)	Bile salts	(B)	Bilirubin	(C)	Steroids	(D)	Vitamin D			
26	A 11	,			1 0		• 6:				
36		•	-			reactions of det					
	(A)	Serine	(B)	Glycine	(C)	Glutamine	(D)	Cysteine			
37 .	. Hill re	action is conce		-							
	(A)					nd ATP in mito	ochondr	ia			
	(B)			lysis in chloro		II O in ablanca	10040				
	(C) (D)			TPNH ₂ and A		H ₂ O in chlorop	orasts				
	(D)	Reducing age	IIts IIKC	111111 ₂ and 11	. 11 111 61	moropiasts					
38	The C	•	•	•	efficien	t than C3 plant	s becau	se			
	(A)	They have mo									
	(B)	CO ₂ compens									
	(C)	CO_2 efflux is	not pre	vented							
	(D)	CO ₂ generated	d during	g photorespirat	ion is tr	apped through	PEP car	boxylase			
20	A mtifi	vial rinanina of	fmita :	a aaaamnliakaa	l by too	itmont with					
39	(A)	cial ripening of IAA	iruits 19	s accompnished	B) (B)	Ethylene gas					
	(11)	11 11 1			(\mathbf{D})	Emyrene gas					
	(C)	Kinetin			(D)	Sodium Chlo	ride				

40.	Majori (A)	ty of Nitrogen fixation occurs by Lightening	(B)	Volcanic reuptions
	, ,		, ,	•
	(C)	Haber Bosch process	(D)	Biological nitrogen fixing organisms
41.		ajor enzymes involved in Nitrogen fix		
	(A)	Nitorgenase and hexokinase	(B)	Nitrogenase and hydrogenase
	(C)	Nitrogenase and hydrolyase	(D)	Nitrogenase and peptidase
42.		part of the brain controls eating, does not brain and endocrine system?	rinking,	body temperature & provides a link
	(A)	Parietal lobes	(B)	Temporal lobes
	(C)	Amygdala	(D)	Hypothalamus
43.	The tec	chnique used to locate specific genes	in chror	mosomes is
	(A)	In situ hybridisation	(B)	Colony hybridisation
	(C)	Dot blot technique	(D)	Western blotting
44.	Revers	e transcriptase PCR uses		
	(A)	DNA as a template to form ssDNA		
	(B)	RNA as a template to form DNA		
	(C)	mRNA as a template to form cDNA		
	(D)	DNA as a template to form dsDNA		
45.	Minisa	tellites are		
	(A)	Short coding repetitive regions on the		
	(B)	Short non coding repetitive sequence	-	_
	(C)	10-40 bp sized short sequences withi	_	
	(D)	Regions of chromosomes after secon	dary co	onstriction
46.	The us	e of living microorganisms to degrade	e enviro	nmental pollutants is called
	(A)	Microremediation	(B)	Nanoremediation
	(C)	Bioremediation	(D)	Georemediation
47.	Which	of the following chelating agents is	recomn	nended for acute Lead poisoning with
	signs o	f encephalopathy?		
	(A)	Dimercaprol and Calcium EDTA	(B)	Succimer
	(C)	Penicillamine	(D)	Calcium EDTA
48.	Which synthes	-	s not pr	eformed and therefore has to be newly
	•	Eosinophil chemotactic factor	(B)	Heparin

	(C)	Histamine			(D)	Prostagiandin							
49.	The cir (A)	culation of a tw IgA	vo mon (B)	th old breast fee IgG	d baby (C)	will contain ma IgM	ternal:	IgD					
50.		or vaccination against mycobacterial diseases such as tuberculosis, the most important cet of the immune response to be stimulated is: A) High titer of antibody											
	(B)	Cytotoxic T ce	ells										
	(C)	Macrophage activating cell mediated immunity											
	(D)	Neutrophils											

(BIOPHYSICS)

1.	The mo	ost significant drawback in electr	on mic	roscope	is that
	(A)	It is very costly			
	(B)	It requires high technical skill			
	(C)	It is to be lodged in vacuum			
	(D)	Living cells cannot be observed	l under	it	
2.	Mycob	acterium tuberculosis is an intra-	-cellular	bacteriu	ım. It prefers to infect
	(A)	Macrophages		(B)	B-cells
	(C)	T-cells		(D)	Neutrophils
3.	What d	loes θ signifies in Brags equation	: 2d Sir	η θ=ηλ	
	(A)	Angle between incident x-ray a			ray
	(B)	Angle between incident x-ray a	nd plan	e of crys	tal
	(C)	Angle between incident x-ray a	nd prote	ein mole	cule
	(D)	Angle between incident x-ray a	nd x-ray	y grid	
4.	Which cell?	gene transfer technique involves	the use	of a fatt	ty bubble to carry a gene into a somatic
	(A)	Electroporation	(B)	Liposo	ome transfer
	(C)	Microinjection	(D)	_	e bombardment
5.	` '	eagent is quantified when perform	. ,	indirect	FI ISA?
٥.	(A)	Antibodies in patient's serum	illing an	(B)	Fluorescent antibody
	(C)	Chromagen		(D)	Complement
_		•		(D)	Сопринен
6.		ctor for T-DNA is:		(D)	A anahaataniyaa tumafa aiana
	(A) (C)	Thermusaquaticus Bacillus thuringiensis		(B) (D)	Agrobacterium tumefaciens Salmonella typhimurium
_		_			• •
7.	_	_		c and an	ti-inflammatory agent, inhibits the
	•	sis of which one of the following	?	(D)	B 1 . 1'
	(A)	Arachidonic acid		(B)	Prostaglandins
	(C)	Glucocorticoids		(D)	Histamine
8.		wave form of normal human ECC	_		to:
	(A)	Septal and left ventricular depo			
	(B)	•		valls mo	ving back towards the AV junction
	(C)	Left to right septal depolarization	on		
	(D)	Repolarization of atrium			
9.	Which	one of the methods listed below	is the m	nost sens	itive label free quantification methods for
	protein				
	(A)	UV spectroscopy		(B)	Infra-red spectroscopy
	(C)	Raman spectroscopy		(D)	Southern blotting
10.	Which	of the following proteins acts as	an ener	gy trans	ducer?
	(A)	G-protein	(B)	Bacter	riorhodopsin
	(C)	Haemoglobin		(D)	Heat shock protein
11.	Which	of the following is unfavorable f	or prote	ein foldir	ng?

	(A) (C)	Hydrophobic In Conformationa		(D)	(B) Hydrog	Van DER Waal en Bonding	s Interac	etion
12.	Recomb (A) (B) (C) (D)	Proteins synthes Proteinssynthes	esized in animals esized by transger esised in cells that esized in mutated	are proc	duced by			
13.			volve the purific	ation of	(D)	A		
	(A) (C)	Antigen and a	ntihodies		(B) (D)	Antibody Antigen-antibo	ody con	nnlav
14	, ,	•	intibodies		(D)	Anugen-anuo	ouy con	ipiex
14.	-	r's law relates Light reflection	(B) Light refra	action (C	C) Light	t transmission (I	D)	Light
		orption	(-) 8		-,6		•)	8
15.		•	wing is the simpl	lest meth	od to es	timate the conce	ntration	of glycerol in
		ous solution of						or gry coror m
	(A)	UV absorption			(B)	Gas chromatoga		
	(C)	pH measurem	ent		(D)	Viscosity mea	sureme	nt
16.	(A) (B) (C) (D)	Peptides that disallowed regi It is not possible conformation The occurrence	ions	d will hether a propertion	nave all peptide a on in a pe	the backbone adopts entirely h	elix or e	angles in the
17.	proteas	e. In which of th		troscopi	c measu	-	l change mism	
18.	The pre (A) (C)	sence and distri Northern blot a In situ hybridiz	•	c mRNA	(B) (D)	a cell can be de RNase protection Real-time PCR	-	,
19.	Which	one of the follow	wing analytical te	echnique	s does N	IOT involve an o	ptical m	easurement?
	(A) (C)	ELISA Flow cytometry	y	(D)	(B) Differe	Microarray ntial Scanning C	alorimet	ry
20.		~	es routinely used	l for the	detection	n of primary anti	bodies i	n western
21.	(A) Histone	deacytalase (H			val of ac		(D) N-termi	Anti-paratypic nal of histones.
	(A)	Lysine	(B) Arginir	ne	(C)	Asparagine	(D)	Histidine

22.			responsi	ble for si	_		on in the body lo	cated?			
	(A) (C)	B-cells All leukocytes	ovoont T	' aalla		(B) (D)	T-cells Haemopoietic o	20110			
22		·	•				•				
23.		~			•		otein synthesis i Streptomycin a			nısm?	
	(A) (C)	Quinolones and Rifampicin and				(B) Tetracy	cline and Ampi		acyciine		
24		-	_	-		•	-	J111111			
<i>2</i> 4.		one of the follow 5-Bromouracil	ving che	micals is		intercal (B)	Ethyl methane	culfonat	to		
	(A) (C)	UV UV				(D)	Acridine orange		ie		
25			in Calum	1		(D)	Actionic orange				
<i>2</i> 5.	The app	propriate match	in Colun	nn 1 and 2	Z 1S	COL	LIMINI 2				
		Ferritin			i		UMN 2			_	
	a				ii		oplatin				
	b	Chemotherapl					storage			_	
	c	Metallothione	ins		iii		ein rich protein				
	(A)	a-i, b-ii, c-iii				(B)	a- ii, b-i, c-iii				
	(C)	a-i, b-iii, c-ii				(D)	a- iii, b-i, c-ii				
26.		of the following	•		•						
	(A)	Histidine, Seri	•			(B)	Phenylalanine	•		ine	
	(C)	Tryptophan, T	'yrosine	, Histidi	ne	(D)	Alanine, Tyro	sine, V	aline		
27.	Immedi	iate hypersentivi	ty reacti	ons are as	ssociate	d with?					
	(A)	IgG	(B)	IgE		(C)	IgM	(D)	IgA		
28.	The Bio	ological role of (Cytochro	me P-450) is						
	(A)	Nitrogen Fixati	on			(B)	Oxidation of R	H to RC	PΗ		
	(C)	Amide hydroly	sis			(D)	Oxidation of ar	ninoaci	ds		
29.	If half-l	life of 100 g iodi	ne (I131) is 8 day	s, how	many g	rams will remair	ı in 32 d	lays		
	(A)	50 g	(B)	75 g		(C)	6.25 g	(D)	25 g		
30.	Which	of the following	stateme	nts is/are	correct's	?					
	(A)	Temperature of	coefficie	ent of the	ermisto	rs is mo	ore than the the	rmores	istors		
	(B)	Temperature of	coefficie	ent of the	ermores	istors i	s more than the	e therm	istor		
	(C)	The resistance	e-temp	erature	relation	nship	of thermistors	s is e	exponent	ial and	
		thermoresistor	is linea	ar							
	(D)	The resistan	ce-temp	erature	relatio	nship	of thermore	sistor	is exp	onential	
		and thermistor	is linea	ar							
31.	A neop										
	(A) (B)	A population of	_	_			ng a cell cancero	110			
	(C)	The nucleus of			nocess (n turiiri	ig a cen cancero	us			
	(D)	Pain caused by			ng press	ure on	neurons				
	// A ·		×× * *				c				
32.	_	tle ring-shaped I					of T				
	(A)	The only genetic	ic materi	ai iii a Ca	11661 661	1					

	(B)	The viral chror											
	(D)	A transposon											
33.	The tur	mor suppressor g u2	gene tha	t shows	up in ap	proxima (C)	tely half of all U 6pac	J.S. canc (D)	ers is called p53				
34.	Increas (A)	ed blood flow to Anaplasia	a cance (B)	erous tui Metasi		alled (C)	Malignancy	(D)	Vasculariz	zation			
35.		ation that remov	res a bas	se pair ar	nd thus c	offsets th	e reading frame	e of the g	enetic seque	nce			
	(A)	A basal disrupt	ion			(B)	A frameshift	mutation					
	(C)	A bump-and-ru		tion		(D)	A sliding sequ		itation				
36.		f thymus leads to	o increa	sed infed	ction in l			n called					
	(A)	Thymectomy				(B)	Nude mice						
	(C)	DiGeorge's syr	ndrome			(D)	None of abov	e					
37.		The proofreading of newly synthesized DNA, to excise incorrect nucleotides which have been inserted, is done by:											
	(A)	A restriction er	ndonucle	eases	(B)	DNA			:	gyrase			
	(C)	DNA ligase				(D)	DNA polyme	rase III					
38.		don is found in :											
	(A)	DNA	(B)	rRNA		(C)	tRNA	(D)	mRNA				
39.		e of the E.coli g	enome i	is									
	(A)	4640 bp				(B)	4.64 Kbp						
	(C)	4.64 Mbp				(D)	Not known w	ith certai	nty				
40.		zyme that recogule is called a(r		a specifi	ic (palin	dromic) sequence and	d cuts wi	ithin a DNA	1			
	(A)	Exonuclease	,			(B)	Methylase						
	(C)	Modification	enzyme	e		(D)	Restriction e	endonucl	ease				
41.	Which	polymerase m		desprea	d use of	PCR p							
	(A)	DNA polyme				(B)	Thermus aqu		Taq) polym	erase			
	(C)	DNA polyme				(D)	None of the						
42.		eins are involv lowing forms o							tors. Which	ı of			
	(A)	G-protein –Al	_			(B)	G-protein-A						
	(C)	G-protein-GD				(D)	G-protein-G						
43.	Which	one of the follows?	wing co	mpound	s does no	ot act as	second messen	ger durin	g signaling				
	(A)	cAMP				(B)	Calcium ions						
	(C)	Ionositol-3,4,5	-trispho	sphate		(D)	Triacylglycer	ol					

44.		Thich of the following biochemical reactions is most commonly utilized by living cells propagate intracellular signals?											
	(A)	Acylation				(B)		Phospl	•				
	(C)	Methylation				(D)	I	Decart	oxyl	ation			
45.	Tight ju (A) (B) (C) (D)	Are essential in Donot occur in Have the close Surround control	n vertel est appi	brates	•	_	men	nbrane	es of a	any juncti	ion		
46.		of the following	is the c	ompone	nt in th	e signa	ling	pathwa	ay stir	nulated by	rece	ptor ty	rosine
	kinases (A)	Adenylate cycl	ase			(B)	A	Adapto	r prot	eins			
	(C)	Autophosphory	lating r	eceptor	(D)	Ras	activ	activating protein					
47.	Which (A)	of the following 0.8-500µm	wavele (B)	ngth ran 400-1	_	associa (C)		ith UV 380-75	•	troscopy? (D)		1-10n	m
48.	Electro (A) (C)	n microscopes h Higher magni Very short wa	fication	1		(B)	I	Lenses	sused	croscope to l are of hi ture of m	gh qu	uality	heir:
49.	Lycope (A)	ene ($\lambda_{max} = 469 \text{ i}$ Green	nm) is p (B)	resent ir Red	n tomato	oes. W		olour o Blue	of ligh	t does lyce (D)	opene Ora		b?
50.		of the following n absorption, thi	ckness,	and con			mber	t's law	, whic	ch gives th	ne rela	ation	
	(B)	Radiation must	have hi	gher ba	ndwidth	ı							
	(C)	Radiation source	ce must	be mond	ochrom	atic							
	(D)	Does not con	nsider	factors	other	than	thicl	kness	and	concentra	ation	that	affect
		absorbance											

(BOTANY)

1)	Basal elaterphore present in the capsule of <i>Pellia</i> develops from:											
	(A)	Elater mother	cells		(B)	Sterile sporogenous	cells					
	(C)	Fertile sporog	enous c	ells	(D)	Amphithecium						
2)	Whi	ch of the follo	wing p	air is an exa	mple	of saprophytic live	rwort and moss					
	respe	ectively?										
	(A)	Cryptothallus	mirabi	lis and Buxbau	mia api	hylla						
	(B)	Buxbamia apl	<i>hylla</i> an	d Cryptothallu.	s miral	pilis						
	(C)	Cryptothallus and Zoopsis										
	(D)	Zoopsis and Cryptothallus										
3)	Setae are absent in the sporangium of:											
	(A)	Anthoceros and Corsinia				Corsinia and Tortula						
	(C)	Tortula and Antoceros				Sphagnum and Cors	sinia					
4)	Nam	e the earliest la	nd vasc	cular plant dis	covere	d from Mid Silurian	of Ireland.					
	(A)	Cooksonia	(B)	Rhynia	(C)	Aglaophyton (D)	Psilophyton					
5)	Whi	ch of the followi	ing stat	ement is not tr	rue abo	out stele system of pt	eridophytes?					
	(A)	Primitive type	of stel	e is found in Ly	copodi	ium						
	(B)	Stele in which	centre	is occupied by	pith is	called siphonostele						
	(C)	A siphonostele perforated by several overlapping leaf gap is called Solenostele										
	(D)	Amphiphloic	siphono	ostele is the con	ndition	in which xylem is su	rrounded on both					
		sides by phloe	em, peri	cycle and endo	dermis							
6)	In transverse sections of a young stem, if vallecular canals and cranial canals are											
	present, then the plant belongs to:											
	(A)	Lycopodiales	(B)	Isoetales	(C)	Selaginellales (D)	Equisetales					
7)	Whi	ch of the followi	ing fam	ilies of the gyr	nnospe	erms has 1 ovule per	scale?					
	(A)	Pinaceae	(B)	Araucariaceae	e (C)	Cupressaceae (D)	Ginkgoaceae					
8)	Sago	is a starch mos	tly obta	ained from pit	h and	cortex of the stem of	Cycas species:					
	(A)	Cycas cercina	ılis		(B)	Cycas revoluta						
	(C)	Cycas pectina	ıta		(D)	Cycas rumphi						
9)	A de	mulcent is a dru	ug that:	•								
	(A)	Calms the ner	ves and	induces sleep								
	(B)	Enhances app	etite an	d digestion								
	(C)	Soothes skin a	and muc	cous membrane	;							
	(D)	Increases the	dischar	ges of urine								
10)	Whi	ch of the followi	ing plai	nt extract has	proper	ty to cure rheumatis	m?					
	(A)	Azadirachta ii	ndica		(B)	Cassia augustifolia						
	(C)	Withania som	niferum	i	(D)	Aegle marmelos						

(A)	Peperomia	(B)	Penaea	(C)	Drusa	(D)	Fritillaria					
Amborella trichopoda is now widely considered as:												
(A)	Oldest know	n fossil	s of an angiosp	erm								
(B)	Most primiti	ve livin	g angiosperm									
(C)	Most primiti	ve livin	g vascular plan	ıt								
(D)	Oldest know	n fossil	of a seed plant	-								
Whic	ch of the follow	ving alg	gae have nonfl	agellate	coenobia?							
(A)	Eudorina	(B)	Pandorina	(C)	Pediastrum	(D)	Volvox					
Formation of statospores is a characteristic feature of:												
(A)	Chlorophyta	Divisio	on	(B)	Chrysophyta	n Divisio	n					
(C)	Phaeophyta I	Division	1	(D)	Pyrrophyta I	Division						
The r	most importan	t alga ı	ised as food in	Japan	is:							
(A)	Furcellaria f	astiaga	ta	(B)	Gleopeltis furcata							
(C)	Microcystis a	aerugin	osa	(D)	Porphyra ter	nera						
Whic	ch of the follow	ving sho	ows secondary	growtl	ı by successiv	e cambi	a?					
(A)	Boerhaavia d	liffusa		(B)	Aristolochia	triangu	laris					
(C)	Thunbergia d	coceine	a	(D)	Serjania cor	rugate						
Bicol	icollateral vascular bundles are characteristic feature of which of the following											
gener	ra:											
(A)	Cucurbita	(B)	Helianthus	(C)	Althaea	(D)	Salvia					
The t	The type specimen is collected from the original material to serve as nomenclature											
type,	pe, when holotype is missing:											
(A)	Isotype	(B)	Lectotype	(C)	Neotype	(D)	Topotype					
ICN :	stands for:											
(A)	International	code of	f nomenclature	for plan	nts							
(B)	International	code of	f nomenclature	for alga	ae, fungi and p	lants						
(C)	International	code of	f nomenclature	for alga	ae and fungi							
(D)	International	code of	f nomenclature	for ang	iosperm only							
Whic	ch of the follo	owing	is a bionomia	al in w	which genus a	and spe	ecies names					
ident	ical in spelling	;?										
(A)	Autonym	(B)	Tautonym	(C)	Homonym	(D)	Synonym					
The (Genome D pre	sent in	bread wheat i	s suppo	sed to have be	een deri	ved from:					
(A)	Aegilops Squ	arrosa		(B)	Aegilops Spe	eltoides						
(II)												

	(A)	Acclimatization	(B)	Quarantine									
	(C)	Adaptation	(D)	Tolerance									
23)	Heter	osis is:											
	(A)	Superiority of hybrids over their par	ents										
	(B)	Induction of mutation											
	(C)	Mixture of two or more traits											
	(D)	Spontaneous mutation											
24)	A typ	e 1 survivorship curve is character	ristic of	the species with a rapid increase in									
	morta	ality in old age. This type of curve is	::										
	(A)	Typical of many invertebrates that p	roduce	a large number of offspring									
	(B)	Typical of humans and other large n	nammal	s									
	(C)	Almost never found in nature											
	(D)	Typical of all species of birds											
25)		•	quilibri	um theory, which of the following is									
	true?		. •										
	(A)	than smaller and isolated islands	contin	ent are expected to have more species									
	(B)		om the	continent are expected to have more									
	(2)	species than larger and isolated islands											
	(C)			continent are expected to have more									
	(D)	species than far away and isolated is											
	(D)	from continent	isianas	irrespective of their size and distance									
26)	Wetla	Wetlands are conserved internationally through an effort called:											
,	(A)	Basei convention	(B)	Rio convention									
	(C)	Montreal convention	(D)	Ramsar convention									
27)	` /	h of the following fungal group belo	` /	ohylum Straminopila?									
,	(A)	Ascomycota	-	Basidiomycota									
	(C)	Zygomycota	(D)	Oomycota									
28)	` '	h of the following zoosporic fungi h	as nucle	•									
	(A)	Blastocladiella emersonii	(B)	Apodachlya brachynema									
	(C)	Plasmodiophora brassicae	(D)	Phytophthora infestans									
29)	Unice	ellular stalked teleutospores with pa	apillar t	hickening is a characteristic feature									
		e following rust genera?	-										
	(A)	Uromyces (B) Puccinia	(C)	Phragmidium (D) Ravenelia									
30)	Phen	ylalanine, a precursor of most of th	e phen	olics in higher plants is a product of									
		n one of the following pathways?	•	- -									
	(A)	Shikimic acid pathway	(B)	Malonic acid pathway									
	(C)	Mevalonic acid pathway	(D)	Methylerythritol pathway									

31)	Gibberellic acid (GA) controls seed germination by directing breakdown of the									
	store	d starch. In which one of the follo	owing 1	tissues of the barley seed, α-amylase						
	gene	is induced in response to GA?								
	(A)	Endosperm (B) Coleoptile	(C)	Aleurone layer (D) Embryo						
32)	How	many ATP and NADPH2 are us	ed in	C ₃ cycle for net production of one						
	mole	cule of 3-phosphoglyceraldehyde?								
	(A)	3ATP and 2 NADPH ₂	(B)	9ATP and 6 NADPH ₂						
	(C)	6ATP and 6 NADPH ₂	(D)	6ATP and 9 NADPH ₂						
33)	Magr	nesium, iron and Molybdenum me	etals a	re present in enzymes as activators,						
	which	h are:								
	(A)	Cytochrome, Peptidases and Phospl	notases	respectively						
	(B)	Phosphatases, Cytochromes and Nit	trogena	se respectively						
	(C)	Fructokinase, Cytochromes and Nit	rate rec	luctase respectively						
	(D)	Dehydrogenase, Kinase and Nitrate	reduct	ase respectively						
34)	If the free energy change (AG) in a reaction is a negative value, it indicates that the:									
	(A)	Reaction releases energy	(B)	Reaction absorbs energy						
	(C)	Reaction is in positive direction	(D)	Reaction is in negative direction						
35)	Enzy	me acts as biological catalyst by inc	reasing	g rate of reaction by:						
	(A)	Increasing activation energy	(B)	Decreasing activation energy						
	(C)	Increasing free energy change	(D)	Increasing entropy						
36)	Durii	ng protein synthesis in prokaryotes	s, the p	peptidyl transferase activity required						
	for p	epetide bond formation is due to:								
	(A)	Ribosomal proteins	(B)	16S ribosomal RNA						
	(C)	23S ribosomal RNA	(D)	Aminoacyl t-RNA						
37)	Majo	or function of σ-Subunit of <i>E. coli</i> R	NA pol	ymerase during transcription is to:						
	(A)	Initiate transcription and does not fa	all off d	luring elongation						
	(B)	Decreases affinity of core enzyme t	o prom	oter						
	(C)	Binds to DNA independent of core	enzyme							
	(D)	Ensure recognition of promoter region	ion by i	nteracting with core enzyme						
38)	Durii	ng replication, the RNA primer is d	egrade	d by the 5'-3' exonuclease activity of:						
	(A)	RNase H1 (ribonuclease H1)	(B)	FEN-1 (flap endonuclease 1)						
	(C)	TopoisomeraseII B	(D)	DNA polymerase E						
39)	Speci	ies richness is much pronounced in	which 1	type of forests:						
	(A)	Tropical rain forest	(B)	Tropical deciduous forest						
	(C)	Temperate forest	(D)	Alpine forest						
40)	Avera	age annual precipitation and tempe	rature	of temperate forest are respectively:						
	(A)	255 cm precipitation and 25°C temp								
	(B)	300 cm precipitation and 15°C temp	oerature							
	(C)	100 cm precipitation and 15°C temp	s erature	1						

	(D)	300 cm precipitation and	25°C temperature							
41)	Suba	lpine forest and tropical	thorn forest a	are dominated with following plant						
specie	es:									
	(A)	Dichanthium and Abies	(B)	<i>Ilex</i> and <i>Pinus</i>						
	(C)	Abies and Acacia	(D)	Dipterocarpus and Acacia						
42)	The a	apple scab disease is cause	d by:							
	(A)	Xanthomonas citri	(B)	Venturia inaequalis						
	(C)	Colletotrichum falcatum	(D)	Curvularia prasadii						
43)	The '	Tundu' disease of wheat is	s caused by:							
	(A)	Anguina triticia and Cory	nebacterium triti	ci						
	(B)	Anguina tritici								
	(C)	Anguina tritici and Erwin	ia dissolvens							
	(D)	Globodera tritici								
44)	The '	'Great Bengal Famine'' in	1943 was the re	sult of which of the following:						
	(A)	Bunt of wheat caused by	Telletia							
	(B)	Helmithosporium blight o	of rice							
	(C)	Blast of rice caused by Py	vricularia							
	(D)	Late blight of potato caus	ed by <i>Phytophtho</i>	ora						
45)	Standard deviation of a sample is 240 and number of individuals of the sample are									
	64. Find out the Standard error of mean (SEM)?									
	(A)	30 (B) 50	(C)	20 (D) 60						
46)			nong arithmetic	e mean (AM), geometric mean (GM)						
		narmonic mean (HM):								
	(A)	GM> AM>HM	(B)	HM>AM <gm< th=""></gm<>						
	(C)	AM>GM>HM	(D)	HM>AM>GM						
47)		ch of the following is a non	-							
	(A)	Chi square test	(B)	F-test						
	(C)	T-test	(D)	ANOVA test						
48)	The	genetically modified toma	to 'Flavr Savr'	with delayed ripening was the result						
of:										
	(A)	Over expression of Antise		ygalacturonase						
	(B)	Gene silencing by antisen								
	(C)	Over expression of gene f								
40)	(D)	Over expression of gene f								
49)			uch as Roundup	, target which pathway of the plants?						
	(A)	Mevalonic acid pathway	<i>.</i> , ,	The state of the s						
	(B)	± • •		shikimate 3-phosphate (EPSP) synthase						
	(C)	Methyl erythritol pathway	ý							
	(D)	Malonic acid pathway								

50)	Which of the following genetic engineering method is best suited for addition of gene
	into plants?

(A) Plasmid method (B) Vector method

(C) Biolistic (gene gun) method (D) Microinjection

(CHEMISTRY)

1.	The v	ariable that is	kept c	onstant in an is	sobaric	process is							
	(A)	Volume	(B)	Temperature	(C)	Molarity	(D)	Pressure					
2.	The f	following isotop	pe is ra	dioactive									
	(A)	^{3}H	(B)	12 C	(C)	^{2}H	(D)	¹⁶ O					
3.	The d	lrag on the cen	tral io	n as discussed	by Deb	ye Huckel is	known	as					
	(A)	Viscous effec	et		(B)	Electrophoretic effect							
	(C)	Asymmetry e			(D)	Wien effect							
4.	The v	vell known rad	lioisoto	pe ¹⁴ C decays	by emi	tting the follo	wing pa	article					
	(A)	Alpha	(B)	Negatron	(C)	Positron	(D)	Neutron					
5.	The volume occupied in Litres by 18.0 g of Oxygen gas made up of Oxygen atoms												
	havin	g 10 neutrons	at nor	mal temperatu	re and	pressure is							
	(A)	5.6	(B)	11.2	(C)	2.24	(D)	22.4					
6.	An ex	xperimenter tr	ies to n	nelt ice at 265 I	X as we	ell as at 300 K	K. The si	ign of ΔG for the					
	melti	ng of ice expe	erimen	t at 265 K an	d 300	K respective	ely can	be expressed as					
	follov	vs:											
	(A)	+ -	` /	+ +	` /	- +	(D)						
7.	It was observed that in a chemical reaction A proceeding to B the increase in the concentration of A by 3 times increases the reaction rate by 9 times the order of the												
			by 3 ti	mes increases t	he rea	ction rate by	9 times	the order of the					
		ion would be				_		_					
	(A)	1	(B)	0	(C)	2	(D)	3					
8.	In Raman Spectroscopy the scattered radiation having energy more than the												
	incident radiation is called												
	(A)	Stokes	(B)	Anti-Stokes			(D)	Thermal					
9.	Given that g_N = 5.585 and μ_N = 5.05 x 10 ⁻²⁷ J T ⁻¹ the NMR frequency of a proton in a												
	Ü		•	2.82 Tesla wou			(D)	20					
10	(A)	60	(B)	120	(C)	90	(D)	30					
10.	•	2			e cond	uctance of a	n electr	olyte of interest					
		r the following		10 n	(D)	TT' 1 T7 1.							
	(A)	High AC free	-		(B)	High Voltag							
4.4	(C)	Low Concent		6 1 4	(D)	High Viscos	•	40 405 -1					
11.			elengti	1 of an electroi	ı movi	ng with a vel	ocity of	4.8 x 10 ⁵ m sec ⁻¹					
	is abo		(D)	2.0 10-10.	(C)	10 - 10-5	(D)	4.0 - 105					
	(A)	1.5 x 10 ⁻⁹ m	(B)	$3.0 \times 10^{-10} \text{m}$	(\mathbf{C})	4.8 X 10 m	(D)	$4.8 \times 10^{5} \mathrm{m}$					

12.	The J	pair ¹³ C and ¹³	'N is an	example of						
	(A)	Isobar	(B)	Isotone	(C)	Isomer	(D)	Isotope		
13.	The 1	number of elei	ments d	epicted in the	most re	ecent periodic	table is			
	(A)	103	(B)	92	(C)	109	(D)	118		
14.	The u	ınit cell paran	neter a=	=b=c and α=β=	$\gamma=90^0$ 1	represents crys	stal sys	tem		
	(A)	Tetragonal	(B)	Cubic	(C)	Monoclinic	(D)	Hexagonal		
15.	The l	owest bond er	nergy is	depicted by th	e bond	between follo	wing pa	air of atoms		
	(A)	H-F	(B)	H-Br	(C)	Н-Н	(D)	C=C		
16.	If the	number of w	ays of a	a molecular ar	rangen	ient can be exp	pressed	by term X then		
	the relationship between entropy S and the term X can be represented by									
	(A)	S=X	(B)	S=kX	(C)	S=Q/T	(D)	S=klnX		
17.	The	neutron to p	roton 1	ratio in the is	otope	of the elemen	t Boro	on having mass		
	numl	ber 13 is								
	(A)	1.6	(B)	1.0	(C)	13	(D)	5		
18.	A con	mpound X on	heating	gives a colour	less ga	s. The residue	is disso	olved in water to		
	obtain Y. Excess CO2 is bubbled through aqueous solution of Y which result in the									
	form	ation of Z. Z o	n gentl	e heating gives	back 2	X. The compou	ınd X i	s:		
	(A)	CaCO ₃	(B)	Na2CO ₃	(C)	$Ca(HCO_3)_2$	(D)	K_2CO_3		
19.	Whe	n orthoboric a	cid (H ₃	BO ₃) is heated	, the re	sidue left is:				
	(A)	Boron			(B)	Metaboric ac	id			
	(C)	Boric anhydi	ride		(D)	Borax				
20.	Whic	ch of the follow	ving tri	halides of nitro	ogen is	least basic:				
	(A)	NF_3	(B)	NCl_3	(C)	NBr_3	(D)	NI_3		
21.	The	number of P	O-P a	nd P-O-H bon	ds pre	esent respectiv	ely in	pyrophosphoric		
	acid	molecule are:								
	(A)	1,2	(B)	2,2	(C)	1,4	(D)	1,8		
22.	Whic	ch of the follow	ving do	es not form cla	therate	es:				
	(A)	Helium	(B)	Argon	(C)	Krypton	(D)	Xenon		
23.	The a	aqueous soluti	on cont	aining which o	ne of t	he following io	ns will	be		
	colou	ırless:				•				
	(A)	Mn ²⁺	(B)	Fe ²⁺	(C)	Ti ³⁺	(D)	Sc^{3+}		
24.	Whic	ch of the follow	ving be	longs to C _{3v} po	int gro	up:				
	(A)	SO_3	(B)	BBr_3	(C)	NH_3	(D)	AlCl ₃		
25.	Whic	ch structures f	or XeO	3 and XeF4 are	consis	tent with the V	SEPR	model?		
	(A)	Trigonal pvr	amidal.	Square planar	(B)	Trigonal plan	ar, Sau	are planar		

	(C)	Trigonal pyr	amidal,	Tetrahedral	(D)	Trigonal pla	ınar, Tetı	rahedral
26.	The o	compound whi	ich exhi	bits Jahn-Tel	ller disto	ortion is:		
	(A)	[Mn(H2O)6]2	!+		(B)	$[Mn(H_2O)_6]$	3+	
	(C)	$[Cr(H_2O)_6]^{3+}$	-		(D)	$[Fe(CN)_6]^{4-}$		
27.	The t	total no. of iso	mers in	Co(en) ₂ Cl ₂ is	3			
	(A)	4	(B)	3	(C)	6	(D)	5
28.	The 1	no. of lines tha	t appea	r in the EPR	spectra	of $[C_6H_6]$ is:		
	(A)	5	(B)	7	(C)	11	(D)	13
29.	The l	nardness of wa	ater is n	neasured by:				
	(A)	Distillation			(B)	Conductivit	y	
	(C)	EDTA metho	od		(D)	Sublimation	l	
30.	Cyan	ide process is	used to	obtain:				
	(A)	Cr	(B)	Ag	(C)	Cu	(D)	Zn
31.	Whic	ch of the follow	ving has	s largest bond	l angle:			
	(A)	NH_3	(B)	PH_3	(C)	AsH_3	(D)	SbH_3
32.	Pero	xo linkage is p	resent i	n:				
	(A)	H_2SO_3	(B)	H_2SO_5	(C)	H_2SO_4	(D)	$H_2S_2O_7$
33.	WOO	C complex pre	sent in]	photosynthes	is proces	ss contain		
	(A)	Zn	(B)	Fe	(C)	Pu	(D)	Mn
34.	Assig	gn R / S config	uration	at C-1, C-2 a	nd C-5 i	in the followin	ng comp	ounds.
				CH ₃ 4 1 2 1 1 1 CH ₃				
	(A)	1R,2S,4R	(B)	1R,2R,4R	(C)	1S,2S,4R	(D)	1S,2R,4R
35.	Marl	the relations	hip ship	between foll	owing st	tructures X a	nd Y:	
		H, C	:I 	CI_H				
	(A)	Enantiomers	(B)	Diastereomo	ers (C)	Meso	(D)	Same
36.	Whic	ch reactive into				following reac	tion?	
		Br	<u>LD</u> NHCH ₃	A/THF >		N CH ₃		

	(A)	Carbene	(B)	Nitrene	(C)	Benzyne	(D)	Free radical					
37.	Reac	tion of 2-buter	1-ol w	vith thionyl cl	hloride r	esults in forn	nation of	:					
	(A)	3-Chloro-1-b	utene		(B)	1-Chloro-2-	butene						
	(C)	1,2-Dichloro	butane		(D)	1,3-Dichlor	obutane						
38.	Solve	olysis of neoper	ntyl bro	omide result i	in forma	tion of:	tion of:						
	(A)	2-Methyl-2-b	outene		(B)	3-Methyl-1-	-butene						
	(C)	2-Butene			(D)	1-Butene							
39.	Nitra	tion of N,N-di	methyl	aniline result	s in forn	nation of:							
	(A)	<i>m</i> -Nitro-N,N	-dimetl	nylaniline	(B)	o-Nitro-N,N-dimethylaniline							
	(C)	<i>p</i> -Nitro-N,N-	dimeth	ylaniline	(D)	N-Nitro-N,N-dimethylanili							
40.	In su	lphonation of	benzen	e attacking s _l	pecies is:								
	(A)	SO_2	(B)	SO	(C)	SO_3	(D)	S_2O					
41.	Addition elimination mechanism of aromatic nucleophilic substitution involves the												
	inter	mediary of:											
	(A)	Carbocation	(B)	Carbanion	(C)	Carbene	(D)	Benzyne					
42.	Pred	ict the product	X in t	he following i	reaction:								
				NO ₂ /NH ₄ OAc/	AcOH								
				Heat	→)	X							
				II. LAH / THF									
	(A) (C)	2-Phenyl ethy Benzyl amin	•	e	(B) (D)	1-Phenyl ethyl amine Ethyl benzene							
12	` ′	•		41 F.11	` /	•	iic						
43.	The best reagent to achieve the following transformation is:												
		COOH		CH ₂ C	JH								
		COOC ₂ H ₅		coo	C ₂ H ₅								
	(A)	BH ₃ .THF	(B)	LiAlH ₄	(C)	NaBH ₄	(D)	NaBH ₃ CN					
44.	Selec	tive reduction	of keto	ne in presenc	ce of alde	ehvde can be	achieved	d by use of:					
	(A)	NaBH ₄ / CH ₂		•		·		·					
	(B)	NaBH ₃ CN /	CH ₃ OH	[
	(C)	[I. NaBH ₄ /											
	` ,	[II. H ₂ O / H	ן '	-									
	(D)	NaBH(OOC	_										
45.	The l	best reagent fo	r trans	hydroxylatio	on of alk	enes is:							
	(A)	Jones reagen		J = = = J = = = = = = = = = = = = = = =	(B)	Sarett reage	nt						
	\ /				` /								

(C) Collins reagent

- (D) Prevost reagent
- **46.** Predict the product X in the following reaction:

$$\frac{\text{CN}}{\text{II. H}_2\text{O}/\text{H}} \times X$$

(A) Benzoic acid

(B) Benzophenone

(C) Diphenyl amine

- (D) Benzaldehyde
- 47. Oxidation of styrene to phenyl acetaldehyde can be achieved by use of:
 - (A) alk. KMnO₄

- (B) MnO₂
- (C) $Tl(NO_3)_3 / dil. HNO_3$
- (D) HIO₄
- 48. Which intermediate is involved in Favorskii rearrangement?
 - (A) Cypclopropane

(B) Cyclopropene

(C) Cyclopropanol

- (D) Cyclopropanone
- 49. Predict the product of the following reaction:

- 50. Acid catalysed hydration of propyne results in formation of:
 - (A) Propane oxide

(B) Propinoaldehyde

(C) Acetone

(D) Propane-1,2-diol

(PHYSICS)

	`	(x,y)-x+2	y)	be the	: i eai p	art or	anaiytic	tunctio	$\mathbf{n} f(\mathbf{z})$	of the complex
	variabl	$\mathbf{e} oldsymbol{Z} = oldsymbol{x} + oldsymbol{i} oldsymbol{y}$, th	ne Imagi	nary pai	rt of $f(z)$) is				
	(A)	y + xy (B)	xy		(C)	y		(D)	$y^2 - y^2$	χ^2
2)	If the f	ourth colour bar	nd of a g	given res	istor is ı	missing,	what is	the tole	rance o	f a resistor
	(A)	10%	(B)	20%		(C)	30%		(D)	40%
3)	The val	lue of the integr	al $I=\int$	$\int_0^\infty \frac{\sin x}{x} dx$	x is					
	(A)	0	(B)	π		(C)	$\frac{\pi}{2}$		(D)	$2\pi i$
4)	In whic	h of the followi	ng dete	ctor <i>p-n</i>	junctior	diode i	s used			
	(A)	Surface barrier	detecto	r		(B)	GM Cou	unter		
	(C)	Scintillation Co	unter			(D)	Proport	ional Co	ounter	
5)	Consid	er an anti-symn	netric te	ensor P_{ij}	, with ir	ndices i	and j ru	ınning f	rom 1 t	o 5. The number
	of inde	pendent compo	nents o	f the ten	sor is					
	(A)	3	(B)	10		(C)	9		(D)	6
6)	The so	urce of emission	of elec	trons in	a CRT is					
	(A) $p-n$ junction diode									
	(B) Accelerating anode									
	(C) A barium and strontium oxide coated cathode									
	(D) Post-accelerating anode									
7)	Consid	er the linear di	fferentia	al equat	ion $\frac{dy}{dx}$ =	= <i>xy</i> , if	y=2 a	$\mathbf{x} = 0$, then t	the value of $oldsymbol{y}$ at
	x = 2 i	s given by								
	(A)	e^{-2}	(B)	$2e^{-2}$		(C)	e^2		(D)	$2e^2$
8)	At the	input an amplif	ier has	a signal	voltage	level o	f 3 μV ar	nd noise	voltage	e level of $1\mu V$. If
	the vol	tage gain of the	amplifi	er is 20,	the ratio	o of sign	al to noi	$\operatorname{se}\left(\frac{S}{N}\right)$ a	at the o	ut -put is
	(A)	4	(B)	9		(C)	8		(D)	6
9)	Laplac	transform of $\{m{e}^{\cdot}$	$-2t-e^{-2t}$	$^{-3t}$ } is						
	(A)	$\frac{1}{s^2+3s+6}$ (B)	2 5	<u>-</u> (C)	1		(D)	1		
		3-+33+6	3-+33+	ъ	3-2			5±2		
10)							natural l	ine wid	th of th	e spectral line in
		ission spectrum								
	(A)						$10^{-6}e$		(D)	
	(A) $10^{-10}eV$ (B) $10^{-9}eV$ (C) $10^{-6}eV$ (D) $10^{-4}eV$ 1) A Ge semiconductor is doped with acceptor impurity concentration of 10^{15} $atoms/cm^3$. For									
11)		emiconductor is en hole mobility				-				$toms/cm^3$. For

	(A)	$0.288\Omega\;cm$	(B)	0.694 Ω cm	(C)	$3.472~\Omega~cm$	(D)	6.944 Ω cm			
12)	A gate	with only one in	put and	one output is							
	(A)	an OR gate	(B)	a NOT gate	(C)	a NAND gate	(D)	an AND gate			
13)	In a mi	croprocessor, th	ne resist	or which holds t	the addr	ess of the next	instructi	on to be fetched			
	is					_					
	(A)	Accumulator			(B)	Program count					
	(C)	Stak counter			(D)	Instructor regis					
14) The voltage resolution of a 12 bit digital to analog converter (DAC) whose out-put varies from											
		+10V, is approx	-		(6)	20	(D)	400			
	(A)	1 mV	(B)	5 mV	(C)	20 mV	(D)	100 mV			
15)	15) If the memory chip size is $256 imes 1\ bits$, what is the number of chips required to make up										
	_	te of memory?	(-)		(-)		(-)				
	(A)	32 chips	(B)	64 chips	(C)	128 chips	(D)	256 chips			
16) The energy of the first excited quantum state of a particle in the two dimensional potential											
	$V(x,y)=rac{1}{2}\;m\omega^2ig(x^2+4y^2ig)$ is										
	(A)	2 ω	(B)	3 ω	(C)	$\frac{3}{2}$ ω	(D)	$\frac{5}{2}$ ω			
17) The quantum mechanical operator for the momentum of a particle moving in one dimension											
	is giver	n by									
	(A)	$i \frac{d}{dx}$	(B)	$-i \frac{d}{dx}$	(C)	$i \frac{d}{dt}$	(D)	$-\frac{2}{2m}\frac{d^2}{dx^2}$			
18)	The en	ergy eigen value	es of a pa	article in the po	tential V	$f(x) = \frac{1}{2}m\omega^2 x^2$	-ax	are			
		$E_n = \left(n + \frac{1}{2}\right)$		$\frac{u^2}{u^2}$	(B)	$E_n = \left(n + \frac{1}{2}\right)$	$\omega + \frac{\alpha}{2n}$	$\frac{a^2}{n\omega^2}$			
	(C)	$E_n = \left(n + \frac{1}{2}\right)$	$\omega - \frac{a}{m}$	$\frac{2}{\sqrt{2}}$	(D)	$E_n = \left(n + \frac{1}{2}\right)$	ω				
						cross section $\sigma(t)$		ll be equal to			
						$ f(\theta,\varphi) ^2$					
20)		of $\overrightarrow{s_1}$. $\overrightarrow{s_2}$ for two			(- /	13 (3777)	` '	, (-) (-)			
_0,					(C)	$\frac{1}{4}$ for triplet	(D)	- 3 for singlet			
	(A)	4 Tot strigtet	(D)		(C)	4 for triplet	(D)	- Tor singlet			
21) The acceleration due to gravity (g) on the surface of earth is approximately 2.6 times that on the surface of Mars. Given that the radium of Mars is about one half the radius of Earth, the ratio of the escape velocity on Earth to that on Mars is approximately											
	(A)	1.1	(B)	1.3	(C)	2.3	(D)	5.2			
22)	If the I	agrangian of a	particle	moving in one	dimens	ion is given by	$L = \frac{\dot{x}^2}{2x} -$	-V(x), then the			
		onian is					41				

	(A)	$\frac{1}{2}xp^2 + V(x)$			(B)	$\frac{\dot{x}^2}{2x} + V(x)$		
	(C)	$\frac{\dot{x}^2}{2} + V(x)$			(D)	$\frac{p^2}{2x} + V(x)$		
23)	A parti	cle is moving ur	der the	action of a ger	neralized	I potential $V(oldsymbol{q},oldsymbol{q})$	$\dot{q}) = \frac{1+\dot{q}}{q^2}$. The magnitude
	of the g	generalized force	e is					
	(A)	$\frac{2(1+\dot{q})}{q^3}$	(B)	$\frac{2(1-\dot{q})}{q^3}$	(C)	$\frac{2}{q^3}$	(D)	$\frac{\dot{q}}{q^3}$
24)	The spe	eed of a particle	whose	kinetic energy	is equal	to its rest mas	s energy	is given by (c is
	the spe	ed of light in va	cuum)					
	(A)	<u>c</u>	(B)	$\frac{\sqrt{2}}{2}$ C	(C)	<u>c</u>	(D)	$\frac{\sqrt{3}}{3}c$
25)		3		3		L		The number of
		s if freedom of t					•	
	(A)	One	(B)	Two	(C)	Three	(D)	Four
26)	Four ed	qual point charg	ges are l	kept fixed at th	ne four v	vertices of a sq	uare. Ho	w many neutral
	points	(i.e points where	e the ele	ctric field vanis	hes) wil	l be found insid	e the sur	face
	(A)	1	(B)	4	(C)	0	(D)	7
27)	The ma	gnetic field corr	espondi	ng to the vecto	r potent	$ial \vec{A} = \frac{1}{2} \vec{F} \times \vec{B}$	$\vec{r} + \frac{10}{r^3} \vec{r}$	(where \overrightarrow{F} is a
	constar	nt vector) is						
	(A)	$ec{F}$	(B)	$-\vec{F}$	(C)	$\vec{F} + \frac{30}{r^4} \vec{r}$	(D)	\overrightarrow{F} - $\frac{30}{r^4}\overrightarrow{r}$
28)	A plane	e electromagnet	ic wave	travelling in fr	ee space	e is incident nor	mally or	a glass plate of
	refracti	ve index $\frac{3}{2}$. If the	ere is no	absorption by	the glass	s, its reflectivity	is	
	(A)	04%	(B)	16%	(C)	20%	(D)	50%
29)	The fiel	d of magnetic v	ector \overrightarrow{B}	is always				
	(A)	Solenoidal			(B)	Irrotational		
	(C)	Non-solenoidal		(D)	Someti	me Irrotational		
30)	An infi	nitely long close	ely wour	nd solenoid car	ries a si	nusoidally vary	ing curre	ent. The induced
	electric	field is						
	(A)	Zero inside and		o outside the so	olenoid			
	(B)	Zero everywhei						
	(C)	Non-zero inside						
241	(D)	Non-zero inside				<i>.</i>		
31)								raction peak at a
		_		avelength of X	-ray use	a is 2.1 A°. The	voiume	of the Primitive
		If of the metal is $26.2 (A^0)^3$		121(40\3	(C)	$9.3 (A^0)^3$	(D)	16 (10)3
	(A)	20.2 (A-)	(B)	$13.1 (A^0)^3$	(C)	9.3 (A゚)゚	(D)	$4.6 (A^0)^3$

32) In the	Debye model 1	or a three dime	ensional	crystal the into	ernal ener	gy U at lo	w temperati	ure
is rep	resented by							
(A)	$U \alpha T$	(B) $U \alpha T$	Γ^2 (C)	$U \alpha T^3$ (D)	$U \alpha T$	4		
33) Sodiu	m atoms crysta	allic in BCC met	al. The	atomic radius	of sodiur	n is 1.86	A^0 . The Fer	mi
energ	y of sodium at () <i>K</i> is						
(A)	5.11 eV	(B) 6.01 e	eV (C)	3.11 eV (D)	4.21 e	V		
34) For a	n ideal Fermi g	as in three dim	ensions	, the electron	velocity V	T_F at the F	ermi surface	is
relate	d to electron co	ncentration n^\prime	as					
(A)	$V_F \alpha n^{\frac{2}{3}}$	(B) $V_F \alpha$	n (C)	$V_F \alpha n^{\frac{1}{2}}$	(D)	$V_F \alpha n^{\frac{1}{3}}$		
35) Given	that the ground	d state energy o	f the hy	drogen atom is	s -13.6 eV.	The grou	nd state ene	rgy
of the	positronium (w	hich is a bound	state of	an electron an	nd positro	n) is		
(A)	+6.8 eV (B)	-6.8 Ev	(C)	-13.6 Ev(D)	-27.2 €	eV		
_								
•		with a hydroger		•				ι =
		was given to the						
(A)	13.6 eV (B)	6.8 eV	(C)	12.1 eV (D)	1.51 e	V		
-	•	ttering electron		-			if a proton h	nas
-		e. The energy of				east		
` ,	$1.25 \times 10^9 e$			1.25×10^{13}				
(C)	$1.25 \times 10^6 e$	eV	(D)	1.25×10^{8}	eV			
38) The r	reaction ${}_{1}^{2}D$ +	${}_{1}^{2}D \rightarrow {}_{2}^{4}He + 1$	$ au^0$ canr	ot proceed v	ia strong	interacti	on, because	it
violat	es the conserva	tion of						
(A)	Angular mom	entum		(B) Elect	tric charge			
(C)	Baryon no			(D) Isosp	oin			
39) The re	eaction $oldsymbol{e}^+ + oldsymbol{e}^-$	$\rightarrow \mu^+ + \pi^-$	is forbid	den because of	f			
(A)	Law of baryor	n number conser	vation					
(B)	Law of mome	ntum energy co	nservatio	on				
(C)	Law of muon	number conserv	ation					
(D)	Law of energy	conservation						
40) If the	mass of a parti	cle is three time	es of its	rest mass, ther	n the spee	d at whic	h the particle	e is
movir	ng is (where c is	the velocity of l	ight)					
(A)	$\frac{\sqrt{8}}{3}C$	(B) $\frac{\sqrt{8}}{9}c$		(C) $\frac{8}{9}c$		(D)	3 <i>c</i>	
41) What	is the approxin	nate Fermi Kine	tic ener	gy of the nucle	eons (eith	er proton	or neutron)	in
case c	of a self-conjuga	te nuclei with N	=Z=A/2	?				
(A)	33 MeV(B)	150 MeV	(C)	0.5 MeV	(D)	200 Me\	J	

42) Accor	rding to the she	ell model,	the ground sta	te spin o	of the $^{13}_{6}C$ nucle	eus is				
(A)	$\frac{1}{2}$	(B)	$\frac{3}{2}$	(C)	<u>5</u> 2	(D)	$\frac{7}{2}$			
43) Whic	h of the follow	ing staten	nent is not corr	ect for a	compound nu	clear reac	tion.			
(A)	Compound r	nuclear re	action is symme	etric arou	ınd 90 degree					
(B)	Mass distrib	ution obta	ained in case of	compou	nd nuclear read	ction is sy	mmetric			
(C)	The reaction	products	peak around th	ne grazin	g angle					
(D)	Light ion ind	uced com	pound nuclear	reaction	follow Bohr's in	ndepende	nce hypothesis			
44) The n	eutron and pro	oton form	a deuteron bo	und stat	e which is stab	le, while	there is no bound			
state	for two neutro	ns becau	se							
(A)	Nuclear forc	es are sat	urated							
(B)	Nuclear forc	es are spi	n dependent							
(C)	Nuclear forc	es are cha	arge dependent							
(D)	Nuclear forc	es depend	d upon magneti	c momer	nt					
45) Let <i>I</i>	15) Let $E_{\mathcal{S}}$ denotes the contribution of the surface energy per nucleon in the Liquid drop model.									
The r	atio $E_s({}^{27}_{13}Al)$	$E_s \begin{pmatrix} 64\\30Z \end{pmatrix}$	(n) is							
(A)	` - ,	•	4:3	(C)	5:3	(D)	3:1			
46) A sys	stem of N non	-interacti	ng classical po	int parti	cles is constra	ined to i	move on the two			
dime	nsional surface	of a sphe	ere. The interna	l energy	of the system	is				
(A)	$\frac{3}{2} NK_BT$	(B)	$\frac{1}{2} NK_BT$	(C)	NK_BT	(D)	$\frac{5}{2} N K_B T$			
							energy states with			
equa	l probability. Tl	he entrop	y of the system	is						
(A)	$K_B ln2$	(B)	$2K_B ln2$	(C)	$2K_B ln4$	(D)	$3K_B \ln 4$			
			hat temperatur							
(A)	Ferromagne	tic	(B)	Electr	ically conductin	ng				
(C)	Supercondu	cting		(D)	Radioactive					
49) The n	number of ways	in which	N identical bos	ons can	be distributed	in two en	ergy level is			
(A)	N+1	(B)	$\frac{N(N-1)^2}{2}$	(C)	$\frac{N(N+1)}{2}$	(D)	N			
50) Whic	h one of the fo	llowing is	a first order ph	ase tran	sition					
(A)	Vaporization	of a liqui	d at its boiling p	ooint						
(B)	Ferromagne	tic to para	amagnetic							
(C)	Normal liqui	d He to su	iper-fluid He							
(D)	Supercondu	cting to no	ormal state							

(GEOLOGY)

1.	-					ata that intersects the contours in general				
	(A)	Strata dips up			(B)	Strata is hori				
	(C)	Strata is Vert			(D)	Strata dips d		am		
2.		limb of a fold	-			-	45 ⁰ due	N45 ⁰ W. V	What	
	(A)	East	(B)	West	(C)	South	(D)	North		
3.		is a	strike s	lip fault with	a vertical	fault surface				
	(A)	Pivotal Fault			(B)	Detachment	Fault			
	(C)	Wrench Faul	t		(D)	Gravity Faul	t			
4.	The a	bsence of hydr	ous min	erals and pres	ence of p	yroxenes char	acterise	·S		
	(A) Greenschist facies (B) Blueshist facies									
	(C)	Amphibolite	facies		(D)	Granulite fac	cies			
5.	Bouguer anomaly (mgal) along oceanic ric					ges between	• • • • • • • • • • • • • • • • • • • •			
	(A)	-20 and -30			(B)	-200 and -30	0			
	(C)	+200 and +23	50		(D)	-10 and -50				
6.	Diam	ond bearing ki	nberlite	s are found in	the tecto	onic setting of.				
	(A)	Continental r	ift		(B)	Foreland Bas	sin			
	(C)	Oceanic ridg	es		(D)	Cratons and	Passive	margins		
7.	Sensi	tive High Reso	lution Io	on Micropobe	(SHRIM	IP) is used for				
	(A)	U-Pb Dating			(B)	REE Geoche	mistry			
	(C)	Isotope Geoc	hemistr	у	(D)	Fission Trac	k Dating	g		
8.	Which	h among the fo	llowing	contains Tho	rium?					
	(A)	Glauconite	(B)	Perthite	(C)	Monazite	(D)	Coffinite		
9.			is an ult	ramafic intrus	sive rock	similar to peri	dotite			
	(A)	Eurite	(B)	Picrite	(C)	Troctolite	(D)	Allivalite		
10.		is a m	nelanocr	itic picritic ba	ısalt.					
	(A)	Oceanite	(B)	Saxonite	(C)	Lherizolite	(D)	Izolite		
11.	The s	tratigraphic La	w of fau	nal successio	n was de	n was developed by				
	(A)	Niels Steno			(B)	William Smi	th			

	(C)	James Hutton	n		(D)	Charles Lyel	1	
12.	Bioti	te is						
	(A)	Uniaxial pos	itive		(B)	Biaxial positi	ive	
	(C)	Uniaxial neg	ative		(D)	Biaxial negat	ive	
13.	Olivi	ne shows						
	(A)	1 st order inte	rference	colours	(B)	2 nd order inte	rferenc	e colours
	(C)	3 rd order inte	rference	e colours	(D)	4 th order inte	rference	e colours
14.	Whic	h among the fo	llowing	contains Arse	enic?			
	(A)	Chalcopyrite	;		(B)	Chalcocite		
	(C)	Realgar			(D)	Covelite		
15.	Khon	dalite rock con	tains w	hich of the foll	lowing a	ssemblage		
	(A)	Quartz-Ortho	oclase-F	Iypersthene				
	(B)	Plagioclase-0	Orthocla	ase-Hypersthe	ne			
	(C)	Quartz-Garn	et-Rhod	lonite				
	(D)	Quartz-Haen	natite-H	ypersthene				
16.	Whic	h one is a meta	morphi	c texture				
	(A)	Lepidoblasti	c (B)	Graphic	(C)	Clastic	(D)	Aphinitic
17.	Whic	h among the fo	llowing	orders surviv	ed the K	-T boundary?		
	(A)	Ceratitids			(B)	Nautilids		
	(C)	Goniatitids			(D)	Ammonitids		
18.	Whic	th one of the fol	llowing	belongs to the	oldest t	rilobite order R	edlichii	ida.
	(A)	Asaphus	(B)	Olenellus	(C)	Agnostus	(D)	Phacops
19.	•••••	i	s a air b	reathing fresh	water ga	stropod.		
	(A)	Turbo	(B)	Natica	(C)	Physa	(D)	Crepidula
20.		r	narks th	e beginning of	f Cambri	ian		
	(A)	Agnostus	(B)	Asaphus	(C)	Treptichnus	(D)	Olenus
21.		is	a cosm	-	e			
	(A)	¹⁸ O	(B)	²⁶ Al	(C)	¹² C	(D)	¹³ C
22.	Earth	s obliquity cyc	le (axia	tilt) occurs ev	very			
	(A)	10,000 years			(B)	21,000 years		
	(C)	41,000 years			(D)	100,000 year	S	

23.		1S	consider	ed one the first	st chordat	tes.		
	(A)	Lingula			(B)	Pikaia		
	(C)	Redlichia			(D)	Terebratula		
24.			is a bios	tratigraphic zo	one that d	leals with high	abunda	nce of a taxa
	(A)	Lineage Zon	ne		(B)	Concurrent Z	Zone	
	(C)	Acme Zone			(D)	Assemblage	Zone	
25.	A ma	rked lack of c	oal depo	sits all over th	ne world i	is related to		
	(A)	End Ordovi	cian Ext	inctions	(B)	End Devonia	n Extin	ctions
	(C)	Permian-Tr	iassic Ex	tinctions	(D)	Cretaceous-T	ertiary	Extinctions
26.	The I	Paleocene–Eoc	cene The	rmal Maximu	m (PETN	M) occurred aro	und	
	(A)	35 Ma	(B)	45 Ma	(C)	55 Ma	(D)	65 Ma
27.	Ediac	cara Biota fou	nd in Ind	ia occur in the	2			
	(A)	Aravalis	(B)	Dharwas	(C)	Gondwanas	(D)	Vindhyans
28.	Age	of the Deccan	Traps is					
	(A)	100 Ma	(B)	66 Ma	(C)	45 Ma	(D)	150 Ma
29.	As pe	er Conodont A	lteration	Index the col	our dark	grey denotes te	mperat	ure between
	(A)	$50-80^{0}$ C	(B)	$60-140^{0}$ C	(C)	$110-300^{0}$ C	(D)	190-300°C
30.	Speci	tral logging co	mes und	ler				
	(A)	Density Log	gging					
	(B)	Gamma Ray	y Loggin	ıg				
	(C)	Resistivity 1	Logging					
	(D)	Nuclear Ma	gnetic R	esonance Log	ging			
31.	Inat	vnical Rouma	Segueno	e the Rouma	D layer	is deposited und	der	
J1.	(A)	Very slight	•		(B)	No turbidity		•••
	(C)	High energy	•		(D)	•		bidity current
22								.
32.						today is around		5534
	(A)	100 Ma	(B)	450 Ma	(C)	180 Ma	(D)	55 Ma
33.	The C	Galapagos Tri _l	pple June	ction is an exa	mple of.	tri	pple jur	nction
	(A)	Fault-Fault-	Ridge		(B)	Fault-Fault-T	rench	
	(C)	Ridge-Ridg	e-Ridge		(D)	Ridge-Trencl	n-Fault	

34.	Kerg	uelen Hotspot is the so	ource of	•••••						
	(A)	Deccan Traps		(B)	Panjal Traps					
	(C)	Malani Igneous Sui	te	(D)	Rajmahal Tra	ıps				
35.	The h	nyper-impact Lonar Ci	rater is formed	in	••••					
	(A)	Granitic Rock		(B)	Basaltic Rock	ζ.				
	(C)	Rhyolic Rock		(D)	Gneissic Roc	k				
36.		is a s	upercontinent	that exis	ted from ~550 I	Ma to ~	180 Ma.			
	(A)	Laurasia		(B)	Gondwanalar	ıd				
	(C)	Columbia		(D)	Rodinia					
37.	Evide	ence of Iridium ano	maly related t	o K-T l	boundary has b	oeen re	ecorded from	m the		
	India	n state of								
	(A)	Madhya Pradesh		(B)	Meghalaya					
	(C)	Karnataka		(D)	Andhra Prade	esh				
38.		are the j	joints that are a	pproxim	ately perpendic	ular to	the fold axi	is.		
	(A)	Pinnate joints		(B)	Conjugate joi	nts				
	(C)	Cross joints		(D)	Sigmoidal joi	ints				
39.	The f	irst appearance of the	horse Equus in	the Siw	aliks is at					
	(A)	5.5 Ma (B)	2.6 Ma	(C)	8.4 Ma	(D)	3.5 Ma			
40.	The C	Global Stratotype Sect	ion and Point o	of Neoge	ne-Quaternary	Bounda	ary is locate	d		
	in									
	(A)	Guryul Ravine, Kas	shmir Valley, Ir	ndia						
	(B)	Chicxulub, Mexico								
	(C)	El-Kef, Tunisia								
	(D)	Monte San Nicola S	Section, Italy							
41.		single	celled algae wi	th cell w	all made up of	silica.				
	(A)	Acritarchs		(B)	Dinocysts					
	(C)	Diatoms		(D)	Chitinozoans					
42.		n	naterials are n	on-magr	netic when a <u>n</u>	nagneti	c field is a	absent		
	and n	nagnetic when a magn	etic field is app	olied.						
	(A)	Ferromagnetic		(B)	Paramagnetic	;				
	(C)	Ferrimagnetic		(D)	Antiferrimag	netic				

43.	Dhara	amsala Formati	on unde	erlies					
	(A)	Subathu Forn	nation		(B)	Dagshai Fo	rmation		
	(C)	Kasauli Form	nation		(D)	Siwalik Gro	oup		
44.	The c	oldest dates that	can be	reliably measur	ed usi	ng Radiocarbo	on method	d is	
	(A)	100,000 yrs	(B)	500,000 yrs	(C)	50,000 yrs	(D)	500 yrs	S
45.	Base	and precious m	etal dep	osits are usuall	y asso	ciated with	••••		
	(A)	Divergent Pla	ate bour	ndaries	(B)	Convergent Pla	ate bound	aries	
	(C)	Transform fa	ults		(D) T	Transcurrent F	aults		
46.		um, Magnesiu	ım, Iro	n, Manganese	and	Aluminium	silicates	are co	mmonly
	(A)	Skarn deposi	ts		(B)	Gossan dep	osits		
	(C)	Placer deposi			(D)	Evaporite d			
47.	Ptero	saurs were flyir	ıg						
	(A)	Birds	(B)	Mammals	(C)	Reptiles	(D)	Dinosa	urs
48.	The s	outhernmost Fa	ault that	runs along the	Himal	ayas is called.			
	(A)	Main Bounda	ary Thru	ıst	(B)	Main centra	al Thrust		
	(C)	Himalayan F	rontal T	hrust	(D)	Nahan Thru	ıst		
49.		mum regressive		bounded by me at the base.	aximu	ım flooding	surface	at the t	top and
	(A)	High Stand S			(B)	Low Stand	System T	ract	
	(C)	Transgressive	•		(D)	Regressive	•		
50.	The c	collision of Indi	a with A	Asia took place	someti	me between			
	(A)	20-15 Ma		F=#60	(B)	85-75 Ma			
	` ′	65-35 Ma			(D)		a		

Home Science(Ph.D.)

1.	Whic	ch of the follow	wing state	ements is not to	rue?							
	(A)	(A) Growth is a biological process										
	(B)	Developme	nt is a qu	antitative proc	ess							
	(C)	Education i	s a goal-	oriented proces	SS							
	(D)	Learning is	a proces	s of behavioura	al chang	ges						
2.	Ident	ify the term re	elated to	flower arrange	ment.							
	(A)	Feng Shui	(B)	Ying-Yang	(C)	Ikebana	(D)	Alpana				
3.	Resea	archer wants	to test th	ne association	of fema	ale literacy on	infant f	Geeding practices				
	Whic	ch of the follow	wing test	of significance	e is the r	nost appropria	ate for th	is?				
	(A)	F-test			(B)	Chi-square	test					
	(C)	't' test			(D)	Mann-Whit	tney test					
4.	Whic	ch of the follow	wing is n	ot an Embroide	ery Stite	h?						
	(A)	Dabka	(B)	Menthi	(C)	Phanda	(D)	Murri				
5.		is 0	claimed t	o be father of r	modern	management						
	(A)	Henry Fayo	ol		(B)	Frederick T	aylor					
	(C)	Gross & Cr	andall		(D)	Nickel & D	orsey					
6.	Reco	mmended diet	tary allov	wances for Indi	ans are	given by						
	(A)	ICAR	(B)	ICSSR	(C)	CSIR	(D)	ICMR				
7.	The g	greatest resour	ce in ext	ension work is								
	(A)	Money			(B)	Local mater	rial					
	(C)	Local peopl	le		(D)	Contacts w	ith high o	officials				
8.	Mear	n, Median and	Mode ar	e:								
	(A)	Deviation			(B)	Ways of sar	mpling					
	(C)	Measures of	f Central	tendency	(D)	Hypothesis						
9.	Whic	ch of the follow	wing is a	double pointed	d dart?							
	(A)	Flange	(B)	French	(C)	Fish	(D)	Dressmakers				
10.	Rhyt	hm is created	through									
	(A)	Proportion	(B)	Repetition	(C)	Harmony	(D)	Balance				

11.	•	oung child's i ectives is	inability	to distinguish	her ov	vn cognitive p	perspecti	ive from others'
	(A)	Egocentrisn	n		(B)	Centration		
	(C)	Irreversibili		ught	(D)	Identity cons	stancy	
12.	Whic	h of the follow	wing does	s not represent	Kasuti l	Embroidery?		
	(A)	Menthe	(B)	Aari	(C)	Ganti	(D)	Murgi
13.	NCPO	CR is an autor	nomous b	ody which star	nds for			
	(A)	National Co	ommissic	n for Protectio	n of Chi	ild Rights		
	(B)	National Co	ouncil for	Prevention an	d Contr	ol of Reproduc	ction	
	(C)	National Co	ommissic	n for Poverty	control a	and Relief		
	(D)	National Co	ouncil for	Preschool, Cr	eche and	d Research		
14.	If a re	esearcher wan	its to pre	dict with 99%	accurac	y he would set	the leve	el of significance
	at							
	(A)	.05	(B)	.95	(C)	.01	(D)	.10
15.	A rea	asoning wher	e we sta	art with certai	in partic	cular statemen	ts and	conclude with a
		rsal statement			•			
	(A)	Deductive I	Reasonin	g	(B)	Inductive Re	easoning	
	(C)	Abnormal I		-	(D)	Transcenden	_	
16.	Socio	ometry is a too	ol to meas	sure child's				
	(A)	Intelligence	level		(B)	Behaviour pr	roblems	
	(C)	Relationshi	p with pe	eers	(D)	Relationship	with pa	rents
17.		microorganis	ms simil	ar to beneficia	l micro	organisms four	nd in th	e human gut are
	(A)	Prebiotics	(B)	Probiotics	(C)	Antibiotics	(D)	Symbiotics
18.	'AG	MARK is a ce	ertificate	mark employe	d on			
	(A)	Poultry & f	isheries p	products	(B)	Agriculture l	Products	S
	(C)	Vegetables	1		(D)	Fruits		
19.	Whic	h of the follow	wing is n	ot a plain weav	ve?			
	(A)	Percale	(B)	Calico	(C)	Drill	(D)	Chintz

20.	Comp that it		il quest	ionnaires the pr	incipal	advantage of t	the pers	sonal interview is
	(A)	Low cost						
	(B)	Depth of inf	ormatio	n collected				
	(C)	Objectivity	011114110	ii concetta				
	(D)	•	lity of in	nformation colle	ected			
21.	A chi	ld with averag	e intelli	gence has an IQ	of			
	(A)	70-79	(B)	80-89	(C)	90-109	(D)	110-119
22.	Exter	nsion Education	n is the	education for th	e bette	rment of people	e for cha	anging their
	(A)	Behaviour	(B)	Status	(C)	Income	(D)	Values
23.	Whic	h of the follow	ing is n	ot a hand printi	ng tech	nique?		
	(A)	Duplex	(B)	Screen	(C)	Block	(D)	Stencil
24.	Glute	en free diet is g	iven to	patients with				
	(A)	Crohn's Dise	ease		(B)	Celiac Disea	se	
	(C)	Irritable Boy	wel Dise	ease	(D)	Liver Diseas	e	
25.	-	period of huma	n embry	yo is				
	(A)	2-4 weeks			(B)	1 - 8 weeks		
	(C)	2 - 8 weeks			(D)	2-6 weeks		
26.	Mate		sulation	, radio cabinets	and ha			_
	(A)	Bakelite	(B)	Plastic	(C)	Rubber	(D)	Fiber
27.	Whic togetl		owing g	arment finisher	rs is u	sed for finishi	ng num	iber of garments
	(A)	Form Press	(B)	Tunnel	(C)	Buck Press	(D)	Die Press
28.	One o	of the most effe	ective m	nethods of impar	rting sk	cill is		
	(A)	Field Visit			(B)	Group Discu	ssion	
	(C)	Demonstrati	on		(D)	Project		
29.	'Allir	n' is a compou	nd foun	d in				
	(A)	Garlic	(B)	Turmeric	(C)	Cinnamon	(D)	Cloves
30.	A rep	resentative sar	mple is	used so that the	results	of a study are		
	(A)	Reliable	(B)	Generalized	(C)	Convenient	(D)	Limited

31.	The fact that motor control of the arms precedes control of the legs is an example of										
	(A)	Secular trend			(B)	Cephalo-caudal trend					
	(C)	Proximal-dist	al trend	l	(D)	Evocative trea	nd				
32.	Whic	h of the following	ng is no	ot a cool colour	?						
	(A)	Bluish green	(B)	Yellow orang	ge(C)	Blue	(D)	Green			
33.	Area,	line, pictoral, p	ie are t	he types of -							
	(A)	Charts	(B)	Posters	(C)	Graphs	(D)	Diagrams			
34.	Follo	wing fat is the ri	ichest s	ource of MUFA	A :						
	(A)	Sunflower Oi	l (B)	Soyabean Oil	(C)	Coconut Oil	(D)	Olive Oil			
35.	Qualitative Research is used in the situations										
	(A) Where all sample units of study are homogenous										
	(B)	Where phenor	menon	under study is	cardina	1					
	(C)	Where phenor	menon	under study is i	nomina	1					
	(D)	Where it is no	ot possi	ble to measure	the phe	nomenon and re	esponse	es are subjective			
36.		is an inten	ise edu	cational activity	y for m	otivating and n	nobiliz	ing a communit			
	to act	ion.									
	(A)	Brainstorming	g (B)	Colloquium	(C)	Campaign	(D)	Symposium			
37.	Anti-ageing vitamin is										
	(A)	Vitamin E	(B)	Vitamin K	(C)	Vitamin B ₁₂	(D)	Vitamin A			
38.	DRD	A is functioning	g at								
	(A)	District level	(B)	Block level	(C)	Village level	(D)	State level			
39.	Urie l	Bronfenbrenner'	s theor	y is							
	(A)	Humanistic po	erspecti	ive	(B)	Sociobiology					
	(C)	Ecological Sy	stems	Γheory	(D)	Socio-cultura	l Theo	ry			
40.	Type-	-I Error occurs i	f								
	(A)	Null hypothes	sis is re	jected even tho	ugh it i	s true					
	(B)	Null hypothes	sis is ac	cepted even the	ough it	is false					
	(C)	Both the null	hypoth	esis as well as a	alternat	ive hypothesis a	re reje	cted			
	(D)	Both the null	hypoth	esis as well as a	alternat	ive hypothesis a	re acce	epted			

41.	• The occurrence of the first menstrual period is known as							
	(A)	Menopause	(B)	Menogenesis	(C)	Puberty	(D)	Menarche
42.	Hallm	ark is a standar	dized ce	ertification of				
	(A)	Jewellery			(B)	Eco friendly p	roducts	
	(C)	Electrical app	liances		(D)	Canned Food		
43.	This n	utrient is neede	d for a	healthy immun	e systen	n and strong co	nnectiv	e tissue
	(A)	Fiber	(B)	Vitamin K	(C)	Vitamin C	(D)	Fluoride
44.	While	washing cotton	n fabrics	s, colour can be	preven	ted from bleach	ning by	using
	(A)	Vinegar			(B)	Common Salt		
	(C)	Sodium Carbo	onate		(D)	Lissapol		
45.	Bread,	vinegar, wine a	nd beer	are produced v	vith the	help of		
	(A)	Mould	(B)	Bacteria	(C)	Yeast	(D)	Enzymes
46.		is a traditio	nal luxu	iry ornamental	handicr	aft of Kashmir		
	(A)	Madhubani	(B)	Papier-mache	(C)	Modak	(D)	Alpana
47.	The A	ct which govern	ns Cons	sumer Disputes	Redress	sal Forum is		
	(A)	The Bureau of	f indian	Standard Act	(B)	The consumer	Protec	tion Act
	(C)	The Trade Me	erchandi	ise Mark Act	(D)	Restrictive Tra	ade Pra	ctises Act
48.	8th Ma	arch is celebrate	ed as					
	(A)	International I	Environ	ment Day	(B) Int	ernational Sani	tation I	Day
	(C)	International V	Women	's Day	(D)	International	Energy	Day
49.	Which	of the following	ng is no	t a stretch fiber	?			
	(A)	Neoprene	(B)	Spandex	(C)	Elastane	(D)	Viscose
50.	In a no	ormally distribu	ited pop	oulation, Mean	+ 1.96 S	S.D. will cover	(of population.
	(A)	90%	(B)	95%	(C)	98%	(D)	99%

x-x-x

https://exams.freshersnow.com/

Human Genomics (Ph.D.)

- 1. Which of the following is the correct reason why liquid media is favoured for culturing thermophilicarchaea?
 - (A) Liquid media can be heated to higher temperatures
 - (B) Liquid media is easier to store
 - (C) Solid media is usually unstable at optimum growing temperatures
 - (D) Solid media becomes glass-like at high temperatures
- 2. Which of the following microscopy techniques relies on the specimen interfering with the wavelength of light to produce a high contrast image without the need for dyes or any damage to the sample?
 - (A) Conventional bright field light microscopy
 - (B) Phase contrast microscopy
 - (C) Electron microscopy
 - (D) Fluorescence microscopy
- **3.** With respect to their surrounding membrane system, which is the odd one out?
 - (A) Nucleus

(B) Endoplasmic reticulum

(C) Mitochondria

(D) Chloroplasts

- **4.** Within the nucleus, individual chromosomes are thought to occupy discrete territories. Which of the following is most likely to promote this segregation?
 - (A) Nuclear lamina

(B) Nuclear pore complexes

(C) Nuclear matrix/scaffold

(D) Intermediate fibres

5. The base adenine (A. of the DNA of the fungus Neurosporacrassa forms 23.3 % of its composition. Which of the following is the most likely base composition of the genome, given C is cytosine, G guanine and T thymine?

(A)
$$A = T = 23.3 \%$$
 and $G = C = 23.3 \%$ (B)

$$A = C = 26.7 \%$$
 and $G = T = 26.7 \%$

(C)
$$A = T = 23.3 \%$$
 and $G = C = 26.7 \%$ (D)

$$A = T = 26.7 \%$$
 and $G = C = 23.3 \%$

- A population of cells grown in adherent culture contains 0.4 mg protein per 106 cells. Actin comprizes 4.5 % of the total protein. Given the Mr of actin is 42 000 and Avogadro's number is 6.02 x 1023, which of the following equals the mean number of actin molecules per cell?
 - (A) 2.58 x 1014 actin molecules

(B) 2.58×1011 actin molecules

(C) 2.58 x 108 actin molecules

(D) 2.58 x 1010 actin molecules

- 7. What would the generally expected effect on the PCR reaction be of adjustments that increase the temperature of the annealing phase and the length of the elongation phase?
 - (A) Precision and yield will be reduced
 - (B) Precision will be reduced, but yield will be increased
 - (C) Precision will be increased, but yield will be reduced
 - (D) Precision and yield will be increased

8.	In principle, what outcome would be least expected in a failure to separate pre-PCR and post-PCR activities?								
	(A) (C)	False positive reactions Mixed or non-specific PCR products	(B) s (D)	False negative reactions Increased reliability of PCR results					
9.		would the expected effect be on a PC r and more variable than the intended The PCR reaction would not comme The PCR reaction would end after or The reaction would generate a single The reaction would yield a mixture of	oligonunce ne cycle short I	e PCR product					
10.		need to use a first generation sequent te should give optimum results for the Genomic DNA Bacterial artificial chromosome	_	ethod for de novo sequencing, which ct? PCR product Plasmid DNA					
11.		Check your data using a different method Publish your results							
12.	Which		ins inte	racts with DNA in a sequence specific					
	(A) (C)	Histone H3 NF-kB	(B) (D)	DNA polymerase RNA polymerase					
13.		of the following is an equilibrium mo	ethod th	nat can be used to accurately determine					
	(A) (C)	Site directed mutagenesis ELISA	(B) (D)	Chromatin Immunoprecipitation Footprinting					
14.		EMSA experiment free DNA is separa which following principle?	ated fro	om protein-DNA complexes in a native					
	(A) (C)	Charge DNA digestion with DNAse	(B) (D)	Molecular weight Antibody immunoprecipitation					
15.	Which statement best describes the main distinction between the origin of the two classes of small regulatory RNAs: siRNA and miRNA? (A) siRNAs originate within the cell cytoplasm; miRNAs originate from the cell								
-									

	(B)	siRNAs originate from predominantly exogenous dsRNA; miRNAs originate from									
		the cell genome									
	(C)	miRNAs are expressed whenever siRNAs are unable to appropriately degrade									
RNA											
	(D)	sequences miRNAs are processed from dsRNA viruses, siRNAs are processed from ssRNA viruses									
16.	would	application where you require a sample of your target protein at high purity, what be a good purification strategy? Assume that your starting point is E. coli cells in the target protein fused to an affinity tag has been over-expressed. Affinity chromatography (AC. followed by size exclusion chromatography (SEC. AC only AC followed by ion-exchange (IEX) followed by SEC AC followed by IEX, followed by hydrophobic interaction (HIC. and then SEC									
17.	Which of these techniques is often considered a suitable "polishing" step in a protein										
	-	purification strategy? (A) Affinity chromatography (AC)									
	(A)	Affinity chromatography (AC)									
	(B)	Ion-exchange chromatography (IEX)									
	(C)	Hydrophobic interaction chromatography (HIC)									
	(D)	Size-exclusion chromatography (SEC)									
18.	What properties of a protein does hydrophobic interaction chromatography exploit for purification?										
	(A)	Charged amino acids									
	(B)	Hydrophobic amino acids on the protein surface									
	(C)	Molecular weight									
	(D)	Enzyme activity									
19.	In the yeast two-hybrid system, which of the following statements is accurate: A reporter										
	gene (A)	Is fused to the activation domain of a transcription factor									
	(B)	Is fused to the DNA binding domain of a transcription factor									
	(C)	Requires the presence of Histidine in the growth medium for its expression									
	(D)	Is expressed only if the tested protein interaction occurs									
20.		of the following types of genetic manipulations allow a researcher to									
		mentally increase gene expression in a mouse model?									
	(A)	Knockin (B) Conditional knockout Transgenic (D) Knockout									
	(C)	Transgenic (D) Knockout									
21.	Which	n one of the following elements is least likely to participate in a hydrogen bond?									
	(A)	$O \qquad \qquad (B) F \qquad \qquad (C) S \qquad \qquad (D) N$									

22.		one of the following terms dested in space within a molecule? Salt bridge Dipole	(B) (D)					
23.	The m (A) (C)	olar mass of an element is equal Avogadro's number Mass number	to which of (B) (D)	the following? Atomic number Relative atomic mass				
24. 1		2	ne concentra	h a concentration of 0.25 mol L-1 and ation of the final, diluted solution? 0.004 mol L-1 (D) 0.0025 mol L-				
25.	•	one amino acid has two identical following amino acids is it? Alanine (B) Valine	groups attack (C)	ched to its central carbon atom. Which Glycine (D) Cysteine				
26.	A beta (A) (C)	n-barrel is an example of what lev Primary structure Tertiary structure	rel of structu (B) (D)	ure? Secondary structure Quaternary structure				
27.		ring functions? Biochemical catalysis (The prot Formation of the cell cytoskelet Gene regulation (The proteins a	eins are enz on (The pro re DNA-bin	oteins are structural proteins)				
28.		- associates with the enzyme la e. What term is used to describe N Prosthetic group Functional group		lrogenase to catalyse the oxidation of s context? Coenzyme Intermediate				
29.	is false	e?	_	Gibbs free energy change for a reaction				
reaction	is false? (A) The Gibbs free energy change is the proportion of the enthalpy change of eaction that is used to increase the entropy (B) If the Gibbs free energy change for a reaction is negative, the reaction happer spontaneously (C) The Gibbs free energy is represented by the symbol G (D) A reaction with a negative Gibbs free energy change of reaction is called a exergonic reaction							

30.		der the binding n of the followi						ssion $P + L \leftrightarrows PL$. ue?				
						ν	[PL]					
	(A)	The expression	n for th	e dissociation	constan	$K_{\rm d} = -$	P][L]					
	(B)	-				n and ligand bir	nd tightl	V				
	(C)											
	(D)					n lies to the left						
31.	Which of the following statements regarding enzymes is false? (A) A given enzyme catalyses just one type of reaction											
	(B) While most enzymes are proteins, some are composed of RNA											
	(C) The activity of enzymes is typically impaired at high temperatures											
. •	(D) Enzymes act to lower the activation energy of a reaction by stabilising the											
transiti	transition state, but do not participate chemically in the reaction											
32.	Which one of the following statements regarding V max and K_M is false?											
	(A)		_	_	_			sed reaction can				
		proceed										
	(B)	$K_{\rm M}$ is the co	ncentra	tion of substra	ite at v	which the rate	of the	reaction reaches				
Vmax	(C)	A 11 1	CIZ	. 11		1. 1 . 1		1				
	(C) (D)				•	e binds strongly me shows little		icity for a given				
33.	Which	n of the follow:	ing tech	nniques is used	to stud	dy the three-di	mensior	nal structure of a				
	molec	ule?										
	(A)	Infra-red spec	_	•	(B)	Mass spectrometry						
	(C)	UV-visible sp	ectrosc	opy	(D)	X-ray crystal	llograph	У				
34.	A mo	usa trua braad	ing for	normal gait w	ac cross	ead with a mor	ica triic	e breeding for an				
34.								s the most likely				
		rtion of dancing				ed normar gare	. ***1146 1	s the most likely				
	(A)	1/3	(B)	1/4	(C)	3/4	(D)	0				
	, ,				, ,							
35.	_					-		the genotypes of				
	-	parents that gi				quently grows h	norns?					
	(A)	• • •		ant for polled al								
	(B)	Homozygous Heterozygous		ve for polled al	ieie							
	(C) (D)	Impossible to		icu alicic								
	` /	1										
36.		would be the pr		•								
	(A)	1/32	(B)	1/64	(C)	1/25	(D)	1/16				
27	These	acceptation of hi	otono II	1 with a must-	noma :	ndiantas vyhist	of the	Collowing?				
37.	(A)	ssociation of hi Transcription			osome 1	nuicates which	or the I	onowing?				
	(Λ)	Tanscription	15 0000	111118								

	(B)	DNA replication is occurring							
	(C)	The DNA is condensed into a 30nm	fibre						
	(D)	The DNA double helix is exposed							
38.	Wher	a calculating a LOD score why do the	values	vary?					
	(A)	They vary according to both the	e level	of recombination and the level of					
		independent assortment used in the	calculat	tion					
	(B)	They vary according to the level of	indeper	ndent assortment used in the calculation					
	(C)	They vary according to the level of	recomb	ination used in the calculation					
	(D)	The values never vary							
39.		- -	ethylate	ed in mammalian DNA by the action of					
		methylase?	•	•					
	(A)	7-methyl guanine	(B)	5-methyl cytosine					
	(C)	Methyl adenine	(D)	Thymine					
40.	To which of the following types of sequence does most of the human genome belong?								
	(A)	Pseudogenes	(B)	Genes					
	(C)	Tandem repeat sequences	(D)	Interspersed repeat sequences					
41.	Which inherited human disorder results from mutations in the nucleotide excision repair system?								
	(A)	Huntingdon disease	(B)	Myotonic dystrophy					
	(C)	Hypermutability syndrome	(D)	Xerodermapigmentosum					
12.	What	is the basis of the mutagenic action of	f the ba	se analogue bromouracil?					
	(A)	It replaces T and binds with G	(B)	It replaces G and binds with T					
	(C)	It replaces T and binds with C	(D)	It replaces A and binds with C					
13.	In tropical areas where malaria is prevalent, people who have one allele for beta thalassemia have a selective advantage over people who have no or two alleles for beta thalassemia. What is this an example of?								
	(A)	Frequency dependent selection	(B)	Diversifying selection					
		Hybrid vigour	(D)	Heterozygous advantage					
14.	On w	hat does natural selection act?							
	(A)	Phenotype							
	(B)	Genotype							
	(C)	A population's gene pool							
	(D)	Homozygous dominant and heterozy	ygous i	ndividuals					
1 5.	Whic	h of the following strategies can ens	ure pro	oduction of a cloned human gene in a					
		rium?	•	C					
	(A)	Use of a fusion plasmid/human vira	l vector	•					
	(B)	Additional insertion of a human original							
	(C)	Cloning into a RNA phage	-	•					
	(D)	Insertion of the cDNA sequence							
	` /	1							

- **46.** Why do molecular biologists sometimes compare cytochrome oxidase I sequences from different sources?
 - (A) To investigate gene function
 - (B) To identify stem cells
 - (C) To investigate evolutionary relationships
 - (D) To map genes
- **47.** Which of the following occurs during pyrosequencing?
 - (A) Dideoxynucleotides release fluorescent bases
 - (B) Dideoxynucleotides are incorporated and terminate DNA synthesis
 - (C) A released dideoxynucletode generates a fluorescent signal
 - (D) A released pyrophosphate generates a fluorescent signal
- **48.** Which of the following occurs when a knockout mouse is produced?
 - (A) A mutant gene is replaced by a functional allele
 - (B) A functional gene is replace by a mutant allele
 - (C) A functional gene is inserted in addition to the mutant allele
 - (D) A mutant gene is inserted in addition to the functional allele
- **49.** For which of the following is PCR not used?
 - (A) Site specific mutagenesis
 - (B) To generate double stranded DNA for DNA sequencing
 - (C) To generate copies of microsatellites for DNA fingerprinting
 - (D) To generate cDNA from mRNA
- **50.** Which mode of natural selection is most important in maintaining genetic variation at single loci?
 - (A) Overdominance
 - (B) Positive frequency-dependent selection
 - (C) Negative frequency-dependent selection
 - (D) Underdominance

x-x-x

Medical Physics(Ph.D.)

1.	Which	characteristic	increases	with i	increasing	photon	energy?
						1	

- (A) Wavelength
- (B) Frequency
- (C) Mass
- (D) Charge

2. Electron capture can result in emission of

- (A) Antineutrinos
- (B) High-LET radiation
- (C) Characteristic x-rays
- (D) Positrons

3. If the distance from a radiation source is halved, the radiation intensity will

- (A) Increase by 2%
- (B) Increase by 50%
- (C) Double
- (D) Quadruple

4. After 24 hours, the activity of a 100 MBq 123 I ($T_{1/2} = 13$ hours) source will be about

- (A) 50 MBq
- (B) 25 MBq
- (C) 10 MBq
- (D) 5 MBq

5. Which of the following is measured in newtons?

- (A) Electrons flowing through a medium
- (B) Attraction or repulsion between two bodies
- (C) Mass
- (D) Electric resistance

6. Which of the following decay modes changes the mass number (A) of an unstable nucleus?

- (A) Electron capture
- (B) Beta positive Decay
- (C) Alpha decay
- (D) Isomeric transition

7. The maximum photon energy in a x-ray beam is determined by

- (A) Voltage across the x-ray tube
- (B) Atomic number of the x-ray beam filter
- (C) Current flowing through the x-ray tube
- (D) Total exposure time (seconds)

8. The heel effect is more pronounced

- (A) At larger distances from the focal spot
- (B) With a larger target (anode) angle
- (C) With a smaller anode angle
- (D) At the cathode edge of the x-ray field

9. Targets for production of x-rays have

- (A) Low atomic numbers (Z)
- (B) Air cooling
- (C) Beryllium covering
- (D) High heat capacities

10. The ratio of heat to x-rays produced in a x-ray tube is about

- (A) 1:99
- (B) 99:1
- (C) 50:50
- (D) 90:10

11. All of the following could affect the HVL of an x-ray beam except

- (A) Tube voltage
- (B) Voltage ripple
- (C) Tube current
- (D) Anode angle

12. Which of the following is not a component of an image intensifier?

- (A) Anode
- (B) Input phosphor
- (C) Photocathode
- (D) Photomultiplier tube

13. High ratio grids increase all the following except

- (A) Screen/film speed
- (B) Image contrast
- (C) Patient dose
- (D) Removal of scatter

14. Which of the following factors would have the least effect on image sharpness?

- (A) Film type
- (B) Focal spot size
- (C) Screen/film contact
- (D) Screen thickness

15. The patient integral dose does not depend on the (A) Skin dose (B) Beam area (C) Organ sensitivity (D) Patient thickness 16. Which of the following is not true for Poisson distributions? (A) They are used to describe radioactive decay (B) They are used to describe quantum mottle (C) The variance is equal to the mean (D) They are always symmetrical 17. A ROC curve is used to measure diagnostic imaging (A) Performance (B) Accuracy (C) Specificity (D) Sensitivity 18. How many bits are required to store 512 shades of gray? (A) 6(B) 8 (C)9(D) 10 19. Input devices for a computer do not include (A) Keyboard (B) Trackball (C) Touch screen (D) Array processor 20. The Nyquist frequency for a 1 k digital photospot image (25 cm image intensifier size) is (A) 1 lp/mm (B) 2 lp/mm (C) 4 lp/mm (D) 8 lp/mm 21. Breast compression in mammography (A) Improves image contrast

(B) Eliminates the need for a grid

(D) Increases radiation dose

(C) Requires the use of a wide-latitude film

22. Breast imaging using MRI would not use

- (A) Fat-suppression techniques
- (B) Special breast coils
- (C) Iodine contrast
- (D) Three-dimensional imaging techniques

23. The use of thermography to detect breast cancer

- (A) Involves ionizing radiation
- (B) Uses thermoluminescent dosimeters
- (C) Is most effective near the chest wall
- (D) Is deemed by the ACR to be ineffective

24. The fundamental measurement made by a CT scanner is the

- (A) Sorting of CT numbers
- (B) Determination of gray scale
- (C) Pixel density
- (D) Relative x-ray attenuation

25. Which of the following is not a source of CT artifacts?

- (A) Patient motion
- (B) Metal implants
- (C) Beam hardening
- (D) Low tube current

26. CT scanner spatial resolution could improve with an increase of

- (A) Reconstruction matrix
- (B) Detector elements size
- (C) Focal spot size
- (D) Scan time

27. The pulse height analyzer in NM imaging increases

- (A) Detector efficiency
- (B) Scattered photons
- (C) Contrast-to-noise ratio
- (D) Count rate

28. Following administration of ¹³¹I to a patient, the dose rate near the patient does not depend on

- (A) Administered activity
- (B) Patient age
- (C) Effective half-life
- (D) Distance to patient

29. The variance of a NM image pixel with a 100 count would be

- (A) 10
- (B) 20

	(C) 50
	(D) 100
30.	Which of the following does not concern itself with radiation risk estimates? (A) ICRP (B) UNSCEAR
	(C) BEIR (D) ICRU
31.	An ultrasound beam traveling through tissue cannot be (A) Absorbed (B) Amplified (C) Scattered (D) Reflected
32.	Contrast in MR can be due to all the following differences except (A) Presence of flow (B) Proton density (C) T1 (D) Atomic number
33.	MR spectroscopy is used to detect all the following except: (A) ³¹ P (B) ³² P (C) Inorganic phosphate (D) Phosphocreatinine
34.	The semi-interquartile range is most closely related to the
	(A) Median
	(B) Mean
	(C) Mode
	(D) None of the above
35.	Parity is not conserved in
	(A) Alpha-decay
	(B) Beta-decay
	(C) Gamma-decay
	(D) None of the above
36.	Which of the following factors would be most appropriate to produce a T1-weighted image in MRI? (A) $TR = 500$, $TE = 20$ (B) $TR = 2,000$, $TE = 20$ (C) $TR = 2,000$, $TE = 100$ (D) $TR = 500$, $TE = 100$

37. Which enzyme is activated during double stranded break in DNA?

- (A) DNA polymerase
- (B) Klenow fragment
- (C) RNA polymerase
- (D) Translesional polymerase

38. The main source of solar energy is

- (A) Nuclear fission
- (B) Nuclear fusion
- (C) Gravitational contraction
- (D) Combination of coal and hydrogen

39. Transverse electric (TE) waves have

- (A) Magnetic field component H in the direction of propagation
- (B) Electric field component E in the direction of propagation
- (C) Magnetic field component H in the direction of propagation and no component of electric field E in this direction
- (D) Electric field component E in the direction of propagation and no component of magnetic field H in this direction

40. In GM counter experiment the measured data is 3600, the statistical error quoted with 95 % confidence level will be

- (A) 180
- (B) 60
- (C) 120
- (D) 104

41. $\overline{\overline{AB}} + \overline{\overline{AC}}$ is equivalent to

- (A) A + B + C
- (B) ABC
- (C) $A\overline{BC}$
- (D) $AB\overline{C}$

42. The correct order of increasing wavelength is

- (A) X-rays, IR, Microwave, Visible
- (B) UV, IR, Microwave, X-rays
- (C) Microwave, X-rays, UV, IR
- (D) X-rays, UV, IR, Microwave

43. In an n-p-n transistor biased for operation in forward active region

- (A) emitter is positive with respect to base
- (B) collector is positive with respect to base
- (C) base is positive with respect to emitter and collector is positive with respect to base
- (D) none of the above

44. A uniform plane wave is one in which

- (A) $\vec{E} \times \vec{H} = 0$
- (B) $\vec{E} \cdot \vec{H} = 0$
- (C) \vec{E} and \vec{H} are perpendicular
- (D) \vec{E} and \vec{H} lie in a plane and are perpendicular to each other

45. Which of the following is true as regards photo emission?

- (A) Rate of photo emission is inversely proportional to light intensity
- (B) Maximum velocity of electron increases with decreasing wave length
- (C) Both holes and electrons are produced
- (D) Velocity of emitted electrons is dependent on light intensity

46. Given \vec{A} , \vec{B} and \vec{C} are the translational vectors in case of unit cell of a lattice in solid. The volume of the unit cell is

- (A) $\left| (\vec{A} \times \vec{B}) \cdot \vec{C} \right|$
- (B) $|\vec{A} \cdot \vec{B} \cdot \vec{C}|$
- (C) $|(\vec{A} \times \vec{B})|$
- (D) $|(\vec{A} \times \vec{B}) \times \vec{C}|$

47. A Zener diode

- (A) has a constant current in the breakdown region
- (B) has a constant voltage in the breakdown region
- (C) has a constant current in the forward region
- (D) has a constant voltage and constant current in the breakdown region

48. The parent radionuclide of the A = 4n + 2 radioactive series is

- $(A)^{238}U$
- $(B)^{232}$ Th
- $(C)^{232}U$
- (D) 238 Th

49. In common-base configuration, the output resistance is given by

- $(A) \left[\! \frac{\Delta V_{BE}}{\Delta I_E} \! \right]_{I_C = constant}$
- $(B) \left[\frac{\Delta V_{BE}}{\Delta I_{E}} \right]_{V_{CE} = constant}$

$$(C) \left[\frac{\Delta V_{CE}}{\Delta I_{C}} \right]_{I_{B} = constant}$$

(D)
$$\left[\frac{\Delta V_{CB}}{\Delta I_{C}}\right]_{I_{E}=constant}$$

50. The unit of magnetic flux in SI system is

- (A) Maxwell
- (B) Tesla
- (C) Weber
- (D) Gauss

Nuclear Medicine(Ph.D.)

1.		pecquerel is equa					12			
	(A)	10 ⁹ disintegrat	ions/Sec	cond		(B)	10 ¹² disint	egrations/S	econd	
	(C)	10 ¹⁵ disintegra	tions/Se	cond		(D)	10 ¹⁸ disinto	egrations/S	econd	
2.		ion weighting fa			t neutro					
	(A)	5	(B)	20		(C)	1-20	(D)	5-20	
3.		tificial radioactiv	•	discover	•					
	(A)	Henri Becquere	el		(B)	Irene C	urie and F	Joliot		
	(C)	Blumgart				(D)	Rutherford	t		
4.	The eje	ection fraction o	f the gal	l bladde	r can be	evaluate (B)	ed using Dipyridam	ole		
	(C)	Cholecystokini	n		(D)	Dobuta	nmine			
5.	Radioc	olloids are clear	ed from	the circ	ulation h	NV				
J.	(A)	Liver parenchy			(B)	Kupffei	rcells			
	(C)	Hepatocytes				(D)	Hemangio	mas		
6.	Colloid (A)	shift refers to Small colloid localizes in the	•	cles cl	umped	togethe	er to for	rm large	particles	which
	(B)	99mTc sulphur	colloid	changin	g into all	oumin co	olloid			
	(C)	Increased upta	ke of the	e colloic	l in the s	pleen an	d bone mar	row relative	e to liver	
	(D)	The redistribut	ion of co	olloid wi	thin the	liver ove	er time			
7.	The en (A)	ergy of beta par 346.2 Kev	ticle for	strontiu	m-90 is	(B)	546.2 Kev			
	(C)	746.2 Kev				(D)	946 Kev			

8.	The en	ergy of gamma μ	photon f	rom sam	arium-1	53 is				
	(A)	73.2Kev(B)	932Ke	/ (C)	103.2K	ev	(D)	113.2K	ev	
9.	(A) (B) (C) (D)	vave of electrocal Contraction of Depolarisation Contraction of Repolarisation	Atria of atrial ventricle of SA no	muscula es ode	ır tissue					
10.	What is	s the usual partion	cle size ((B)	of sulphu 0.03-0.2		(C)	2.0-10	μm	(D)	4.0-15 μm
11.	How m	any MBq will co 1.85MBq	rrespon (B)	d to 50μα 0.85MB		vity? (C)	18.5ME	3q	(D)	0.185MBq
12.	Which (A)	of the following Wall motion Vessel patency		be evalua	ated by	a MUGA (B) Wall th	Aneuris	smal flov	W	
13.	The no (A)	rmal half-time o 45-60 minutes 90-120 minute		emptyin	g of a a	(B)		ninutes		
14.	What is (A)	s the mechanism Electron captur Positron decay	re	decay?		(B) (D)		l convei		
15.		diation worker I um dose rate wh 5 μSv/hr			ed?	rs workii (C)	ng week 12 μSv/		rticular (D)	area, what is the 15 μSv/hr

16.		The dose rate at 2 m from a particular gamma source is 400 μ Sv/hr. At what distance will it give a dose rate of 25 μ Sv/hr?										
	(A)	6 m	(B)	7 m		(C)	8 m	(D)	10 m			
17.	What (A)	is the biologica 30 minutes	ıl half life (B)	of 99mT 1-1.5 l		in lungs [°] (C)	? 2-3 hrs	(D)	3-4 hrs			
	(-7		(-7			(-/		(-)				
18.	Norm (A)	al gallium scan Salivary glan	_	at 72 hou	ırs may (B)		uptake in all o nal glands	of the follo	wing except			
	(C)	Liver				(D)	Kidney					
19.	bone	fraction of an marrow, respec 85%; 10%, 59	ctively?	ous dose		·		calise in th	e liver, spleen an			
	(A)	85%; 10%, 5%	7 0		(B)	75%;	15%, 10%					
	(C)	50%; 40%, 10	0%		(D)	45%;	50%, 5%					
20.	If excessive aluminium is present in ^{99m} Tc eluate, which one of the following would be expected on a bone scan											
	(A)					(B) Liver uptake						
	(C)	Thyroid upta	ke		(D)	Gastr	ic uptake					
21.					elded via				.3mm thick, what te of 100mR/hr? 12.5 mR/hr			
22.		is the distance h? (exposure ra 49.8 cm(B)	ite const			1 mGy/l		-	o source to 0.025			
23.	The ti (A)	ssue weighing f 0.12	factor for (B)	brain is		(C)	0.04	(D)	0.01			
24.	Prote	ins are separate Size	ed by SDS	S-electro _l	ohoresis	on the	basis of their Charge					
	(C)	Amino acid c	(D)	Charge and shape								

25.	In Sca	nning Electron Micro	oscope (SEM	l), to forn	n an ima	ge of the specimen					
	(A)	Electron should pa	ass through t	the speci	men						
	(B)	Electrons are scat	tered from t	he surfac	e						
	(C)	A thin film of heav	•	vaporate	d						
	(D) Specimens are stained										
26.	The tertiary structure of protein is detected by										
	(A)	X-ray crystallogra	phy		(B)	Spectrophotometry					
	(C)	Electrophoresis		(D)	Chrom	natography					
27.	ELISA	ELISA assay uses									
	(A)										
	(B) An enzyme which can react with the antigen										
	(C)										
	(D)	A radiolabelled se	condary anti	ibody							
28.	Which	spectroscopy is use	ed to detect -	–SH grou	p and di	sulphide linkages in proteins					
	(A)	CD spectroscopy			(B)	Fluorescence spectroscopy					
	(C)	NMR spectroscop	У		(D)	FTIR spectroscopy					
29.	Maxin	num limit on total di	ischarge per	day in sa	nitary se	ewage system for ¹²⁵ l is					
	(A)	0.37 MBq (E	3.7ME	3q(C)	0.0371	MBq (D) 37MBq					
30.	The ex	oposure rate at the s	surface of a p	oackage t	o be shi	pped is 50 mrem/hr.What label is					
	requir	red?									
	(A)	DOT Radioactive \	White I		(B)	DOT Radioactive Yellow II					
	(C)	DOT Radioactive	Yellow III		(D)	no radioactive label is required					
31.	The n	ost sensitive stage	for the leth	ial effect	s of rad	liation is:					
	(A)	Preimplantation	-		(B)	Early organogenesis					
	(C)	Late organogene	esis_		(D)	The fetal period					
32.	The e	nzyme responsible f	for continuin	ng DNA re	plicatio	on in prokaryotes, once it is initiated is					
	(A)	DNA polymerase I	I		(B)	DNA polymerase III					
	(C)	Polymerase beta			(D)	DNA Gyrase					

33.		Northern blotting is used for separation of											
	(A)	DNA	(B)	Mrna	(C)	Protein	(D)	Plasmids					
34.	In iso	electric focus	ing, protein	s are separate	d								
	(A)	In a pH gra	adient	(B)	In a sa	alt gradient							
	(C)	In a densit	y gradient		(D)	In a tempera	ature grad	lient					
35.		enzyme used 5 end of and	-	ohosphodiester	bond in	a nick betwee	n a 3'end	of one DNA chair					
	(A)	DNA polyr	nerase		(B)	Restriction E	Endonucle	ase					
	(C)	S1 nucleas	e		(D)	DNA ligase							
36.	Whicl	h of the follo	wing techni	ques is primaril	ly underta	ıken to amplify	/ DNA?						
	(A)	Polymeras	e chain rea	ction	(B)	Microarrays							
	(C)	Northern	Blotting		(D)	Southern Bl	otting						
37.	Electr	Electrodessication is used to destroy tissue by (A) High frequency positrons (B) Low frequency positrons											
	(A)	High frequency positrons				Low frequer	ncy positro	ons					
	(C)	High frequ	ency photo	electrons (D)	High f	requency elec	tric currer	nt					
38.	Malo	Malondialdehyde is a degradation product of											
	(A)	Peroxidis	ed lipids		(B)	Peroxidised	d proteins	3					
	(C)	Glucose r	netabolism	l	(D)	Carbohydra	ate metab	olism					
39.	Whic	Which of the following statement is not true for X-rays											
	(A)	X-rays ar	e electrom	agnetic radiat	tions								
	(B)	•	ve a speed	•									
	(C)			ng high energy		O	0						
	(D)	Intensity j	talls of in a	iccordance wi	th the inv	verse square l	aw						
40.	Whicl	h of the follo	wing heals t	he quickest aft	er injury:								
	(A)	Bone	(B)	Epithelium	(C)	Cartilage	(D)	Muscle					

41.	Which (A)	of the followir -blast	ng suffixe (B)	es implies "growth -lemma (C)	or "fo" stasis-		: -cyte					
42.			. ,	, ,			·	than t	the concentratio			
42.	inside,			se in the water o		or a cen	is nigher	tnan	the concentratio			
	(A)			ter the cell by osm								
	(B)											
	(C)	•										
	(D)	Glucose will t	end to le	eave the cell by os	mosis							
43.	Times	Times a proton is heavier than an electron is										
	(A)	1827	(B)	1876	(C)	1836		(D)	1789			
44.	What i	What is the resting membrane potential of a neuron?										
	(A)	-70 Mv	(B)	-65Mv	(C)	-80 Mv		(D)	-55mV			
45.	Which	Which of the following is not a chemical radiosensitizer?										
	(A)	Nucleotide a	nalogues	;	(B)	Electro	nic affini	c comp	oounds			
	(C)	Nitroimidazo	les	(D)	Amino	thiols						
46.	The m	The material used for absorbing excess neutrons in a nuclear reactor is										
	(A)	Cadmium	(B)	Neodymium	(C)	Vanadi	um	(D)	Indium			
47.	Fnergy	/ of thermal ne	utrons is									
.,,	(A)	0.50 ev	(B)	0.05 ev	(C)	0.25 ev		(D)	0.025 ev			
48.	In β⁺ d	ecay, nucleon	number i	is								
	(A)	Conserved	(B)	Not conserved	(C)	Unstab	le	(D)	Stable			
49.	Pheno	mena of radioa	activity w	vas discovered in								
	(A)	1893	(B)	1894	(C)	1895		(D)	1896			
50.	Heavy	nuclei have										
	(A)	More proton	s than ne	eutrons	(B)	More e	lectrons	than n	eutrons			
	(C)	More neutro	ns than e	electrons	(D)	More n	More neutrons than protons					

Statistics(Ph.D. & M.Phil.)

1. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be a matrix such that $A^3 = O_{2 \times 2}$, but $A \neq O_{2 \times 2}$, then

 $(A) \qquad A^2 = O_{2 \times 2}$

 $(B) A^2 = A$

 $(C) A^2 = I - A$

 $(D) A^2 = I + A$

2. The inverse of a skew symmetric matrix of odd order is

(A) A symmetric matrix

(B) A skew symmetric matrix

- (C) Diagonal matrix
- (D) Does not exist

3. If $A = \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix}$ and $|A| \neq 0$, then the system of equations

 $a_1x + b_1y + c_1z = 0$, $a_2x + b_2y + c_2z = 0$ and $a_3x + b_3y + c_3z = 0$ has

- (A) Only one solution
- (B) Infinite number of solutions
- (C) No solution
- (D) More than one but finite number of solutions

4. One hundred identical coins, each with probability p of showing heads are tossed once. If 0 and the probability of heads showing on 50 coins is equal to that of heads showing on 51 coins, the value of <math>p is

- (A) 1/2
- (B) 51/101
- (C) 49/101
- (D) 3/101

5. Let A, B and C be three mutually independent events. Consider the two statements S_1 and S_2 :

 S_1 : A and $B \cup C$ are independent

 S_2 : A and $B \cap C$ are independent

	(A)	Both S_1 and S_2 are true	(B)	Only	S_1 is true
	(C)	Only S_2 is true		(D)	Neither S_1 nor S_2 is true
(A 1.44	on in talean at your days from the	1.44 6.4	1	L'CTATICTICS' and another letter is talen
6.					I 'STATISTICS' and another letter is taken Γ '. The probability that they are the same

- letter is

 (A) 1/45 (B) 5/18 (C) 13/90 (D) 19/90
- **7.** Each of two persons *A* and *B* toss three fair coins. The probability that both get the same number of heads is
 - (A) 3/8 (B) 1/9 (C) 5/16 (D) 7/16
- **8.** A letter is known to have come from either TATANAGAR or CALCUTTA. On the envelope, just two consecutive letters, TA, are visible. The probability that the letter has come from CALCUTTA is
 - (A) 4/11 (B) 1/3 (C) 5/12 (D) 1/7
- 9. If the regression line of Y on X is Y + 0.8X = 25 and the standard deviations of X and Y are respectively 3 and 8, then the value of correlation coefficient r is
 - (A) -0.3 (B) -0.4 (C) 0.3 (D) 0.4
- Suppose r is the correlation coefficient between two variables X and Y where standard deviation of X and Y are equal. If θ is the angle between the regression lines, then
 - (A) $tan\theta = \frac{1+r^2}{2r}$ (B) $tan\theta = \frac{1-r^2}{2r}$
 - (C) $tan\theta = \frac{1+r^2}{r}$ (D) $tan\theta = \frac{1-r^2}{r}$
- 11. The joint probability density function of (X,Y) is $f(x,y) = exp\{-(x+y)\}$, for $0 < x < \infty$ and $0 < y < \infty$.

Assertion(A): P(X < Y/X < 2Y) = P(X < Y)

Reason (R): X and Y are independently exponentially distributed which possesses 'lack of memory property'

Select your answer from the following codes:

- (A) Both (A) and (R) are true and (R) is correct explanation of (A)
- (B) Both (A) and (R) are true but (R) is not correct explanation of (A)
- (C) (A) is true but (R) is false
- (D) (A) is false but (R) is true
- **12.** The joint probability mass function of random variables *X* and *Y* is

$$f(x,y) = \frac{\lambda^x e^{-\lambda} p^y (1-p)^{x-y}}{y! (x-y)!}, y = 0,1,...,x; x = 0,1,...$$

The marginal distribution of

- (A) X and Y both are Poisson
- (B) X and Y are binomial
- (C) X is binomial and that of Y is Poisson
- (D) X is Poisson and that of Y is binomial
- **13.** Let X be a random variable

Assertion (A):
$$E(X^2) \ge (E(X))^2$$

Reason (R): X^2 is convex function of X

Select your answer from the following codes:

	(A)	(A) is true but	(A) is true but (R) is false									
	(B)	(A) is false bu	ut (R) is	true								
	(C)	Both (A) and (R) are true and (R) is correct explanation of (A)										
	(D)	Both (A) and	(R) are t	rue but (R) is	not correct	explanation of	(A)					
14.		normal distribut ximately	ion, qua	artile deviatio	on, the mea	an deviation a	nd stand	lard deviatio	n are			
	(A)	1:2:3	(B)	$\frac{1}{2}$: 3: 5	(C)	10:12:15	(D)	1:1:1				
15.	The h	ypergeometric d	istributio	on with paran	neters N, M	and n, for						
	$N \rightarrow$	$\infty, \frac{M}{N} \to p, 0 < p$	0 < 1, re	duces to the f	following di	stribution						
	(A)	Gamma(B)	Geom	netric (C	Binon	nial (D)	Norm	al				
16.		and Y are two in $Y < 3$ is	depende	nt Poisson va	ariates such	that $X \sim P(1)$ ar	nd <i>Y~P</i> (2), the proba	bility			
	(A)	$8.5e^{-3}$	(B)	$4e^{-3}$	(C)	e^{-3}	(D)	$3e^{-3}$				
17.	If φ(t	t) is characterist	ic function	on, which of	the followin	g is incorrect?						
	(A)	$ \phi(t) \le 1$										
	(B)	$\phi(t)$ is contin	nuous evo	erywhere on	real line							
	(C)	$\phi(0) = 1$										
	(D)	$ \phi(t) > 1$										
18.		and Y are independent on Y and Y are independent of Y	-	t exponential	l random v	ariable with th	e same	mean λ , the	en the			
	(A)	Exponential v	vith mea	n λ/2	(B)	Exponential v	with mea	n 2λ				
	(C)	Exponential v	vith mea	nλ	(D)	Laplace distri	bution w	vith mean λ				
19.	Mean	and variance of	standard	l Logistic dis	tribution are	;						
	(A)	Mean = 0 , Va	riance =	$\frac{\pi^2}{3}$	(B)	Mean = 0 , Va	riance =	$\frac{\pi^2}{4}$				
	(C)	Mean = 0 , Va	riance =	$\frac{2\pi^2}{3}$	(D)	Mean = 0 , Va	riance =	$\frac{3\pi^2}{2}$				

20.	•					nuxiliary variable X in a population are 18 and 32 cient of correlation (ρ)between X and Y, the ratio mple mean (assuming that R>0)?			
	(A)	$\rho < 0.63$			(B)	$0.33 < \rho < 0$.80		
	(C)	$\rho > 0.88$			(D)	$0.63 < \rho < 0$.85		
21.	Let X be a geometric distribution with parame H_0 : $\theta = \theta_0 = 0.5$ against $\theta = \theta_1 = 0.1$. We accurate probability of Type-II error is				•				
	(A)	0.81	(B)	0.19	(C)	0.25	(D)	0.75	
22.								et k be a constant.	
	Assertion (A): X_n converges in probability to $X \Rightarrow X_n$ converges in distribution to $k \Rightarrow X_n$ converges in probability to X_n converges in X_n converges								
	Then	···· (= /· ··· ll - ····			11				
	(A)	Both A and B	are true		(B)	Only <i>A</i> is true			
	(C)	Only <i>B</i> is true			(D)	Neither A nor	B is true		
23.								ning 80 units, then at replacement is	
	(A)	0.55	(B)	0.20	(C)	0.35	(D)	0.85	
24.	In a railway-marshaling yard, goods trains arrive at a rate of 30 trains per day. Assume inter-arrival time follows an exponential distribution and the service time (the time taken a train) distribution is also exponential with an average of 36 minute. Then the average nu trains in the queue is						ime taken to hump		
	(A)	2	(B)	3	(C)	4	(D)	5	
25.	The e	rror degrees of fr	reedom f	for 4 × 4 Graeco	-Latin sc	quare design is			
	(A)	6	(B)	5	(C)	4	(D)	3	

- 26. Let $X_1, ..., X_n$ be a random sample of size n from $Uniform(0, \theta)$ distribution, where θ is unknown. The maximum likelihood estimator of θ based on this sample is
 - $min(X_1,...,X_n)$ (A)
- $max(X_1, ..., X_n)$
- $\frac{min(X_1,...,X_n)+max(X_1,...,X_n)}{2}$ (C)
- (D) $\frac{max(X_1,...,X_n) min(X_1,...,X_n)}{2}$
- Let $X_1, ..., X_n$ be independent and identically distributed as Poisson distribution with parameter θ . 27. Let $(\theta) = \frac{e^{-\theta}\theta^3}{3!}$, $T = \sum_{i=1}^n X_i$ and $\binom{T}{3} < 0$ for T < 3. Then, the unique minimum variance unbiased estimator of $\tau(\theta)$ is
 - (A) $\phi(T) = {T \choose 3} \left(\frac{1}{n}\right)^3 \left(1 \frac{1}{n}\right)^{T-3}$ (B) $\phi(T) = {T \choose 2} \left(\frac{1}{n}\right)^2 \left(1 \frac{1}{n}\right)^{T-2}$
- - (C) $\phi(T) = {T \choose 1} \left(\frac{1}{n}\right)^1 \left(1 \frac{1}{n}\right)^{T-1}$ (D) $\phi(T) = {T \choose 0} \left(\frac{1}{n}\right)^0 \left(1 \frac{1}{n}\right)^{T-0}$
- 28. Consider the linear programming (LP) problem – maximize $x_1 + x_2$ subject to

$$x_1 - 2x_2 \le 10$$

$$x_2 - 2x_1 \le 10$$

$$x_1 \ge 0, x_2 \ge 0$$

Then

- (A) The LP problem admits an optimal solution
- (B) The LP problem is unbounded
- (C) The LP problem admits no feasible solution
- The LP problem admits a unique feasible solution (D)
- 29. Which of the following relations is incorrect in the context of Cost of Living Index Number (CLIN)
 - $Real\ Wages = \frac{Money\ Wages}{CUN} \times 100$ (A)
 - Purchasing Power of Money = $\frac{1}{CLIN}$ (B)
 - Real Wages = $\frac{CLIN}{Money Wages} \times 100$ (C)
 - $\textit{CLIN} = \frac{\textit{Total Expenditure in current year with base year quantities as weights}}{\textit{Total expenditure in base year}} \times 100$ (D)

Suppose $X_1, X_2, ...$ is a sequence of i. i. d. random variables with common variance $\sigma^2 > 0$. Let **30.** $Y_n = \frac{1}{n} \sum_{i=1}^n X_{2i-1}$ and $Z_n = \frac{1}{n} \sum_{i=1}^n X_{2i}$. Then, the asymptotic distribution of $\sqrt{n}(Y_n - Z_n)$ as

(A) N(0,1)

(B) $N(0, \sigma^2)$ (C) $N(0, 2\sigma^2)$ (D) $N(0, 3\sigma^2)$

31. Let X be a discrete random variable taking non-negative integer values in a set E. Let P(X > a +b/X > a = P(X > b) for any two positive integers $a, b \in E$. Then, which of the following is a possible distribution of X?

(A) **Negative Binomial** (B) Geometric

(C) Binomial (D) Possion

32. Let Y_1, Y_2, Y_3 and Y_4 be four random variables such that $E(Y_1) = \theta_1 - \theta_3$; $E(Y_2) = \theta_1 + \theta_2 - \theta_3$ θ_3 ; $E(Y_3) = \theta_1 - \theta_3$; $E(Y_4) = \theta_1 - \theta_2 - \theta_3$, where $\theta_1, \theta_2, \theta_3$ are unknown parameters. Also assume that $Var(Y_i) = \sigma^2$, i = 1,2,3,4. Then

 θ_1 is estimable (A)

(B) θ_2 is estimable

(C) θ_3 is estimable (D) θ_1, θ_2 and θ_3 are estimable

33. The hazard rates of two life time random variables T_1 and T_2 with respective cumulative distribution functions $F_1(t)$ and $F_2(t)$ and probability density functions $f_1(t)$ and $f_2(t)$, are $\Box_1(t) = 3t^2$ and $\Box_2(t) = 4t^3$, t > 0, respectively. Then,

(A) $E(T_1) < E(T_2)$

(B) $f_1(t) < f_2(t) \forall t > 0$

(C) $F_1(t) \ge F_2(t) \forall t > 0$

(D) $F_1(t) < F_2(t) \forall t > 1$

Let $(X_1, Y_1), ..., (X_n, Y_n)$ be a bivariate set of n independent observations 34. $(X,Y) \sim BVN(\zeta, \eta, \sigma_1^2, \sigma_2^2, \rho)$, then the distribution of (\bar{X}, \bar{Y}) is

(A) $BVN(\zeta, \eta, \sigma_1^2, \sigma_2^2, \rho)$

(B) $BVN\left(\zeta,\eta,\frac{\sigma_1^2}{n},\frac{\sigma_2^2}{n},\rho\right)$

(C) $BVN\left(\frac{\zeta}{n}, \frac{\eta}{n}, \frac{\sigma_1^2}{n}, \frac{\sigma_2^2}{n}, \rho\right)$ (D) $BVN\left(\frac{\zeta}{n}, \frac{\eta}{n}, \frac{\sigma_1^2}{n}, \frac{\sigma_2^2}{n}, \frac{\rho}{n}\right)$

- Let g(F) be an estimable parameter of degree m, and let $X_1, ..., X_n$ be a sample of size $n, n \ge n$ **35.** m. Corresponding to any symmetric kernel $T(X_{i_1}, ..., X_{i_m})$ of g(F), the one sample U-statistic for the sample is given by $U(X_1, ..., X_n) = {n \choose m}^{-1} \sum_{C} T(X_{i_1}, ..., X_{i_m})$, where summation C is over all $\binom{n}{m}$ combinations of m integers $(i_1, i_2, ..., i_m)$ chosen from (1, 2, ..., n). The variance of $U(X_1,\ldots,X_n)$ is
 - (A) $\frac{1}{\binom{n}{n}} \sum_{c=1}^{m} \binom{m}{n} \binom{n-m}{m-c} \zeta_c$
 - (B) $\frac{1}{\binom{n}{m}} \sum_{c=1}^{n} \binom{m}{n} \binom{n-m}{m-c} \zeta_c$
 - (C) $\binom{n}{m} \sum_{c=1}^{m} \binom{m}{n} \binom{n-m}{m-c} \zeta_c$
- (D) $\binom{n}{m} \sum_{c=1}^{n} \binom{m}{n} \binom{n-m}{m-c} \zeta_c$

Here $\zeta_c = cov_F \left(T(X_{i_1}, \dots, X_{i_m}), T(X_{i_1}, \dots, X_{i_m}) \right)$

- For the bivariate normally distributed random variable (X,Y), Kendall's tau measure of **36.** association between X and Y is zero
 - (A) If and only if X and Y are independent
 - (B) If and only if X and Y are perfectly positive correlated.
 - (C) If and only if X and Y are perfectly negative correlated
 - (D) If and only if X and Y are perfectly correlated
- **37.** A persistent state (say k) is said to be null, if its mean recurrence time is
 - (A) Finite
- (B) Unity
- (C) Infinite
- (D) Zero
- Let X_1, X_2, X_3 be three random variables such that $\rho_{12} = \rho_{13} = \rho_{23} = \rho \neq 1$, then the square of 38. multiple correlation coefficient $R_{1.23}^2$ is
- (A) $\frac{\rho^2}{1+\rho}$ (B) $\frac{1+2\rho^2}{1+\rho}$ (C) $\frac{2\rho^2}{1+\rho^2}$ (D) $\frac{2\rho^2}{1+\rho}$
- **39.** Let X be a continuous random variable with mean 2 and variance 9. Then

 $P\{|X-2| \ge 6\}$ is

- (A) Bounded above by 1/4
- (B) Bounded below by 1/4
- (C) Bounded above by 1/2
- Bounded below by 1/2 (D)

40.		ninimum number $\frac{1}{2}$ of at least $\frac{1}{2}$					oximate	$\int_{1}^{2} x e^{-x} dx \text{ to an}$
	(A)	100	(B)	100 <i>e</i>	(C)	1000	(D)	1000 <i>e</i>
41.	Relati	ve efficiency of	cluster s	ampling with cl	uster of o	equal size <i>M</i> witl	h simple	random sampling

- 41. Relative efficiency of cluster sampling with cluster of equal size M with simple random sampling without replacement, assuming that number of clusters N is sufficiently large, is
 - (A) $1 + \rho(M-1)$

(B) $1 + 2\rho(M-1)$

(C) $(1 + \rho(M-1))^{-1}$

- (D) $(1 + 2\rho(M-1))^{-1}$
- **42.** In one classification model, consider the following analysis of variance table

Sources of variation	d.f.	Sum of squares	F-statistic
Treatments	2	250	F = 7.5
Error	12	200	
Total	14	450	

The coefficient of determination R^2 is

- (A) 5/2
- (B) 5/9
- (C) 9/5
- (D) 2/5
- 43. Let f be a measurable function defined over a measurable set E. Then the function -f (the negative of f) is
 - (A) Measurable
 - (B) May or may not be measurable
 - (C) Measurable if function f vanishes no where on E
 - (D) Outer measurable
- **44.** For normal underlying distribution, the asymptotic relative efficiency of Mann-Whitney U-test relative to two-sample t-test is
 - (A) 0.655
- (B) 0.755
- (C) 0.855
- (D) 0.955

47.	A necessary condition for a symmetrical BIBD, assuming the treatments as even, is that $(r - \lambda)$ must be						
	(A)	Positive integer	(B)	Negati	ive integer		
	(C)	Either positive or negative integ	ger	(D)	Perfect square		
48.		$W_m(n,\Sigma), n > 0$ is a positive in uted of A with $P(\underline{Y} = \underline{0}) = 0$, the		nd \underline{Y} is	an $m \times 1$ random vector independently		
	(A)	$\frac{\underline{\underline{Y}'A\underline{Y}}}{\underline{\underline{Y}'\Sigma\underline{Y}}} \sim \chi_n^2$ and is independent of	<u>Y</u>				
	(B)	$\frac{\underline{\underline{Y}'A\underline{Y}}}{\underline{\underline{Y}'\Sigma\underline{Y}}} \sim \chi_{2n}^2$ and is independent o	f <u>Y</u>				
	(C)	$\frac{\underline{\underline{Y}'AY}}{\underline{\underline{Y}'\Sigma Y}} \sim \chi_{\frac{n}{2}}^2$ and is independent of	<u>Y</u>				
	(D)	$\frac{\underline{\underline{Y}'A\underline{Y}}}{\underline{\underline{Y}'\Sigma\underline{Y}}} \sim \chi_{3n}^2$ and is independent o	f <u>Y</u>				
49.	For the	e Gauss Markoff model $(\underline{Y}, A\theta, \sigma)$	(r^2I) , with	$th A = \left(\begin{array}{c} 1 \\ 1 \end{array} \right)$	$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \text{ and } \underline{\theta} = \begin{pmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \end{pmatrix}, l_1 \theta_1 + l_2 \theta_2 + $		
	$l_3\theta_3$ is	estimable if			· ·		
	(A)	$l_1 = 0, l_2 = 1, l_3 = 0$		(B)	$l_1 = 0, l_2 = 0, l_3 = 1$		
	(C)	$l_1 = 1, l_2 = 0, l_3 = 0$		(D)	$l_1 = 1, l_2 = 1, l_3 = 0$		
50.		ility of a sampling plan to discring ribed as	ninate b	etween l	lots of high quality and lots of low quality		
	(A)	An average outgoing quality cu	rve	(B)	A process control chart		
	(C)	An operating characteristic curv	/e	(D)	A range chart		
			<i>x-x-x</i>				

In a 3³ design, the error degress of freedom with 5 replicates are

parameters, $\mu_0 = 0$, L = 3, $\sigma = 1$ and $\lambda = 1$, are in the interval

106

(C)

-2 to 2

The study state control limits for exponentially weighted moving average control chart with

(C)

104

(D)

-1 to 1

(D)

102

(B)

-4 to 4 (B) -3 to 3

45.

46.

108

(A)

(A)

Stem Cell Tissue Engineering & Biomedical Excellence(Ph.D.)

1.		_	-	signalling by β -adrenergic receptor							
	(A)	e represents which one of the followin Homologous Desensitization	g proce (B)	ss: Homologous Sensitization							
	(C)	Heterologous Desensitization	(D)	Heterologous Sensitization							
		-		•							
2.	Whic	h one of the following does not repres									
	(A)	Leibovitz	(B)	RPMI 1640							
	(C)	Histopac	(D)	DMEM							
3.	In ord	der to perform cell line authentication	which o	of the following methods is not used:							
	(A)	DNA barcoding	(B)	in situ hybridization							
	(C)	Isoenzyme analysis	(D)	Cytogenetic analysis							
4.	One of the following does not represent second messenger:										
	(A)	cAMP	(B)	cGMP							
	(C)	cCMP	(D)	Diacylglycerol							
5.	Surfa	Surface immunoglobulin (Ig) is stripped from the surface of B-lymphocytes by all the									
	prote	proteolytic enzymes, except one of the following:									
	(A)	Collagenase	(B)	Pronase							
	(C)	Chymotrypsin	(D)	Trypsin							
6.	Overe	Overexpressing the niche milieu will produce which of the following:									
	(A)	No effect in the local environment	(B)	Apoptosis of the cells							
	(C)	Cancer cell phenotype	(D)	Differentiation of cells							
7.	Diffe	Differentiation of one differentiated cell to other differentiated cell type is known as:									
	(A)	Primitive cell differentiation	(B)	Ontogeny							
	(C)	Metaplasia	(D)	Dysplasia							
8.	Durin	ng drosophila development, number of	nuclei	bathing in the common cytoplasm							
	is rep	resented by which of the following:									
	(A)	Cap cell	(B)	Syntial blastoderm							
	(C)	Follicle cell	(D)	Trophoblast cell							
9.	Riche	est reservoir of mesenchymal stem cell	ls is rep	resented by which of the following:							
	(A)	Bone Marrow	(B)	Cord blood cells							
	(C)	Adipose Tissue	(D)	Wharton Jelly							

10.	One of the following can be used to generate the whole organism:										
	(A)	Blastomere			(B)	Dental pul	p stem cel	ls			
	(C)	Blastocyst	cells		(D)	Bone marr	ow cells				
11.	The e	mbryoid bodi	ies can be	generated fr	om which	type of the	cells:				
	(A)	Induced Plu	uripotent	Stem Cells	(B)	Mesenchy	mal stem o	eells			
	(C)	Hemangioblast (D) Niche support cells									
12.	All th	e following,	except on	e is not relate	ed to feede	er cells used	during ste	m cell cu	ılture:		
	(A)	Provide Ex	tracellula	r Secretions f	for Growth	1					
	(B)	Source of a	ntitrypsir	1							
	(C)	Layer of ce	lls unable	e to divide							
	(D)	Irradiated c	ell types								
13.		reatic cell pro	_		ied from t	he pool of p	opulation	of stem	cells by		
	(A)	PAX 1	(B)	PDX	(C)	GPCR	(D)	RxR			
14.		n studying the ercised: Use blockin	•	reaction on t				of the fo	ollowing		
	(B)	Use blockii	ng reagen	t before addit	tion of spe	cific antiboo	dy				
	(C)	A combinat	tion of sp	ecific and no	n-specific	antibody					
	(D)	Only single	antibody	specific pro	tein in que	estion					
15.		h one of the f	ū		ited to trac	ce the stem o	cells and se	eparate th	nem		
	(A)	Fluorescent	t cell sort	ing analysis	(B)	BrdU labe	ling studie	S			
	(C)	¹⁴ C labeling	g studies		(D)	³⁵ S labelin	g studies				
16.		of the follow	_		at both m	ouse Embry	yonic sten	n cells (l	ES) and		
		yonic germ c	` ′	•							
	(A)	•		hatase activit	•						
	(B)			hatase activit	У						
	(C)	High Acid		•							
	(D)	Low Acid p	onosphata	ise activity							

17.	Addition of leukaemia inhibitory factor to the embryonic cell culture performs which of the following function:										
	(A) (C)	Augmentation of Apoptosis Inhibition of differentiation	(B) (D)	Augmentation of Differentiation Inhibition of Apoptosis							
18.	vecto	r was tagged with sequence coding to identify the interacting protein. Pir	for His-	rotein for stem cell pluripotency, Sox2 2 tag, its expression in stem cell was he methodology that you would use to							
	(A)	Immuno-hybridization followed by	souther	n blotting							
	(B) Immuno-precipitation and followed by Northern blotting										
	(C) South-Western blotting										
	(D)	(D) Immuo-pulldown followed by immuo-blotting									
19. The deliberate creation of embryo for production any immune response and rejection is termed				-							
	(A)	Positional cloning	(B)	Genetic cloning							
	(C)	Reproduction cloning	(D)	Therapeutic cloning							
20.	Matrigel is a commonly used material for growing cell. Which of the following is not the component of Matrigel:										
	(A)	Heparan sulfate (B) Laminin	(C)	Collagen (D) β-Catenin							
21.		Scaffold or materials that are permissive to bone formation but do not attract the osteo-progenitors that initiate bone formation is termed as:									
	(A)	Osteo-conduction	(B)	Osteo-induction							
	(C)	Osteo-inhibition	(D)	Osteo-porosis							
22.	Mesa	ngioblasts are the stem cells associated	d with d	lifferentiation into:							
	(A)	Mesothelial cells	(B)	Vessel forming cells							
	(C)	Bone forming cells	(D)	Neural cell							
23.		of the following process is used to ger cking the non-fertilized egg into dupli		Il female derived embryonic stem cells of DNA:							
	(A)	Artificial insemination	(B)	in vitro fertilization							
	(C)	Fertilization	(D)	Parthenogenesis							

24.	Whic	h of the following biological assay	was us	sed first to detect hematopoietic stem					
v	cells:			and the december meaning potential steam					
	(A) (C)	Cell migration assay Soft agar colony forming assay	(B) (D)	Clonal subtraction assay Spleen colony forming assay					
	(C)	Soft agai colony forming assay	(D)	Spice i colony forming assay					
25.	Whic (A)	th one of the following best explains to An immature cell committed to a proliferation		enitor cells: lar differentiation lineage with limited					
	(B)	A cell that is terminally differential	ed with	very low proliferation					
	(C) Cell isolated from inner cell mass of the embryo with very high proliferation rate								
	(D) Totipotent cell isolated at morula stage having very high proliferation								
26.	The term epigenetic is commonly used during stem cell imprinting, this term is best explained as:								
	(A)	Mitotically /meiotically heritable existing protein	change	e involving covalent modification of					
	(B)	Mitotically /meiotically heritable sequence	e chang	ge not involving changes in DNA					
	(C)	Mitotically /meiotically heritable region of a gene	e chang	ge involving events at 5' upstream					
	(D)								
27.		od of removing trophectoderm of a been of trophectoderm and complement	•	_					
	(A)	Immuno-surgery	(B)	Immuno-precipitation assay					
	(C)	Immuno-rejection	(D)	Immuno-sorbent assay					
28.	The c	cells were then washed and loaded w	ith fresh on the medium	e differentiated into myogenic lineage. medium with no serum for a period of fresh stem cells these cells also got n is termed as:					

	(C) (D)			of stem cells of bone marro	W						
29.				oresents cock amanaka fact	_	enerating ind	uced plu	ripotent sten	n cell		
	(A)	Oct4, Sox2	_		(B)	Oct4, Sox2	e, cMyc, a	and nanog			
	(C)	Oct4, Sox2	, nanog,	Oct4, nano	g, cMyc,	and Klf4					
30.	Which one of the following stem cell marker can be exploited to differentiate mouse embryonic stem cells from human embryonic stem cells:										
	(A)	Nanog.	(B)	SSEA-1	(C)	Oct 3/4	(D)	Sox2			
31.	All th	ne following e	except on	e, represent p	rogenitor	cells:					
	(A)	Alveolar ty	pe 2 cells	s for lungs							
	(B)	Blast cells	for T & F	3 lymphocytes	S						
	(C)	Satellite ce	lls for mu	ıscle							
	(D)	Oval Cells	for liver								
32.	All t	he following	differer	ntiated cells	could be	derived fro	om embr	yonic stem	cells		
	excep	ot one of the f	ollowing	:							
	(A)	Adipocytic	Cells		(B)	Chondrocy	tic Cells				
	(C)	Myocytic C			(D)	Trophoecto					
33.		The Stem cell sorting and identification required use of CD markers during FACS analysis, what does CD stands for:									
	(A)	Combinato	rial diffe	rentiation	(B)	Cluster of o	differenti	ation			
	(C)	Combined	designati	on	(D)	Chemotact	ic design	ation			
34.	Durir	ng Flowcytom	netry, con	nmonly used	cell types	called side p	opulation	cell is			
	named	due to which	of the fo	llowing chara	cter:						
	(A)	Cells lying	on the si	de of Hoechst	t dye retai	ning cells					
	(B)	Cells lying	on the si	de of differen	tiated cell	lacking Hoe	chst dye				
	(C)	Cells displa	aced on tl	ne side of a cu	ılture plat	e before addi	tion of H	oechst dye			
	(D)	Cells positi	ve for Ho	pechst dye ob	tained afte	er trypsinizat	ion				
35.	Whic	h of the follo	wing eve	nt occurs follo	owing ma	mmalian fert	ilization:				
	(A)	Inhibition of	of heterol	xaryon format	ion						
	(B)	Loss of foll	licular ce	lls							

	(C)	Exit from the meiosis								
	(D)	Entry to the meiosis								
36.	In newt, following amputation of forelimb the cells around the amputated area undergo mitosis, trans-differentiation and de-differentiation. Which of the following event precedes all these:									
	(A)	Formation of blastema	(B)	Formation of embryoid body						
	(C)	Formation of trophoectoderm	(D)	Formation of teratoma						
37.	One of	One of the major difference between osteoblast and osteoclast cells is:								
	(A) Differentiation to osteocytes by osteoblast and chondrocytes differentiation osteoclast cell									
	(B) Differentiation to myocytes by osteoblast and chondrocytes differentiation by osteoclast cell									
	(C) Bone resorption by osteoblast and bone formation by osteoclast cell									
	(D) Bone formation by osteoblast and bone resorption by osteoclast cell									
38.		concentration of magnesium sul fication, can lead to which of the fo		ner than its optimum, during PCR utcome:						
	(A)	Increase in nonspecific amplificat	ion							
	(B)	Increase in the specific amplificat	ion							
	(C)	Increases the DNA denaturation a	nd hasten	the speed of amplification						
	(D)	Increases the DNA denaturation a	nd slowin	g down speed of amplification						
39.		the identification of sequence that atory activity can be ascertained by		ascription factor binds for the gene the following technique:						
	(A)	Mutagenic assay	(B)	DNA finger printing assay						
	(C)	Gel retardation assay	(D)	Gene silencing assay						
40.		procedure for selecting hybridor opterin. This is included in the medi It provides a precursor for purine It inhibits purine metabolism	um becau							

	(C) It provides a precursor for dihydrofolate reductase activity(D) It inhibits dihydrofolate reductase activity											
41.	The lo	ocation of Hematopoiesis during devel	opment	in mouse is:								
	(A)	Mesonephric to Metanephric axis										
	(B)	Neural tube site										
	(C)	Extraembryonic yolk sac										
	(D)	Extraembryonic aorta-gonad-metane	phric									
42.	Abzyr (A) (B) (C)	ne, is an important molecule designate RNA with catalytic activity Catalytical antibody Catalytic carbohydrate	ed as:									
	(D) Nano-based Fe with catalytic activity											
43.	All except one of the following cannot be used to differentiate the cancer cell out of mixed cell population:											
	(A)	Loss of telomerase function	(B)	Loss of contact inhibition								
	(C)	High nuclear to cytosol ratio	(D)	Polyploidy in cells								
44.	Dideoxy nucleotides are used to achieve which of the following outcome:											
	(A)	Sequencing of DNA	(B)	Mapping of DNA								
	(C)	Generation of clone contigs	(D)	Amplification of DNA								
45.	The major source of the collagen synthesizing cells used in the tissue engineering											
	studies is:											
	(A)	Neural cells	(B)	Endothelial cells								
	(C)	Fibroblast cell	(D)	Epithelial cells								
46.	Bisulf	ite sequencing methodology is used to	ascerta	ain which of the following:								
	(A)	Methylation of CpG islands	(B)	Acetylation of histones								
	(C)	Phosphorylation of serine/threonine	(D)	Deacetylation of histones								
47.		nactivation of complement system of yed by which of the following method:		m to be used during cell culture is								
	(A)	Filtration through 0.2 micron filter	(B)	Heat inactivation								
	(C)	Charcoal treatment	(D)	Autoclaving								

48.	The a	The action of the antibody involves its specificity towards a particular antigen, which							
	of the	e following contributes to antibody specificity:							
	(A)	The variable region of the heavy and light chain							
	(B)	The constant region of antibody							
	(C)	The heavy chain of the antibody							
	(D)	Hinge region of antibody							

49. Non-adherent clusters of neural progenitor cells grown under *in vitro* and used for propagation of neural stem cells is represented by which of the following:

(A) Glial cell clusters

(B) Axonic cell clusters

(C) Neurosphere

(D) Neural tube

50. Which one of the following stem cell type escapes immunological barrier during transplantation in mouse:

(A) Mesenchymal stem cell

(B) Embryonic stem cell

(C) Hematopoietic stem cells

(D) Neural stem cells

System Biology & Bioinformatics(Ph.D.)

1.	What is full form of RCSB?											
	(A)	Research coll	laborato	or for structural	bioinfo	rmatics						
	(B)			on for structura								
	(C)	(C) Research contributory for structural bioinformatics										
	(D)	(D) Research contribution for structural bioinformatics										
2.	What makes BLAST faster than FASTA?											
	(A)	Processor spe	eed of tl	ne computer	(B)	Hash table loo	okup					
	(C)	Database size			(D)	E value						
3.	Gen bank file format is DNA centric report because of											
	(A)	Coding regio	n		(B)	Decoded region						
	(C)	Qualifier			(D)	CDS						
4.	What is the difference between RefSeq and GenBank?											
	(A) RefSeq includes publicly available DNA sequences											
	(B)											
	(C)	-		are derived fro		•						
	(D)	RefSeq seque	ences ar	e derived from	GenBa	nk						
5.	ASN.	1 is computer l	anguag	e which is?								
	(A)											
	(B)	•										
	(C)											
	(D) Human-readable only											
6.		GI number in NCBI is										
	(A)	Gen Info Idea			(B)	Gene Info Ind						
	(C)	Gene informa	ation Id	entity	(D)	Genome Iden	tifier					
7.	The F	The Pitch/turn of helix observed generally in B-DNA structures is										
	(A)	33.3	(B)	33.2	(C)	33.1	(D)	33.4				
8.	The n	najor groove of	B-DN	A structures is								
	(A)	Narrow	(B)	Shallow	(C)	Deep, narrow	(D)	Wide, shallow				
9.	What	is VRML										
	(A)	Visual Real N	Modelin	g Language	(B)	Visual Reality	Mode	el Language				
	(C)	Virtual Real	Modelii	ng Language	(D)	Virtual Realit	y Mod	eling Language				
10.	Whic	h of the followi	ng mos	t accurately det	termine	d using molecul	ar mod	leling?				
	(A)	Molecular or	-		(B)	_		-				

	(C)	Electrostatic p	ootentials		(D)	Energy			
11.	The P	hi-Psi scatter di	agram is a						
	(A)	Ramachandra	n plot		(B)	Chi plot			
	(C)	Scatter plot			(D)	Prediction plot			
12.	Whic	h factor distingu	ish betweer	n sensitivi	tv in B	LAST			
12.	(A)	P value only		i sensitivi	(B)	E value only			
	(C)	P & E value			(D)	P or E value			
10									
13.		SCAN develope	•		(D)				
	(A)	Christopher B	-		(B)	Christopher rode Samuel			
	(C)	Christopher ro	ode		(D)	Christopher karlin			
14.	14. How Sequence filtering in BLAST help in fast database searching								
	(A)	Searches for I	LCR	-	(B)	Searches for Repeats			
	(C)	Both A & B			(D)	None of the above			
15.	Heine	SEG and PSEC	Gin DI ACT	'ingrassa					
13.	(A)	Sensitivity		ecificity	(C)	Search result (D) E value			
			() ··· I		(-)	()			
16.	Many genes involved in pathogenicity are located in defined continuous regions ("islands") of the genome and have different GC content from other portions of the genome, suggesting that they have arisen through								
	(A)	Horizontal gen							
	(B)	Gene duplicat		-	utation				
	(C)	Protection from	-						
	(D)	Increase in the	e rate of mu	tation of si	uccessi	ve GC pairs			
17.	Paran	netric bootstrap	differ from	non param	etric b	ecause			
		It uses simulat							
	(B)	It uses simulat							
	(C)	It uses simular	tion parame	ter for sear	rch				
	(D)	It do not uses	simulation _I	parameter	for sea	rch			
18.	Menti	ion the type of tl	he following	reaction					
100	1,10110	ion the type of the			$\rightarrow C_{\epsilon}H$	$C_{12}O_6 + C_6H_{12}O_6$			
	(A)	Synthesis	(B) Hy	drolysis	(C)	Dehydration (D) Hydrogenation			
10	** -	0 00 :	01 -						
19.		of coefficient of							
	(A)	Positive	(B) Ne	gative	(C)	Equal to one (D) Equal to three			
20.	The N	Northern blotting	g technique	depends or	n				
	(A) Similarities between the sequences of probe DNA and experimental DNA								

	(B) (C)											
	(D)	protein The molecular mass of pro	oteins									
01		-										
21.		In an airline reservation system, the entities are date, flight number, place of departure, destination, type of plane and seats available. The primary key is										
	(A)	Flight number	(B)	Flight number + place of departure								
	(C)	Flight number + date	(D)	Flight number + destination								
22.	MEG	MEGA phylogenetic software uses										
	(A)											
	. ,	(B) Compute both synonymous and nonsynonymous sites										
	(D)	(C) Comupute only synonymous and nonsynonymous sites(D) Comupute only nonsynonymous sites										
23.	PSI-BLAST & BLAST?											
	(A)	Different	(B)	Same								
	(C)	Search engine	(D)	Certain Difference								
24.		What are the advantages of computer in CADD? (A) Simple & fact (B) Simple short & fact										
	(A)	Simple & fast	(B)	Simple, short & fast								
	(C)	Complex & slow	(D)	A & B								
25.		Kyte-Doolittle hydropathy plot are?										
	(A)	Used by TGREASE	(B)	Short Prediction								
	(C)	Signaling	(D)	1 dimension plot								
26.		ch one is correct?	(- -)									
	(A)		(B)	1024 KB = 1MB								
	(C)	1024GB = 10 Terabyte	(D)	1024GB = 1 Mega Byte								
27.		h content of potatoes can be increase	ed by usin	ng a bacterial gene, known as								
	(A)	Sucrose phosphate synthase gene ADP glucose pyrophosphorylase	gana									
	(B) (C)	Polygalactouranase gene	gene									
	(D)	None of the above										
28.	Kimı	ura 2-parameter for Mutational mode	els for DN	NA determine:								
	(A)	Transversions more likely than tra	ansitions									
	(B)	Transitions more likely than trans	versions									
	(C)	Transversions vs. transitions										
	(D)	Identify all transitions										
29.	DOT	PLOT uses										

	(A) (C)		_	gh stringencies w stringencies	(B) (D)	-		l high window gh stringencies	
30.	(A)	Agree	-	in DNA sequen	(B)	May be	-	by DOT PLOT	
31.	(C) Norm (A) (B) (C) (D)		require amino a PAM	for statistically acid changes in	_	Not possible ration?			
32.	Full for (A) (B) (C) (D)	Series analy Sorted analy	sis of gen	ne expression ne expression ne expression of gene express	ion				
33.	Signif (A) (C)	Statement is no universal			ot possib (B) (D)	Statement is Statement is	incomp	lete	
34.	-	okaryotes, just le to the Cell membra Centromeres	ane	the cell divides	(B) (D)	vo daughter ge Replication of Equatorial p	origin	are attached side	
35.	Charge-charge relationship of noncovalent interactions to the distance separating the interaction molecules is								
	(A)	1/r	(B)	$1/r^2$	(C)	$1/r^3$	(D)	1/r ⁴	
36.	LOD (A) (C)	score Statistical es None	stimation		(B) (D)	Establish lin A & B	kage bet	ween two loci	
37.	What (A)	is the range of Micrograms		size used in SE Naonograms		E methods. Picograms	(D)	Milligrams	
38.	Who (A) (C)	coined the terr Strasburger Strasburger			(B) (D)	Flemming Clamming			
39.	Rotan (A) (B)	neric structure Different ph Same psi bu	i & psi b	ut differ in side n side chain	chain				

	(C) Same phi & psi but differ in side chain (D) Same phi but differ in side chain							
40.	Beta (A) (C)	Globin fold con All alpha heli Four alpha &	ces	ta helices	(B) (D)	Eight alpha he		eta helices
41.		molecular then Pressure			` ′	-	(D)	Surface
42.	DH5 a (A) (C)	alpha Plasmid I Positively sup Early superco	ercoile	i	(B) (D)	Negatively supercoiled Supercoiled		
43.	Linkii (A)	ng number of D Topology	NA des (B)	cribe Conformation	(C)	Model	(D)	Flexibility
44.	Phylo (A)	genetics analys Homology	is are no	ot based on Para logy	(C)	Orthology	(D)	Xenology
45.	Which (A)	n of these amino Glycine	o acids i (B)	s highly conser Alanine	ved & a	abounded in na Both	ture? (D)	None
46.	Triad (A) (B) (C) (D)	I tools in molecular modeling consist of Force field, Parameter sets, molecular mechanism Force field, Minimization algorithm, Parameter sets Force field, molecular dynamics, parameter sets All of the above						
47.	Which (A)	n is second gene MMFF	eration f (B)	Force field MM Family	(C)	AMBER	(D)	AMBER 2.0
48.	How 1 (A)	many copies of $10^3 - 10^4$	mitocho (B)	ondria is presen 10² - 10³	t in an (C)	eukaryotic cell 1000	(D)	10 ⁶ - 10 ⁷
49.	Minin (A) (C)	num energy cor Statement is c Statement is r	correct	_	active (B) (D)	conformation of State is income None of the a	plete	odel
50.	Which (A) (C)	of them are ra Citrulune 3,4-dihydroxy			(B) (D)	Selenoacedition 3,8-dihydroxy		lalanine

(ZOOLOGY)

1.	Whic (A)	h of the follow Host	ving is no (B)	ot part of the Agent	triad of ep (C)	oidemiology? Environment	(D)	Time			
2.	Cydippid larva is a notable feature of phylum										
	(A)	Echinoderm	ata		(B)	Mollusca					
	(C)	Porifera			(D)	Ctenophora					
3.	Whic	h tracheal syst	em is pro	esent in dipto	eran pupae	?					
	(A)	Propneuistic	;		(B)	Metapneuistic					
	(C)	Holopneuist	ic		(D)	Hemipneuisti	c				
4.	Which of the following nucleotide bases is never present in genetic code?										
	(A)	Adenine			(B)	Uracil					
	(C)	Thymine			(D)	Cytosine					
5.	Grass carp is										
	(A)	Ctenopharyı	ngodon i	dellus	(B)	Cyprinus carp	oio				
	(C)	Hypophthali	nichthys	molitrix	(D)	Oreochromis	mossar	nbicus			
6.		In which sequence the following proteins are activated as prerequisite for ventralisation in <i>Drosophila</i>									
	(A)	Snake, Spätzle, Easter			(B)	Snake, Easter	, Spätzl	le			
	(C)	Spätzle, Sna	ke , East	er	(D)	Easter, Snake	, Spatz	le			
7.	Which of the following is not a G-Protein coupled receptor?										
	(A)	Rhodopsin			(B)	Muscarinic acetylcholine receptor					
	(C)	Nicotinic ac	etylcholi	ne receptor	(D)	Thyrotropin r	eceptor				
8.	The h	noney bee dron	es								
	(A)	Have a moth		father							
	(B)	Have sisters	but no b	rother							
	(C)	Have no fath	ner but h	ave a grandf	ather						
	(D)	· · · ·									
9.	In <i>C</i> .	elegans, phary	nx is ge	nerated by tv	wo sets of	cells derived fro	om				
	(A)	ABp and E			(B)	ABa and E ce	lls				
	(C)	ABa and EM	IS cells		(D)	ABp and EMS	Ss				
10.	The r	nedian dorsal a	arm of ep	oicranial suti	are is term	ed					
	(A)	Metopic suti	ıre		(B)	Epistomal sut	ure				
	(C)	Fulturae			(D)	Gula					
11.	Whic	h of the follow	ing isoe	nzvmes is th	e first indi	cator of myocar	rdial in	farction?			

	(A)	CPK_1	(B)	CPK_2	(C)	CPK ₃	(D)	CPK ₄			
12.	Whic (A) (B) (C) (D)	Physical map Linkage analysis between two loci									
13.	Whic		wing tectory Liquidates the control of the control	chnique is under the control of the	ised for de	termining the	molecul	lar weight of the			
14.	Whic (A) (B) (C) (D)	ch of the following are all game fish? Salmo trutta fario, Schizothorax richardsonii and Tor putitora Salmo trutta fario, Schizothorax richardsonii and Cyprinus carpio Catla catla, Labeo rohita and Cirrhinus mrigala Ctenopharyngodon idellus, Cyprinus carpio and Barilus barila									
15.	Who (A)	is considered a John Wisnar		ther of epide Louis Pas		John Snow	(D)	John Smith			
16.	In ver	tebrate visual	receptor	rs which of t	the following	ng secondary i	nessenge	ers plays a key			
	(A)	AMP	(B)	Ca++	(C)	cGMP	(D)	Phospholipids			
17.	Whic (A) (C)	h of the follow Corpus cardi Corpus striat	acum	temporary 6	endocrine g (B) (D)	land in humar Corpus lute Corpus albid	um				
18.	The n (A) (C)	aive B cell con IgE and IgA IgM	itains w	hich type of	antibodies (B) (D)	IgM and IgI IgG1 and Ig					
19.	What (A) (B) (C) (D)	_	to be de to be de to be de	erived from a crived from a crived from a	a retrovirus a protein co a cellular n	oding gene on coding RN	A molec	ule			
20.	Gill n (A) (B)	It is thought to be derived from a DNA virus nets are mostly used in In rivers where the water current is very fast In shallow waters where depth is not more than a feet									

	(C) In reservoirs and lakes where the water is stationary(D) In torrential streams										
21.	(D) Which			evample of co	netituti	ve heterochron	natin?				
41.	Which of the following is an example of constitutive heterochromatin? (A) Barr body										
	(B)										
	(C) rRNA transcribing region of genome										
	(D)		_	of chromosome							
	, ,										
22.		s belong to whi		-							
	(A)	Xenograft	(B)	Isograft	(C)	Autograft	(D)	Allograft			
23.	Edman degradation is used for the										
	(A)										
	(B)	(B) Determination of nucleotide sequence of the DNA									
	(C) Determination of amino acid sequence from the C-terminal of a protein										
	(D)			cleotide sequen							
24.	The volume of blood left in the ventricle after ventricular systole is called										
4 7,	(A) Stroke's volume					End systolic volume					
	(C)	Cardiac volum			(B) (D)	End diastolic					
	(0)	Curdiae voidi	110		(D)	Life diastoric	voidin				
25.			wing ar	imals germ cel	ls are n	ot determined l	by mate	rial in egg			
	cytopl		(-)	_	(~)		(-)	_			
	(A)	Nematodes	(B)	Frogs	(C)	Mammals	(D)	Insects			
26.	In an analytical procedure, a mixture of proteins is subjected to electrophoresis,										
	transferred to nitrocellulose and then probed by using a labeled antibody probe. This										
	techni	echnique is									
	(A)	Southern blot	ting		(B)	Northern blo	tting				
	(C)	Western blott	ing		(D)	RT-PCR					
27.	The s	vndrome in h	umans	in which an	individ	ual's somatic	cells co	ontain the XXX			
		osomes is calle									
	(A)	Klinefelter's		Turner's	(C)	Down's	(D)	Superfemale			
28.	Rest s	ite for taking h	ionsy fa	or diagnosis of	Trichin	ellosis is					
20.	(A)	Deltoid musc		Diaphragm	(C)	Pectoralis ma	ior (D)	Liver			
	(11)	Dettora mase	ic (B)	Diapinagin	(0)	1 cotorums ma	jor (D)	21101			
29.				ntercostals resu							
	(A)			nt of the ribs an	ıd sterni	um					
	(B)	Elevation of t									
	(C)			nt of diaphragn	1						
	(D)	Abdominal co	ontracti	on							
30.	In humans major cause of Burkitt's lymphoma is:										
	(A)	•		of chromosom		chromosome 14	1				

	(B)										
	(C)	-		-							
	(D)		-			chromosome 1					
31.				e midgut of ins	sects is a	modification f	or				
	(A)	Conserving v									
	(B)	Rapidly rem	oving w	ater							
	(C)	Sieving solic	l food pa	articles							
	(D)	Separating d	igestible	e and non-dige	stible m	aterials					
32.	In ne	w born infants,	haemol	ytic disease ca	ın be lim	nited by					
	(A)	Administrati	on of sp	ecific allergen	ıS						
	(B)	Allergens of	specific	shots							
	(C)	Administration of antihistamines									
	(D)	Administration of anti-Rh antibodies									
33.	In vertebrate genes, transcription regulatory regions that contain CpG islands are										
	inacti	vated by which	n CpG n	nodification?							
	(A)	Methylation	_		(B)	Myristylation	1				
	(C)	Phosphoryla	tion		(D)	Acetylation					
34.	Pad-l	ike structures o	on ventra	al surface of th	e tarsal	subsegments ar	re				
	(A)	Euplantulae	(B)	Basitarsus	(C)	Empodium	(D)	Basicoxite			
35.	The presence of the pharyngeal teeth is a key character of										
	(A)	Catfishes			(B)	Carps					
	(C)	Eels			(D)	Snakehead fi	sh				
36.	A high concentration of fructose is present in the secretion of										
	(A)	Prostate		•	(B)	Seminal vesi	cle				
	(C)	Epididymis			(D)	Vas deferens					
37.	Karne	Karnovsky's fixative used in electron microscopy is									
	(A)	Glutaraldehy	/de								
	(B)	Paraformald	ehyde								
	(C)	Glutaraldehy	de and	Paraformaldeh	ıyde						
	(D)										
38.	In Ep	idemiology "Q	uarantir	ne" refers to:							
	(A)	Separation o	f the dis	eased individu	ıal						
	(B)	Separation o	f the ind	lividual expose	ed to a d	isease					
	(C)	Separation o	f the dis	eased individu	ial and it	ts family					
	(D)	-		eased individu		•					
39.	Whic	h of the follow	ing gene	e is required fo	or SOS I	NA repair in p	rokaryo	tes?			
	(A)	MutS	(B)	UvrĀ	(C)	UmuD	(D)	MutH			

40.	Detection of odour is mediated by										
	(A)	Ungated Na c	hannels	S	(B)	Gated Na- cha	annels				
	(C)	Gated cation	channel	S	(D)	G-protein cou	pled re	ceptors			
41.	Notop	terus notopteru	us and C	Chitala chitala	are com	monly referred	as				
	(A)	Eels	(B)	Carps	(C)	Featherbacks	(D)	Catfishes			
42.	Which	n of the following	na is na	ot an actin hind	ing prote	ain?					
42.			_	Filamin	- 1	Profilin	(D)	Laminin			
	(A)	Formin	(B)	riiaiiiii	(C)	PIOIIIII	(D)	Laiiiiiii			
43.	All of	the following of	characte	eristics are seer	n in the s	in the stools in amoebic dysentery of					
	(A)	RBCs in clumps				Charcot-Leyd	en crys	tals			
	(C)	Pyknotic bodi	ies		(D)	Ghost Cells					
44.	The best way to demonstrate whether nuclear DNA is being replicated in cell is by:										
	(A)	Phase contras			(B)	Thin layer chi					
	(C) Autoradiography					Gel electroph		5 °F 7			
45.	immu	B) Secondary exoerythrocytic schizogony C) Replase									
46.	A type	e of egg tube in	insects	in which vitel	larium c	ontains eggs or	nly				
	(A)	Acrotropic	(B)	Polytropic	(C)	Meroistic	(D)	Panoistic			
47.	Basic Keratins are type of:										
	(A)	Type II intern		filaments	(B)	Type III inter	mediate	filaments			
	(C)	Type IV inter			(D)	Type V intern					
48.	has tw		units:	one is catalyti	c and th	e other is regul		o division stage, ub unit of MPF.			
	(A)	Cyclin	(B)	Cdk	(C)	Proline	(D)	Ubiquitin			
49.	What	are cryptic spli	ce sites	?							
	(A)	These are spli	ice sites	that are used i	n some	cells but not in	others				
	(B)			that are alway							
	(C)					ternative splici	ng resul	lting in removal			
	(D)			RNA molecule			la 1 a	a a a a a a a a a a a a a a a a a a a			
	(D)		-	ces within exorue splice sites	us or int	rons that resem	oie con	sensus splicing			
50.	Troch	ophore larva is		-	classes						
· - •	(A)	Amphineura d	-		(B)	Pelecypoda &	Scaph	opoda			
	(C)	Pelecvpoda &	-	-	(D)	Amphineura &	-	-			

Public Health(Ph.D)

		rublic ne	aim(Fii.D	')						
1.	What (A) (B) (C) (D)	is Gini Index: Measure of distribution of Income among households between countries Measure of distribution of Income among households within a country Measure of distribution of Income among households between States Measure of distribution of Income among households within States								
2.	(A) (B) (C) (D)	ulence index means Measurement of Obesity Measurement of BP Measurement of Cholesterol Measurement of Depression								
3.	AIDS (A) (B) (C) (D)	S-causing HIV identifies its target conference Gated Channels in the membrane Carbohydrates of Glycocalyx Apoproteins in the coated pits of Low density lipoproteins in cell recommendation.	es membrane	es						
4.	What (A) (B) (C) (D)	t is the use of Johari Window Studying health effects due to positive Studying the interpersonal relation Studying epidemiology Studying common health problem	ons							
5.	Salute (A) (B) (C) (D)	Is a type of disease Is a term used in Health System Is related with immunization Is a process of improvement in he	ealth							
6.		ch of the following would usually tency? One stage cluster sampling Simple random sampling Two stage cluster sampling Quota sampling	require th	ne smallest sample size because of its						
7.	Who (A) (C)	introduced the term 'stateless socie Paul Bohannan A. Powell	(B) (D)	E. Evans-Pritchard A. Giddens						
8.	What (A) (C)	t is the marriage of a widow to her d Widow marriage Polyandry	leceased h (B) (D)	usband's brother termed as? Sororate Levirate						
9.		t are the minimum number of rentage of LBW babies: 500 babies 10000 babies	(B) (D)	should be examined for calculating 1000 babies 100000 babies						

10.	The to (A) (B) (C) (D)	erm 'family size' refers to: Total number of female children bo Total number of persons in a family Total number of children a woman Average No of children a woman h	/ has bor	n at a point in time					
11.	Which (A) (C)	h of the following method is used for PERT Analysis NPP	contrac (B) (D)	eptive efficacy: Life Table Analysis PPV					
12.		h one is incorrect regarding, angle of injection during immunization: Intra-dermal injection:15° (BCG) Sub-cutaneous: 45° (Measles, MMI Sub- cutaneous: 45° (DPT, DT, TT, Intra-muscular: 90° (DPT, DT, TT,	R) , Hepati						
13.	Which (A) (B) (C) (D)	of the following is correct explanation of Gestational Age (SGA): As the 5% of Birth Weight at any given Gestational age As the 10% of Birth Weight at any given Gestational age As the 15% of Birth Weight at any given Gestational age As the 20% of Birth Weight at any given Gestational age							
14.	What (A) (B) (C) (D)	is Cycle Beads? Emergency Contraceptive Pills (EC Statistical Method used in MCH Hormonal Contraceptive Natural family planning method	CP)						
15.	Pome (A) (C)	eroy Technique is widely used in? Mini Pills Tubal ligation	(B) (D)	IUD Coitus interrupts					
16.	What (A) (B) (C) (D)	is Catch-Up Growth? Under growth, according to WHO g Higher than normal growth to recov Onset of growth in a growth curve Birth injury	_						
17.	What (A) (B) (C) (D)	are the recommendations of school h 1 Privy for 50 Children and 1 Urina 1 Privy for 100 Children and 1 Urina 1 Privy for 50 Children and 1 Urina 1 Privy for 150 Children and 1 Urina	al/40 Ch aal/60 C al/100 C	nildren Children Children					
18.	What (A)	is meant by 'Ring Vaccination'? Vaccine given around 100 meters o	f a dete	cted case					

	(B) (D)	Vaccine given around 100 yards of Vaccine given around 200 meters of Vaccine given around 200 yards of	f a detec	cted case
19.		ch is the major principle of medical cal professionals must act in the bes Justice Non-malfeasance		that states that physicians and other est of the patient? Autonomy Beneficence
20.	Xeno (A) (B) (C) (D)	graft is Transplant across species barriers A transplant of tissue from one to or Transplant between genetically iden Transplant from one individual to a	ntical (m	
21.	offer	· •	garette	or tobacco product) no person shall sell, or any other tobacco product in any One hundred meters One hundredth of a mile
22.	Which (A) (C)	h of the following is a nominal variab Blood sugar level Hemoglobin level	le? (B) (D)	Blood Type (A, B, AB & O) Severity (mild, moderate and severe)
23.		never the median is reported as the ble, the associated appropriate measur Range Interquartile Range		e of central tendency of a continuous persion is Variance Standard Deviation
24.		h of the following properties is ch bution? High Skewness Large mean	(B) (D)	istic of a variable following normal Small variance Symmetry about mean
25.		nvestigator wants to draw samples from. What sampling method would he of Stratified random sampling Systematic Sampling		roup of men and women separately at Simple random sampling Quota sampling
26.	One v (A) (B) (C) (D)	way ANOVA is used To compare the means of more than To compare several proportions To test for linear trend To compare ratio of two variances	ı two gr	oups
27.	The a (A) (C)	ssociation between two categorical va Scatter plot Dot plot	riables (B) (D)	is best shown in a Bar chart Cross – tabulation of two factors
28.	The e	equivalent nonparametric test for paire	d 't' tes	t is

	(A) (C)	Kruskal-Wallis test Median test			(B) (D)	Wilcoxon-signed rank test Sign test					
29.	The of meass (A) (B) (C) (D)	ures: The nonline How mutua The strength	ar relation lly exclusion of linea	onship		es (r, pearson'	s correl	ation coefficient			
30.	The a (A) (B) (C) (D)	Replace dots in scatter diagram by a straight line Measure extent of relationship between two variables Describe the relationship in straight line form that best describe it and enables prediction of one variable from the other									
31.	Which among the following study designs is effective, when the frequency of disease is low?										
	(A)	Cohort	(B)	Case control	(C)	Ecological	(D)	Descriptive			
32.	Whic (A)	h of the follow 7,8,9,10	ving sets (B)	of four number 5,5,5,5	s has th	ne smallest pos 0,0,10,10	sible sta (D)	andard deviation? 0,1,2,3			
33.	-	•		test was 72th udents received 65	-			rite the test then 72			
34.	Whice (A) (B) (C) (D)	It is reasona Free from p Economical	bly accurersonal but method				pling?				
35.	The b (A) (C)	oest sampling i Area sampli Purposive sa	ng	or sampling a p	opulati (B) (D)	on finite size: Systematic s Quota sampl		5			
36.	Whic (A) (C)	h of the follow It is an appl It is a surve	ied resea		Resea (B) (D)	rch'? It is a quantit It is a popula	•				
37.		write once rens concepts? Subject cent Task centere	tered sys	tems	(B) (D)	Database cer Multimedia	ntered sy				
38.		h scale measi tives? Likert Semantic di			meanin (B) (D)	gs of an attitu Summated ra Constant sun	ating	ect using bipolar			

39.		esearch study of med as:	carried (out with the hel	p of da	ta points (eith	er prima	ry or secondary)
	(A)	Conceptual	(B)	Observationa	1 (C)	Empirical	(D)	Action
40.	-	orimary objecti roblem confron Exploratory Causal resea	ting the	researcher.	(B) (D)	Conclusive r	esearch	
41.	Popul (A)	lation value is o Statistic	called _ (B)	Parameter	(C)	Variable	(D)	Core value
42.		t is called Thesis			ag betw (B) (D)	reen data colle Interim repo Article		d presentation of
43.	The g (A)	oal for univers 2011	al EHR (B)	adoption is	(C)	 2015	(D)	2014
44.		ssionals with de Electronic he	ecision ealth rec	making tasks?	(B)		ision sup	and other health
45.	Healt (A)	h information 1 HMMS	managei (B)	nent standards AHIMA	began w (C)	vith the establi CAHIIM	shment (D)	of the: ASHIM
46.	acros (A) (C)	s organizations Health inforr	within natics	s the mobiliza a region, comm echnology		r hospital syste Health infor	em? mation e	•
47.	amon	holders within g them for the	a defino purpose		area and lealth ar	l governs heal nd care in that	th infor	
48.	What (A) (B) (C) (D)	Systematised System nove	menclat I nomen I of med	and for? ure of medicine clature of medi dicine and clinic clature of medi	cine and cal term	d coding terms s		
49.	To a require (A) (B) (C)	res? Unique patie Patient ident	nt ident ificatior ge to th	ification system system e way the NHS	1	ectronic patie	nt recor	rds in the NHS

- **50.** Human metabonomics is the study of?
 - (A) Study of human metabolic responses to environmental changes
 - (B) Study of metabolic responses to drugs and diseases
 - (C) Study of metabolic responses to drugs, environmental changes and diseases
 - (D) Study of human metabolic responses to aging

Biotechnology(Ph.D.))

1.	Whic	ch activity defines Bioaugmentation									
	(A)	Addition of nutrients at the site of pollution									
	(B)	Degradation of toxic waste by resident microflora									
	(C)	Sequestration of heavy metal ions by bacteria									
	(D)	Introduction of specific bacterial species at the pollution site									
2.	Whic	ch of the following is not present in the cell wall of Gram negative bacteria									
	(A)	Peptidoglycan (B) Teichoic acid (C) Lipid A (D) Porins									
3.	Marl	k the incorrect combination									
	(A)	Biosafety level 1 Bacillus subtilis									
	(B)	Biosafety level 2 Mycobacterium tuberculosis									
	(C)	Biosafety level 3 Bacillus anthracis									
	(D)	Biosafety level 4 Ebola virus									
4.		Which of the following statements is incorrect									
	(A)	Milk is pasteurized at 62.8°C for 30 minutes									
	(B)	Pasteurization kills Coxiella burnetii									
	(C)	Pasteurization temperature depends on the heat resistance of <i>M.tuberculosis</i>									
	(D)	Pasteurisation increases the shelf life of milk									
5.	A po	lypeptide of 90kDa will be coded by a gene of the size									
	(A)	0.245 kb (B) 2.454 kb (C) 24.54 kb (D) 1.5 kb									
6.	Whic	Which of the following form the apoptosome complex									
	(A)	Cytochrome c, Apaf-1 and procaspase-8									
	(B)	Cytochrome c, Bcl-2 and procaspase-9									
	(C)	Cytochrome c, FasL and procaspase-9									
_	(D)	Cytochrome c Apaf-1, and procaspase-9									
7.		What does not hold true for <i>Cre/loxP</i> system used in generating transgenic animals									
	(A)	It causes large scale deletions in the chromosomes									
	(B)	It activates the transgene by removing DNA sequences flanked by loxP site									
	(C)	It can remove the selectable marker that is no longer needed									
	(D)	It creates a more efficient way to integrate useful transgene into the									
		chromosomes									
8.	Gene	etically modified papaya exhibits									
	(A)	Herbicide tolerance (B) Insect protection									
	(C)	Virus resistance (D) Early ripening									
9.		rinjal cultivation has been banned in									
	(A)	Canada (B) Bangladesh (C) India (D) Philippines									

10.	Which count		following	genetically	modified	crop is	cultivated	in maximum		
	(A)	Cotton	(B)	Maize	(C)	Rice	(D)	Soyabean		
11.	Natio	nal Green	Tribunal l	nas banned t	he use of p	olastic bag	below the	thickness of		
	(A) 4	0 micron	(B)	50 micron	(C)	60 micror	n (D)	80 micron		
12.	A bac	terial pop	ulation gro	wing expone	entially at	a specific	growth rate	e of 1.25 / h		
	will h	ave a gene	ration time	e of						
	(A)	0.55 h	(B)	0.65 h	(C)	0.85 h	(D)	1.55 h		
13.	The p	romoter f	or heterolo	gous gene hy	yperexpres	ssion in pl	ET28a plası	nid vector is		
	(A)	P _L promo	ter of lamb	da phage	(B)	trp prom	oter			
	(C)		promoter		(D)	lac promo				
14.				oli which m	utations a	llow bette	r yields and	l stability of		
		ecombinan endA1 an	_		(D)	aum A am a	l de a I			
	(A) (C)	rec A and			(B) (D)	gyrA and supF 44				
15.	` ′			ture with Tr	` ,	•		naration of		
13.	(A)			queous phase				paradon or		
	(B)	RNA in aqueous phase,DNA in interphase and proteins and lipids in organic								
	. ,	phase RNA in aqueous phase,DNA and proteins in interphase and lipids in organic								
	(C)	RNA in a phase	iqueous pha	ase,DNA and	proteins in	interphase	e and lipids	in organic		
	(D)			phase,DNA i	-	-	-	ous phase		
16.	_			associated v		of the fol	lowing			
	(A)									
	(B)	_	· ·	gans genome						
	(C)	Developing Expressed Sequence Tags (ESTs) Synthesis of the minimal bacterial genome								
15	(D)	•			C		e 1			
17.			_	situations NC			eful			
	(A)			NA samples for						
	(B)	-		ntial gene exp nissense muta			-			
	(C) (D)			esistance to ri						
18.	` '			has highest						
10.	(A)	Glycine,		nas inglicat a	(B)	Serine, gl	_			
	(C)	Serine, ly			(D)	Lysine, gl				
19.	` '	-		ir is wrongly	` /					
	(A)	IFN α		ocytes						
	(B)	IFN ß	Fibro	blasts						
	(C)	TNF a	Activ	rated T cells						

	(D)	CEA	Liver cells								
20.	Wha	ıt is not true	e for peroxisomes								
	(A)	In plants	and animal it is involve	ed in conve	rting fatty acids to sugars						
	(B)	In liver ce	ells it detoxifies toxic n	nolecules							
	(C)	It is self replicating membrane bound organelle									
	(D)	D) It imports proteins and lipids from cytosol									
21.	Whi	ch of the fol	lowing oncogenes is n	ot involve	d in signal transduction						
	(A)	src	(B) ki –ras	(C)	n - ras (D) jun						
22.	Mar	Mark the correct statement									
	(A)	•									
	(B)	another									
	(C)	The strength and specificity of DNA protein interaction can be adjusted by									
	(D)	changing the number of zinc fingers repeats Helix turn helix motif of bacterial gene regulatory proteins is often embedded in same structural context									
23.	Whi		tructural context lowing does not affect	the stabil	ity of mRNA						
	(A)		n of polyA tail to 100 re								
	(B)	Removal	Removal of 3' tail leading to decapping at 5'end								
	(C)	Nucleotide sequence at 5'UTR									
	(D)	Pyrimidine rich residues at 3' UTR									
24.	Whi	Which technique would be suitable to determine the transcription binding sites or									
	_	al scale		(D)	DNA fact minting						
	(A)	Deletion		(B)	DNA foot printing						
	(C)	•	nome sequencing	(D)	ChIP- seq						
25.	In <i>E</i> . (A)	In <i>E.coli</i> errors left after proof reading are removed by (A) MutS,MutL,MutH and DNA polymerase I									
	(B)	MutS,Mu	tL,MutH and DNA pol	ymerase II	I						
	(C)	MSH,ML	H and DNA polymeras	se I							
	(D)	Rec A,Re	c BCD,UMC and DNA	A polymera	se III						
26.	Puro	mycin whic	ch is commonly used in	n the studi	ies of protein translation, causes						
	(A)	Nonspeci	fic binding of aminoac	yl tRNA to	A site						
	(B)	Release o	f EF-G-GDP from ribo	some							
	(C)	Inhibition	of peptidyl tranferase	activity							
	(D)	Exit of gr	owing polypeptide cha	in from rib	osome						
27.	Whi	ch statemen	t is true for X Chrom	osome							

	(A)	-				ochromatized					
	(B)	•				rochromatized					
	(C)					tivated during	_				
••	(D)	-				ated on X Chr					
28.		set of four mi onse they will			ith high	dose of an a	ntıgen,ı	n the seconda	ary		
	(A)		_	genous antibo	dies main	ly IgG					
	(B)	·	_	genous antibo							
	(C)			genous antib		-					
	` ′					• 0					
	(D)			genous antibo		• •	_				
29.		Which of the following can activate classical complement cascade A) A single molecule of IgM bound to RBC									
	(A)										
	(B)	IgM molecules circulating in the serum A single molecules of IgG bound to the surface of RBC									
	(C)	_		•			c D D C				
• •	(D)		_			on the surface	of RBC				
30.		19, the UN cli					(D)	CI II			
	(A)	Germany	(B)	India	(C)	Brazil	(D)	Chile			
31.	_	ıli Amendmer		ne Montreal	protocol	relates to t	he regu	ılation of glo	bal		
		ning by phasir	ıg out		(D)	HODO					
	(A)	CFCs			(B)	HCFCs					
	(C)	HFCs			(D)	Methyl bron	nide				
32.	High	ly acid frits ar	e canno	ed in which t	ype of ste	eel cans					
	(A)	Type L	(B)	Type M	(C)	Type MC	(D)	Type MR			
33.	Bacte	erial spores ca	n be in	activated by	all except	t					
	(A)	Ethanol			(B)	Steam under	r pressu	re			
	(C)	Formaldehyo	de		(D)	Glutaraldeh	yde				
34.	Whic	ch type of mic	robial c	ontaminatio	n is diffic	ult to detect i	n contir	nuous cell line			
	(A)	Bacterial	(B)	Fungal	(C)	Yeast	(D)	Mycoplasma			
35.	Seru	m in cell cul	ture m	edium provi	ides horn	nones which	stimula	ate proliferati	ion		
	excep	ot one which in		-	promotes	differentiation	n				
	(A)	VEGF	(B)	FGF	(C)	TGFß	(D)	IGF II			
36.		uerkraut pro	duction	n, the seque	nce in w	hich differen	t bacte	ria do desiral	ble		
	-	entation is		tanaidas foll	awad by	Lactobacillu	g aumau	maria and th	.on		
	(A)	Lactobacillu			owed by	Laciobaciiia	s curcu	meris and u	nen		
	(B)		•		ved by L	actobacillus	pentoac	eticus and th	nen		
	, ,	Leuconostoc			-	,					
	(C)	Lactobacillu mesenteroid		followed by	Lactobaci	illus curcumei	is and	then Leuconos	toc		

(D) Leuconostoc mesenteroides followed by Lactobacillus pentoaceticus and then Lactobacillus curcumeris **37**. Patients with celiac disease should not eat Wheat (A) **Peanuts** (B) Corn (C) Rice (D) **38.** Which of the following food pathogens can survive at cold temperature Clostridium botulinum (B) Campylobacter jejuni (C) Listeria monocytogenes (D) Bacillus cereus 39. Mark the incorrect statement (A) Corn syrups add viscosity to confection due to its dextrin content Invert sugar retards crystallization of sucrose (B) Sorbitol is less sweet than sucrose and adds no calories (C) (D) Aspartame is sweeter then sucrose and adds no calories 40. Diphtheria toxin which is tagged to monoclonal antibody for targeted cancer therapy acts by ADP-ribosylation of eEF2 (A) (B) Adenylate cyclase cleavage (C) Uncoupling of electron transport chain (D) Blocking of transmission in peripheral nerves Mark the incorrect statement 41. (A) Tandem mass spectroscopy is used to determine peptide sequence Glycosylation or phosphorylation of protein can be identified by MALDI (B) (C) Mass spectroscopy cannot analyze metabolome The time of flight (TOF) for ions is directly correlated with mass to charge (D) ratio 42. Mark the incorrect statement Pyrosequencing involves sequencing by synthesis (A) (B) Next generation sequencing can be used for quantification of gene expression Deep sequencing of bisulfite treated DNA can be used to study global (C) methylation in cancer (D) Exome-sequencing is not suitable to detect mutations associated with tumor progression Most proteins have net positive charge at **43.** High Ph (A) (B) Low pH (C) In the presence of SDS (D) In the presence of mercaptoethanol 44. Which statement regarding yeast replicative plasmid is not true It is a high copy number plasmid (A) (B) It does not contains 2 µ plasmid origin of replication

(C)

It does not show mendelian segregation

	(D)	It gives the most stable maintenance of cloned gene							
45.		What is best option to express heterologous proteins efficiently in $E.coli$ when codon							
		can be a limitation							
	(A)	Using genetically modified host strain that expresses rare tRNAs							
	(B)	Genetically engineer the foreign gene to incorporate codons for more abundant tRNAs							
	(C)	Genetically engineer the gene to remove the codons for rare tRNAs							
	(D)	Grow the genetically modified host cells for longer time to make protein with rare							
16	1 1/1-1	codons							
46.	(FRE	ch of the following techniques is based on Forster Resonance Energy transfer							
	(A)	Multiplex PCR							
	(B)	Taq man PCR							
	(C)	Surface Plasmon Resonance							
	(D)	Fourier transform infrared spectroscopy							
47.	Whic	ch statement is not true for CRISPR Technology							
	(A)	It is a kind of adaptive immunity in bacteria							
	(B)	It works exclusively in bacteria							
	(C)	It is based on RNA guided sequence specific DNA cleavage							
	(D)	It is a powerful tool for making knock outs							
48.	In re	everse phase HPLC sample is purified by usingstationary phase andmobile phase							
	(A)	Hydrophilic, non polar (B) Hydrophilic, polar							
	(C)	Hydrophobic, non polar (D) Hydrophobic, polar							
49.	All th	he statements given below are correct except							
	(A)	Sec pathway transports proteins from the cytoplasm to outside cell in two							
		steps							
	(B)	Transportation of inner membrane proteins require sequences specific for							
		signal recognition particle (SRP)							
	(C)	Only unfolded protein containing two arginines in their signal peptide go							
		through TAT pathway							
	(D)	TAT pathway is important for virulence in pathogens							
50.	Yeas	t two hybrid system cannot be used to study							
	(A)	Protein - Protein interaction (B) Protein - RNA interaction							

Loss of Protein - Protein interaction (D)

(C)

Loss of DNA- protein interaction

Forensic Science(Ph.D.)

1.	In fore	ensic science the	e most i	reliable form of	eviden	ce is		
	(A)	Blood	(B)	Weapon	(C)	Clothes	(D)	Eye witness
2.	Which	of the following	ng indiv	riduals is know	n as the	"Father of For	ensic To	oxicology"?
	(A)	R. A. Riess			(B)	Edmond Loca		
	(C)	Calvin Godda	ırd		(D)	Mathieu Orfil	a	
3.		vas first to advo	ocate the	e application of			_	ion?
	(A)	Hans Gross			(B)	Alphonse Ber		
	(C)	Paul Kirk			(D)	August Vollm	ner	
4.	In India the first State Forensic Science laboratory was established at							
	(A)	Calcutta, 1952	2		(B)	Mumbai, 1955		
	(C)	Delhi, 1952			(D)	Hyderbabad,		
5. Which of the following is the preferred way to identify a					tify a deceased	person)	
	(A) Visual inspection (B) Tattage							
	(B) Tattoos(C) Examination of teeth, surgical records							
	(D) Surgical scars							
	` ´	C		anatany vyag ag	ta hli aha	d in Chimle in	***	
6.	(A)	ate forensic sci 1986	(B)	ooratory was es 1987	(C)	a in Snimia in 1988	year (D)	1989
7	` ´		` /		` ′		` /	
7.	(A)	rm 'self-loading Semi-automat		• •	(B)	Double-action		_
	(A) (C)	Single-action	-		(D)	Automatic pis		JI
8.		· ·			` '	•		ot residues? (A)
0.	VV IIICII	Microspectron	_		y SC 101	the presence of	i guiisiid	ot residues: (A)
	(B)	Refractive ind		•				
	(C)	Polarized ligh	t micros	scopy				
	(D)	Scanning elec	ctron mi	croscopy used	in conj	unction with e	energy d	ispersive X-ray
		analysis						
9.			ing is	characteristic of	of genu	ine signatures	(as opp	posed to forged
	signatu	<i>'</i>			(D)		• •	
	(A)	Pen strokes w			(B)	Pen strokes w	-	ang ends
	(C)	Evidence of re		C	(D)	Unnatural pen		
10.		probability of b	C	7 1		1	of blood	type O is
		s the probability	-	_	• -		(D)	1/16
	(A)	5/8	(B)	1/8	(C)	1/2	(D)	1/16

11.	The phase in the growth cycle of an individual hair in which the hair is actively growing is known as the:								
	(A)	Anaphase	(B)	Catagen phase					
	(C)	Telogen phase	(D)	Anagen phase					
12.	The f	inal breakthrough for the fingerprint n	nethod o	of personal identification was made by:					
	(A)	Sir Francis Galton	(B)	Joseph Faurot					
	(C)	William Herschel	(D)	Edward Henry					
13.			nical m	ethod of choice for visualizing latent					
	prints		(D)	* 1					
	(A)	Silver nitrate	(B)	Iodine					
	(C)	Chlorate	(D)	Ninhydrin					
14.		hree basic types of fingerprint pattern		Loons and whoda					
	(A) (C)	Aarches, loops and rings Whorls, arches and accidentals	(B) (D)	Loops, arches and whorls Whorls, accidentals and loops					
15.		rant zone method of crime scene inves	, ,	-					
13.			_						
	(A) (C)	Indoor crime scene Automobile crime scene	(B) (D)	Outdoor crime scene Blast site					
1.0	, ,		. ,						
16.		Blood or buccal swabs for DNA analysis are to be taken from any consensual partner having sex with the victim within hours following intercourse.							
	(A)	24 hours (B) 36 hours	(C)	48 hours (D) 72 hours					
17.	, ,	acid phosphatase screening test is used	` ′						
17.	(A)	Sweat (B) Semen	(C)	Blood (D) Saliva					
18.	Whic	h of the following best defines rigor m	ortis?						
	(A)	This is the body cooling after death		Livor mortis					
	(C)	Postmortem rigidity	(D)	Postmortem medical examination					
19.	Whic	h of the following physiological	fluids	would be expected to have a high					
	conce	entration of the enzyme amylase?							
	(A)	Urine (B) Sweat	(C)	Semen (D) Saliva					
20.	Whic	h of the following is not a presumptive	e test fo						
	(A)	Acid phosphatase test	(B)	Luminol test					
	(C)	Kastle-Meyer test	(D)	Leuco-malachite green test					
21.		nol reagent reacts with blood in the press known as:	resence	of peroxide to emit light by a chemical					
	(A)	Fluorescence	(B)	Chemiluminescence					
	(C)	Coagulation	(D)	Illumination					
22.	The c	condition characterised by the absence	e of spe	erm cells in the seminal fluid is known					
	as:								

	(A) (C)	Hypospermi Oligospermi			(B) (D)	Hypersperi Azoospern			
23.	prelin	ninary color te		her or not a s as the Kastle-N	Aeyer co	lor test, whic		e by means of a chemical:	
	(A)	p30			(B)	Benzidine	1 .		
	(C)	Precipitin			(D)	Phenolphth	nalein		
24.	•			to determine:		_		_	
	(A)	Age	(B)	Sex	(C)	Race	(D)	Stature	
25.	-	rties of evider e of certainty		can be attribut	ed to a c	common sour	ce with a	n extremely high	
	(A)	Individual c			(B)		Referent characteristics		
	(C) Comparison characteristics			(D)	Class chara	acteristics			
26.	How much seminal fluid does the normal male release during an ejaculation?								
	(A)	2.5 ounces			(B)	6 pints			
	(C)	1 milliliter			(D)	2.5 to 6 mi	lliliters		
27.	Cheile	oscopy is the s	study of						
	(A)	Lips	(B)	Eyes	(C)	Ears	(D)	Nose	
28.	In the	ABO system,	, blood g	roup 'O' is cha	racterise	ed by the:			
	(A)	Presence of	antigen .	A and the abse	ence of a	ntigen B			
	(B)	Presence of both antigen A and antigen B							
	(C)	_							
	(D)	Absence of	both anti	igen A and ant	igen B				
29.	The ic	The ideal place to record the temperature of dead body is							
	(A)	Rectum	(B)	Axilla	(C)	Mouth	(D)	Groin	
30.	Diato	ms in bone ba	rrow are	seen in death	due to:				
	(A)	Strangulatio	n		(B)	Drowning			
	(C)	Electrocutio	n		(D)	Asphyxia			
31.	Specia	mens for toxic	cological	evaluation sh	ould be p	preserved in			
	(A)	10 % Forma	ldehyde		(B)	Alcohol			
	(C)	Normal Sali	ne		(D)	Saturated so	olution of	common salt	
32.	All of	f the followin	g are ite	ems to be coll	lected fr	om a deceas	ed's body	and sent to the	
	forens	sic laboratory	except:				•		
	(A)	Head and pu	ıbic hair	S	(B)	Ocular fluid			
	(C)	Blood			(D)	Fingernail	scrapings		
33.	Based	on a mathe	ematical	calculation b	y Victo	or Balthazard	l, the pro	obability of two	
	indivi	duals having t	the same	fingerprints is	s one out	of:			
	(A)	1 x 10 to the	e 30th po	ower	(B)	1 x 10 to th	ne 60th po	ower	

	(C)	1 x 10 to the	100th p	ower	(D)	1 x 10 to the	90th po	wer
34.	The c	ommon habit fo	orming	drug is				
	(A)	Nicotine	(B)	Alcohol	(C)	Opium	(D)	Heroin
35.	Huffi	ng is common i	n:					
	(A)	Psychedelic a	buse		(B)	Solvent abuse	е	
	(C)	Ether abuse			(D)	Smack depen	dence	
36.	Horiz	ontal ligature m	ark in t	the neck is seen	in			
	(A)	Throttling			(B)	Hanging		
	(C)	Choking			(D)	Strangulation	by liga	ture
37.	_	ocere is formed						
	(A)	Putrefaction of						
	(B)	•		eles and subcuta		at		
	(C)			bcutaneous tiss	ues			
	(D)	_		ocutaneous fat				
38.		hild would have				•		
	(A)	20	(B)	16	(C)	24	(D)	12
39.	The fo	ollowing bones	are use	ful in determina	ation of	stature:		
	(A)	Fibula and Pi	siform		(B)	Radius and T	alus	
	(C)	Femur and Ul	lna		(D)	Humerus and	Hyoid	
40.	The te	echnique comm	only us	ed for comparis	son of ir	nk sample is:		
	(A)	Gas chromatography				Thin layer ch	romato	graphy
	(C)	X-ray diffract	ion		(D)	Infra red spec	etroscop	by
41.	The re	eport of fake cu	rrency	note is admissil	ole as ev	vidence in cour	t under	:
	(A)	IPC292	(B)	IEA-292	(C)	CrPC-292	(D)	CPC-292
42.	A file	placed on a con	mputer'	s hard disk driv	e by W	ebsites the use	r has vi	sited are called:
	(A)	Firewall	(B)	Bookmarks	(C)	Caches	(D)	Cookies
43.	Which	h of the followi	ng toxii	ns comes from	the casto	or oil plant?		
	(A)	Strychnine	(B)	Ricin	(C)	Atropine	(D)	Digitalin
44.	Who	propounded the	'princi	ple of exchange	e'?			
	(A)	Francis Galto	_		(B)	Edmond Loca	ard	
	(C)	Hans Gross			(D)	Alphonse Ber	rtillon	
45.	A par	ticular SNP loc	cus can	be A. C or T.	How n	nany genotypes	s can b	e expected to be
	-	in the population				, <i>B</i> , F		
	(A)	3	(B)	6	(C)	12	(D)	9
46.	A PC	R reaction that	continu	ies for 30 cycle	s will n	roduce approx	imatelv	how many PCR
		cts from a singl		-	-	Tr -	·J	, , , , , , , , , , , , , , , , , , ,

47.	47. The Y-STR's utility in the forensic sciences is that:										
	(A)	The frequency	of occ	curren	ce in th	e general	population	is very sma	11		
	(B)	It is shorter by	six ba	ises or	the Y	chromoso	ome then the	e X chromo	some		
	(C)	Replication of									
	(D)	It originates o									
48.	humai this lo	netic locus that in leukocyte antipocus known as alleles?	igen lo	cus kn	own as	HLA-DO	Q alpha. Th	ere are four	· majo	or allele	es at
	(A)	8	(B)	10		(C)	12	(D)	16		
49 .	Using	the equation gi	ven be	low,							
					$W \approx$	$\frac{d^3}{16}$					
		ate the approxi bomb containir						-		-	
	•	ams and d is the	-	_	-			_		_	-
	(A)	5 m	(B)	20 n		(C)	15 m	(D)	10 n		
50.		main technique erants is:	used	to a	nalyse	samples	suspected	of contain	ning	liquid	fire
	(A)	Atomic absorp	ption sp	pectro	scopy	(B)	Gas chron	natography			
	(C)	X-ray diffract	ion			(D)	Ultraviole	et-visible sp	ectros	scopy	
					x-x	<i>c-x</i>					

(B)

(D)

128,000

Approximately 1 billion

(A)

(C)

64

Approximately 1 million

$Microbial\ Biotechnology (Ph.D.)$

1.		terium weighs one fen continuously for 24 hr 1.00 kg 100.00kg 1000.00 Tons More than the weight	rs, with same d		_		_
2.	Use of A)	f agar as a solidifying a F. E.Hesse B)	agent for nutrie R. Koch	nt medi	a was given by L. Pasteur	D)	J. Lister
3.	In S.a betwee A) B) C) D)	ureus cell wall, penta en D-Ala of one peptide D-Ala of one peptide L-Ala of one peptide D-Ala of one peptide	and D-Lys of s and L-Lys of s	second pecond pecond p	peptide peptide peptide	eptides.	This joining is
4.	A) B) C)	f the components invol MS and C rings MS and L rings MS and P rings P,L and C rings	lved in flagella	r mover	nent is called F	Rotor. It	is made up of
5.	Most 1 A) C)	microbes die if the inte Below 5.0-5.5 Above 7.58.0	rnal pH drops/	rises B) D)	6.0-6.20 Above 7.6 -8	.3	
6.	Appro A) B) C) D)	10 minutes at 80°C at 10 minutes at 80°C minutes at 70°C at 10 minutes at 70°C.		ng of ye	easts and molds	s are	
7.	Using A) C)	glyoxylate cycle, bacto Oxaloacetate Malate	eria converts ac	cetylCo B) D)	A into an end p Succinate Pyruvate	product ?	known as
8.	Pasteu A) B) C) D)	Pathogenic microbes Undesirable microbes All vegetative forms Undesirable microbes	in milk s in milk of microbes in	_	sample		

9.	 The starting material for biosynthesis of Penicillin by <i>Penicilliumchrysogenum</i> is D-alpha-Aminoadipic acid, L-Cysteine, L-Valine 							
	A) B)	D-alpha-Aminoadipic acid, L-Cyste						
	C)	L-alpha-Aminoadipic acid, D-Cyste						
	D)	L-alpha-Aminoadipic acid, L-Cystei						
	D)	L-aipiia-7 minoadipie acid, L-Cystei	iic, L- v	diffic				
10.			ne simu	ltaneous involvement of two microbial				
		s (Plus and Minus)	D)	Clutomic soid				
	A)	Monosodium glutamate	B)	Glutamic acid				
	C)	Beta-Carotene	D)	Vitamin B ₁₂				
11.	11. Coagulation of milk is an important step in the production of Cheese. Coagulum is formed by the degradation of which type of casein.							
	A)	Kappa	B)	Beta				
	C)	Alpha	D)	Epsilon				
12	One o	f the important SCPs is <i>Spiruling max</i>	rima Fo	or its biomass production, the source of				
1-		n as nutrient is	inica. 1	of its bromass production, the source of				
	A)	CO_2	B)	Whey				
	C)	Molasses	D)	Rice straw				
13	13. Which of the following molecule does not have enzymatic activity							
13	A)	· · · · · · · · · · · · · · · · · · ·						
	C)	Tissue plasminogen activator	D)	Nonase				
	C)	rissue plasifillogen activator	D)	Nonasc				
14	For the	-	TP as t	the staring material, the sequence of				
	A)	Cyclohydrolase, Reductase, Deamin	ase, and	d Synthase				
	B)	Cyclohydrolase, Deaminase, Reduct	ase and	Synthase				
	C)	Oxidase, Deaminase, Reductase and	Syntha	ase				
	D)	Oxygenase, Deaminase, Reductase a	and Syn	ıthase				
15.	What	type of bonds in Starch are cleaved by	/ Gluco	amylase (EC 3.2.1.3)				
	A)	Alpha 1,4 and alpha 1,6	B)	Beta 1,4 and beta 1,6				
	C)	Alpha 1,4 and beta 1,6	D)	Beta 1,4 and alpha 1,6				
16	Vonill	in can be synthesized from Conssisin	using f	Collowing angumes				
10	A)	in can be synthesized from Capsaicin	_	<u> </u>				
		Pen G Acylase and Vanillyl alcohol						
	B)	Pen G Acylase and Vanillyl alcohol Capinase and Vanillyl alcohol oxida		isc				
	C)	Capinase and Vanillyl alcohol reduc						
	D)	Capinase and vaning alcohol feduc	aise					
17	. Tick t	he most appropriate statement						
	A)	Secondary Metabolites arise fro Metabolites	m ma	jority of precursors from Primary				

	B)	Secondary Metabolites arise from Metabolites	limited	I number of p	recursoi	rs from Primary	
	C)	Secondary Metabolites arise from o	nly 2-C	arhon Primary	Metabo	lites	
	D)	Secondary Metabolites arise from o	-				
18.	. Indigo	dye used for coloring jeans can be	synthes	ized from Tryp	otophan	using following	
	enzym						
	A)	Glycinase and Xylene oxidase					
	B)	Tryptophanase and Phenol oxidase					
	C)	Glycinase and Indi oxidase					
	D)	Tryptophanase and Xylene oxidase					
19.	. Which	n of the following bacteria is the most	t crucial				
	A)	Nitrogen fixing bacteria	B)	Carbon fixing	g bacter	ia,	
	C)	Phosphorus fixing bacteria	D)	ATP generati	ng bact	eria	
20.	. Which	of the following organism has fastes	st speed	of movement.			
	A)	Mycobacterium tuberculosis	B)	Escherichia c	roli		
	C)	Man	D)	Leopard			
21.	Shine-	Dalgarno sequence is					
	A)	Found in 23S rRNA, that binds to p	urine ri	ch sequence in	mRNA		
	B)	Found in 16S rRNA, that binds to pyrimidine rich sequence in mRNA					
	C)	Found in 5SrRNA, that binds to pyr					
	D)	Found in 28S rRNA, that binds to p	urine ri	ch sequence in	mRNA		
22.	. Туре I	II Restriction endonucleases are enzy	mes tha	t			
	A)	Recognize specific sequences, cle		NA within or	near re	ecognized DNA	
	D)	sequence and require Mg ²⁺ as a cofe Restrict/destroy the endonucleases		in autonloom			
	B) C)	Remove the bases from the ends of	-	• •	a ta pr a	duca blunt ander	
	C)	means to allow ligation of two DNA			e to pro	duce bluff ellus,	
	D)	Degrade ssRNA genome of retrovir					
23.	A 1500	Obp DNA can code for amin	no acid	long polypeptid	le chain		
	A)	300 B) 333	C)	500	D)	433	
	ŕ	,	,		2)	155	
24.	. Most c	common modification found in nucle	otide ba				
	A)	O-glycosylation	B)	Methylation			
	C)	Sulfation	D)	Nitrosylation			
25.	RNA i	is chemicallyreactive as		ed to DNA due	e to		
	A)	More, presence of extra hydroxyl g	-				
	B)	Less, presence of extra hydrogen at	om				
	C)	More, presence of extra nitrosyl					
	D)	Less, presence of benzene ring					

26.	β_2 micr A)	oglobulin is as MHC I	ssociated B)	l with MHC II	C)	TCR	D)	IgG
			,		,		,	\mathcal{E}
27.	Clostri A)	dium difficiless Antibiotic-ass		ssociated with	B)	Tetanus		
	C)	Endocarditis	socialeu	diaiiiioea	D)	Catheterinfec	tions	
	<i>C)</i>							
28.							surface o	of infected cells,
				ollowing recept				CD 00
	A)	CD 4	B)	CD 8	C)	CD 16	D)	CD 32
29.	Which	of the following	ng disea	ses is an intoxi	cation a	nd not infectio	n?	
	A)	Staphylococc	_		B)	Tetanus		
	C)	Shigellosis	•	C	D)	Diphtheria		
30.	A gern	nline B lymph	ocyte po	ssesses 250 di	stinct V	region genes,	4 J reg	ion genes and 2
							istinct i	diotypes can be
	_		_	combines with		-		
	A)	2000	B)	500	C)	8	D)	1000
21	Docillo	ry dysantary is	agamma	nly ongod by				
31.	A)	ry dysentery is <i>Clostridium</i> s		only caused by	B)	Salmonella sp	20	
	C)	Entamoeba hi		7	D)	Shigella spp.	<i>р</i> р.	
	C)	Епитосои п	isioiyiicc	ı	D)	Snigena spp.		
32.	Phagod	evtosis involve	s all the	se steps except				
	A)	Cytoskeletal 1			B)	Binding of TO	CR-CD3	}
	C)	Oxidative kill	_		D)	Recognition of		
33.			owing c	ells does not	t exhib	it antibody-de	ependen	t cell-mediated
	cytotox	•	D)	NIIZ 11	C)	M 1	D)	NT 4 1.11
	A)	B cells	B)	NK cells	C)	Macrophages	D)	Neutrophils
34.	Admin	istration of ant	ti-tetanu:	s serum is an e	xample	of	immuni	tv
		Natural, passi				Natural, activ		J
	C)	Artificial, pas			D)	Artificial, acti	ive	
35.	Rheum			mune disease a	associate			
	A)	Staphylococc		all	B)	Mycobacteria		
	C)	Fungal cell w	all		D)	Streptococcal	cell wa	11
26	W/h: a1-	of the faller-	n a nai a = =	shoo io on abli-	oto int		409	
30.		Mycobacteriu	_	bes is an oblig		acenular parası <i>Mycobacteriu</i>		egulosis
	A) C)	Shigellaflexne			B) D)	<i>Clostridiumpe</i>		
	<i>C)</i>	Snigenajiezh	er i		D)	Ciosiriaiumpe	erjringe	1113
37.	The on	ly carbohydrat	te which	is not having a	any chir	al carbon atom	ı is	
	A)	Glyceraldehy			B)	Erythose	- 10	
		-				-		

38. Histones are rich in A) Lysine B) Alanine C) Histidine D) Lysine and Arginine 39. Which of the following methods would be most appropriate for sterilizing an antibiotics solution? A) Dry heat sterilization B) Microfiltration C) Autoclaving D) Desiccation 40. The reserved food materials of green algae is A) Laminaria B) Chrysolaminaria C) Floridian starch D) Starch 41. The magnitude of BOD of wastewater is related to A) Bacterial count B) Amount of organic materials C) Amount of inorganic materials D) Fungal count 42. Which were the investigators live at the same times A) Koch and Pasteur B) Darwin and Woese C) Van Leeuwenhoek and Ricketts D) Berg and Hooke 43. Yeasts cells are good source of A) Vitamins A and B B) Vitamins A and D C) Vitamins B and D D) Vitamins A and C 44. The floating and drifting microbes are called A) Zooplanktons B) Benthos C) Planktons D) Limnos 45. The major carrier of Salmonellosis are A) Meat and eggs B) Meat and fish C) Eggs and fruits 46. In which year "The Biological Diversity Act" was enacted in India A) 2004 B) 2002 C) 2005 D) 2016 47. Which of the following is not a type of copyright work? A) Engine Design B) Musical Work C) Literary D) Art 48. The term for patent protection under Indian Patent Act is: A) 15 Years B) 60 Years C) 20 Years D) 35 Years 49. What prominent amendment was made in The Patent Act, in 2005 A) Parallel importation B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology		C)	Dihydroxyacetone	D)	Erythrulose
A) Lysine C) Histidine B) Alanine C) Histidine D) Lysine and Arginine 39. Which of the following methods would be most appropriate for sterilizing an antibiotics solution? A) Dry heat sterilization B) Microfiltration C) Autoclaving D) Desiccation 40. The reserved food materials of green algae is A) Laminaria B) Chrysolaminaria C) Floridian starch D) Starch 41. The magnitude of BOD of wastewater is related to A) Bacterial count B) Amount of organic materials C) Amount of inorganic materials D) Fungal count 42. Which were the investigators live at the same times A) Koch and Pasteur B) Darwin and Woese C) Van Lecuwenhock and Ricketts D) Berg and Hooke 43. Yeasts cells are good source of A) Vitamins A and B B) Vitamins A and D C) Vitamins B and D D) Vitamins A and C 44. The floating and drifting microbes are called A) Zooplanktons B) Benthos C) Planktons D) Limnos 45. The major carrier of Salmonellosis are A) Meat and eggs B) Meat and fish C) Eggs and fruits 46. In which year "The Biological Diversity Act" was enacted in India A) 2004 B) 2002 C) 2005 D) 2016 47. Which of the following is not a type of copyright work? A) Engine Design B) Musical Work C) Literary D) Art 48. The term for patent protection under Indian Patent Act is: A) 15 Years B) 60 Years C) 20 Years D) 35 Years 49. What prominent amendment was made in The Patent Act, in 2005 A) Parallel importation B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology	38.	. Histon	es are rich in		
39. Which of the following methods would be most appropriate for sterilizing an antibiotics solution? A) Dry heat sterilization B) Microfiltration C) Autoclaving D) Desiccation 40. The reserved food materials of green algae is A) Laminaria B) Chrysolaminaria C) Floridian starch D) Starch 41. The magnitude of BOD of wastewater is related to A) Bacterial count B) Amount of organic materials C) Amount of inorganic materials D) Fungal count 42. Which were the investigators live at the same times A) Koch and Pasteur B) Darwin and Woese C) Van Leeuwenhoek and Ricketts D) Berg and Hooke 43. Yeasts cells are good source of A) Vitamins A and B B) Vitamins A and D C) Vitamins B and D D) Vitamins A and C 44. The floating and drifting microbes are called A) Zooplanktons B) Benthos C) Planktons D) Limnos 45. The major carrier of Salmonellosis are A) Meat and eggs B) Meat and fish C) Eggs and fruits D) Eggs and fruits 46. In which year "The Biological Diversity Act" was enacted in India A) 2004 B) 2002 C) 2005 D) 2016 47. Which of the following is not a type of copyright work? A) Engine Design B) Musical Work C) Literary D) Art 48. The term for patent protection under Indian Patent Act is: A) 15 Years B) 60 Years C) 20 Years D) 35 Years 49. What prominent amendment was made in The Patent Act, in 2005 A) Parallel importation B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology				B)	Alanine
solution? A) Dry heat sterilization B) Microfiltration C) Autoclaving D) Desiccation 40. The reserved food materials of green algae is A) Laminaria B) Chrysolaminaria C) Floridian starch D) Starch 41. The magnitude of BOD of wastewater is related to A) Bacterial count B) Amount of organic materials C) Amount of inorganic materials D) Fungal count 42. Which were the investigators live at the same times A) Koch and Pasteur B) Darwin and Woese C) Van Leeuwenhoek and Ricketts D) Berg and Hooke 43. Yeasts cells are good source of A) Vitamins A and B B) Vitamins A and D C) Vitamins B and D D) Vitamins A and C 44. The floating and drifting microbes are called A) Zooplanktons B) Benthos C) Planktons D) Limnos 45. The major carrier of Salmonellosis are A) Meat and eggs B) Meat and fish C) Eggs and fruits D) Eggs and fruits 46. In which year "The Biological Diversity Act" was enacted in India A) 2004 B) 2002 C) 2005 D) 2016 47. Which of the following is not a type of copyright work? A) Engine Design B) Musical Work C) Literary D) Art 48. The term for patent protection under Indian Patent Act is: A) 15 Years B) 60 Years C) 20 Years D) 35 Years 49. What prominent amendment was made in The Patent Act, in 2005 A) Parallel importation B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology		•	•		
A) Dry heat sterilization C) Autoclaving D) Desiccation 40. The reserved food materials of green algae is A) Laminaria B) Chrysolaminaria C) Floridian starch D) Starch 41. The magnitude of BOD of wastewater is related to A) Bacterial count B) Amount of organic materials C) Amount of inorganic materials D) Fungal count 42. Which were the investigators live at the same times A) Koch and Pasteur B) Darwin and Woese C) Van Leeuwenhoek and Ricketts D) Berg and Hooke 43. Yeasts cells are good source of A) Vitamins A and B B) Vitamins A and D C) Vitamins B and D D) Vitamins A and C 44. The floating and drifting microbes are called A) Zooplanktons B) Benthos C) Planktons D) Limnos 45. The major carrier of Salmonellosis are A) Meat and eggs B) Meat and fish C) Eggs and fruits C) Eggs and fruits C) Eggs and fruits C) Eggs and fruits C) Literary D) Art 48. The term for patent protection under Indian Patent Act is: A) 15 Years B) 60 Years C) 20 Years D) 35 Years 49. What prominent amendment was made in The Patent Act, in 2005 A) Parallel importation B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology	39.			most a	ppropriate for sterilizing an antibiotics
40. The reserved food materials of green algae is A) Laminaria B) Chrysolaminaria C) Floridian starch D) Starch 41. The magnitude of BOD of wastewater is related to A) Bacterial count B) Amount of organic materials C) Amount of inorganic materials D) Fungal count 42. Which were the investigators live at the same times A) Koch and Pasteur B) Darwin and Woese C) Van Leeuwenhoek and Ricketts D) Berg and Hooke 43. Yeasts cells are good source of A) Vitamins A and B B) Vitamins A and D C) Vitamins B and D D) Vitamins A and C 44. The floating and drifting microbes are called A) Zooplanktons B) Benthos C) Planktons D) Limnos 45. The major carrier of Salmonellosis are A) Meat and eggs B) Meat and fish C) Eggs and fruits D) Eggs and fruits 46. In which year "The Biological Diversity Act" was enacted in India A) 2004 B) 2002 C) 2005 D) 2016 47. Which of the following is not a type of copyright work? A) Engine Design B) Musical Work C) Literary D) Art 48. The term for patent protection under Indian Patent Act is: A) 15 Years B) 60 Years C) 20 Years D) 35 Years 49. What prominent amendment was made in The Patent Act, in 2005 A) Parallel importation B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology				B)	Microfiltration
40. The reserved food materials of green algae is A) Laminaria B) Chrysolaminaria C) Floridian starch D) Starch 41. The magnitude of BOD of wastewater is related to A) Bacterial count C) Amount of inorganic materials D) Fungal count 42. Which were the investigators live at the same times A) Koch and Pasteur B) Darwin and Woese C) Van Leeuwenhoek and Ricketts D) Berg and Hooke 43. Yeasts cells are good source of A) Vitamins A and B B) Vitamins A and D C) Vitamins B and D D) Vitamins A and C 44. The floating and drifting microbes are called A) Zooplanktons B) Benthos C) Planktons D) Limnos 45. The major carrier of Salmonellosis are A) Meat and eggs B) Meat and fish C) Eggs and fruits D) Eggs and fruits 46. In which year "The Biological Diversity Act" was enacted in India A) 2004 B) 2002 C) 2005 D) 2016 47. Which of the following is not a type of copyright work? A) Engine Design B) Musical Work C) Literary D) Art 48. The term for patent protection under Indian Patent Act is: A) 15 Years B) 60 Years C) 20 Years D) 35 Years 49. What prominent amendment was made in The Patent Act, in 2005 A) Parallel importation B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology		•	•	,	
A) Laminaria C) Floridian starch D) Starch 41. The magnitude of BOD of wastewater is related to A) Bacterial count C) Amount of inorganic materials D) Fungal count 42. Which were the investigators live at the same times A) Koch and Pasteur B) Darwin and Woese C) Van Leeuwenhoek and Ricketts D) Berg and Hooke 43. Yeasts cells are good source of A) Vitamins A and B B) Vitamins A and D C) Vitamins B and D D) Vitamins A and C 44. The floating and drifting microbes are called A) Zooplanktons B) Benthos C) Planktons D) Limnos 45. The major carrier of Salmonellosis are A) Meat and eggs B) Meat and fish C) Eggs and fruits D) Eggs and fruits 46. In which year "The Biological Diversity Act" was enacted in India A) 2004 B) 2002 C) 2005 D) 2016 47. Which of the following is not a type of copyright work? A) Engine Design B) Musical Work C) Literary D) Art 48. The term for patent protection under Indian Patent Act is: A) 15 Years B) 60 Years C) 20 Years D) 35 Years 49. What prominent amendment was made in The Patent Act, in 2005 A) Parallel importation B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology		C)	Autociaving	D)	Desiceation
C) Floridian starch 41. The magnitude of BOD of wastewater is related to A) Bacterial count B) Amount of organic materials C) Amount of inorganic materials D) Fungal count 42. Which were the investigators live at the same times A) Koch and Pasteur B) Darwin and Woese C) Van Leeuwenhoek and Ricketts D) Berg and Hooke 43. Yeasts cells are good source of A) Vitamins A and B B) Vitamins A and D C) Vitamins B and D D) Vitamins A and C 44. The floating and drifting microbes are called A) Zooplanktons B) Benthos C) Planktons D) Limnos 45. The major carrier of Salmonellosis are A) Meat and eggs B) Meat and fish C) Eggs and fruits 46. In which year "The Biological Diversity Act" was enacted in India A) 2004 B) 2002 C) 2005 D) 2016 47. Which of the following is not a type of copyright work? A) Engine Design B) Musical Work C) Literary D) Art 48. The term for patent protection under Indian Patent Act is: A) 15 Years B) 60 Years C) 20 Years D) 35 Years 49. What prominent amendment was made in The Patent Act, in 2005 A) Parallel importation B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology	40.	The re		.S	
41. The magnitude of BOD of wastewater is related to A) Bacterial count B) Amount of organic materials C) Amount of inorganic materials D) Fungal count 42. Which were the investigators live at the same times A) Koch and Pasteur B) Darwin and Woese C) Van Leeuwenhoek and Ricketts D) Berg and Hooke 43. Yeasts cells are good source of A) Vitamins A and B B) Vitamins A and D C) Vitamins B and D D) Vitamins A and C 44. The floating and drifting microbes are called A) Zooplanktons B) Benthos C) Planktons D) Limnos 45. The major carrier of Salmonellosis are A) Meat and eggs B) Meat and fish C) Eggs and fruits D) Eggs and fruits 46. In which year "The Biological Diversity Act" was enacted in India A) 2004 B) 2002 C) 2005 D) 2016 47. Which of the following is not a type of copyright work? A) Engine Design B) Musical Work C) Literary D) Art 48. The term for patent protection under Indian Patent Act is: A) 15 Years B) 60 Years C) 20 Years D) 35 Years 49. What prominent amendment was made in The Patent Act, in 2005 A) Parallel importation B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology				,	•
A) Bacterial count C) Amount of inorganic materials D) Fungal count 42. Which were the investigators live at the same times A) Koch and Pasteur B) Darwin and Woese C) Van Leeuwenhoek and Ricketts D) Berg and Hooke 43. Yeasts cells are good source of A) Vitamins A and B B) Vitamins A and D C) Vitamins B and D D) Vitamins A and C 44. The floating and drifting microbes are called A) Zooplanktons B) Benthos C) Planktons D) Limnos 45. The major carrier of Salmonellosis are A) Meat and eggs B) Meat and fish C) Eggs and fruits D) Eggs and fruits 46. In which year "The Biological Diversity Act" was enacted in India A) 2004 B) 2002 C) 2005 D) 2016 47. Which of the following is not a type of copyright work? A) Engine Design B) Musical Work C) Literary D) Art 48. The term for patent protection under Indian Patent Act is: A) 15 Years B) 60 Years C) 20 Years D) 35 Years 49. What prominent amendment was made in The Patent Act, in 2005 A) Parallel importation B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology		/			
C) Amount of inorganic materials D) Fungal count 42. Which were the investigators live at the same times A) Koch and Pasteur B) Darwin and Woese C) Van Leeuwenhoek and Ricketts D) Berg and Hooke 43. Yeasts cells are good source of A) Vitamins A and B B) Vitamins A and D C) Vitamins B and D D) Vitamins A and C 44. The floating and drifting microbes are called A) Zooplanktons B) Benthos C) Planktons D) Limnos 45. The major carrier of Salmonellosis are A) Meat and eggs B) Meat and fish C) Eggs and fruits D) Eggs and fruits 46. In which year "The Biological Diversity Act" was enacted in India A) 2004 B) 2002 C) 2005 D) 2016 47. Which of the following is not a type of copyright work? A) Engine Design B) Musical Work C) Literary D) Art 48. The term for patent protection under Indian Patent Act is: A) 15 Years B) 60 Years C) 20 Years D) 35 Years 49. What prominent amendment was made in The Patent Act, in 2005 A) Parallel importation B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology	41.	The m	_		
42. Which were the investigators live at the same times A) Koch and Pasteur B) Darwin and Woese C) Van Leeuwenhoek and Ricketts D) Berg and Hooke 43. Yeasts cells are good source of A) Vitamins A and B B) Vitamins A and D C) Vitamins B and D D) Vitamins A and C 44. The floating and drifting microbes are called A) Zooplanktons B) Benthos C) Planktons D) Limnos 45. The major carrier of Salmonellosis are A) Meat and eggs B) Meat and fish C) Eggs and fruits D) Eggs and fruits 46. In which year "The Biological Diversity Act" was enacted in India A) 2004 B) 2002 C) 2005 D) 2016 47. Which of the following is not a type of copyright work? A) Engine Design B) Musical Work C) Literary D) Art 48. The term for patent protection under Indian Patent Act is: A) 15 Years B) 60 Years C) 20 Years D) 35 Years 49. What prominent amendment was made in The Patent Act, in 2005 A) Parallel importation B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology		A)		B)	Amount of organic materials
A) Koch and Pasteur C) Van Leeuwenhoek and Ricketts D) Berg and Hooke 43. Yeasts cells are good source of A) Vitamins A and B B) Vitamins A and D C) Vitamins B and D D) Vitamins A and C 44. The floating and drifting microbes are called A) Zooplanktons B) Benthos C) Planktons D) Limnos 45. The major carrier of Salmonellosis are A) Meat and eggs B) Meat and fish C) Eggs and fruits D) Eggs and fruits 46. In which year "The Biological Diversity Act" was enacted in India A) 2004 B) 2002 C) 2005 D) 2016 47. Which of the following is not a type of copyright work? A) Engine Design B) Musical Work C) Literary D) Art 48. The term for patent protection under Indian Patent Act is: A) 15 Years B) 60 Years C) 20 Years D) 35 Years 49. What prominent amendment was made in The Patent Act, in 2005 A) Parallel importation B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology		C)	Amount of inorganic materials	D)	Fungal count
C) Van Leeuwenhoek and Ricketts D) Berg and Hooke 43. Yeasts cells are good source of A) Vitamins A and B B) Vitamins A and D C) Vitamins B and D D) Vitamins A and C 44. The floating and drifting microbes are called A) Zooplanktons B) Benthos C) Planktons D) Limnos 45. The major carrier of Salmonellosis are A) Meat and eggs B) Meat and fish C) Eggs and fruits D) Eggs and fruits 46. In which year "The Biological Diversity Act" was enacted in India A) 2004 B) 2002 C) 2005 D) 2016 47. Which of the following is not a type of copyright work? A) Engine Design B) Musical Work C) Literary D) Art 48. The term for patent protection under Indian Patent Act is: A) 15 Years B) 60 Years C) 20 Years D) 35 Years 49. What prominent amendment was made in The Patent Act, in 2005 A) Parallel importation B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology	42.	. Which		ne times	
43. Yeasts cells are good source of A) Vitamins A and B B) Vitamins A and D C) Vitamins B and D D) Vitamins A and C 44. The floating and drifting microbes are called A) Zooplanktons B) Benthos C) Planktons D) Limnos 45. The major carrier of Salmonellosis are A) Meat and eggs B) Meat and fish C) Eggs and fruits D) Eggs and fruits 46. In which year "The Biological Diversity Act" was enacted in India A) 2004 B) 2002 C) 2005 D) 2016 47. Which of the following is not a type of copyright work? A) Engine Design B) Musical Work C) Literary D) Art 48. The term for patent protection under Indian Patent Act is: A) 15 Years B) 60 Years C) 20 Years D) 35 Years 49. What prominent amendment was made in The Patent Act, in 2005 A) Parallel importation B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology		A)		B)	Darwin and Woese
A) Vitamins A and B C) Vitamins B and D D) Vitamins A and C 44. The floating and drifting microbes are called A) Zooplanktons B) Benthos C) Planktons D) Limnos 45. The major carrier of Salmonellosis are A) Meat and eggs B) Meat and fish C) Eggs and fruits D) Eggs and fruits 46. In which year "The Biological Diversity Act" was enacted in India A) 2004 B) 2002 C) 2005 D) 2016 47. Which of the following is not a type of copyright work? A) Engine Design B) Musical Work C) Literary D) Art 48. The term for patent protection under Indian Patent Act is: A) 15 Years B) 60 Years C) 20 Years D) 35 Years 49. What prominent amendment was made in The Patent Act, in 2005 A) Parallel importation B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology		C)	Van Leeuwenhoek and Ricketts	D)	Berg and Hooke
C) Vitamins B and D D) Vitamins A and C 44. The floating and drifting microbes are called A) Zooplanktons B) Benthos C) Planktons D) Limnos 45. The major carrier of Salmonellosis are A) Meat and eggs B) Meat and fish C) Eggs and fruits D) Eggs and fruits 46. In which year "The Biological Diversity Act" was enacted in India A) 2004 B) 2002 C) 2005 D) 2016 47. Which of the following is not a type of copyright work? A) Engine Design B) Musical Work C) Literary D) Art 48. The term for patent protection under Indian Patent Act is: A) 15 Years B) 60 Years C) 20 Years D) 35 Years 49. What prominent amendment was made in The Patent Act, in 2005 A) Parallel importation B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology	43.	Yeasts	-		
44. The floating and drifting microbes are called A) Zooplanktons B) Benthos C) Planktons D) Limnos 45. The major carrier of Salmonellosis are A) Meat and eggs B) Meat and fish C) Eggs and fruits D) Eggs and fruits 46. In which year "The Biological Diversity Act" was enacted in India A) 2004 B) 2002 C) 2005 D) 2016 47. Which of the following is not a type of copyright work? A) Engine Design B) Musical Work C) Literary D) Art 48. The term for patent protection under Indian Patent Act is: A) 15 Years B) 60 Years C) 20 Years D) 35 Years 49. What prominent amendment was made in The Patent Act, in 2005 A) Parallel importation B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology		A)		B)	
A) Zooplanktons D) Limnos 45. The major carrier of Salmonellosis are A) Meat and eggs B) Meat and fish C) Eggs and fruits D) Eggs and fruits 46. In which year "The Biological Diversity Act" was enacted in India A) 2004 B) 2002 C) 2005 D) 2016 47. Which of the following is not a type of copyright work? A) Engine Design B) Musical Work C) Literary D) Art 48. The term for patent protection under Indian Patent Act is: A) 15 Years B) 60 Years C) 20 Years D) 35 Years 49. What prominent amendment was made in The Patent Act, in 2005 A) Parallel importation B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology		C)	Vitamins B and D	D)	Vitamins A and C
C) Planktons D) Limnos 45. The major carrier of Salmonellosis are A) Meat and eggs B) Meat and fish C) Eggs and fruits D) Eggs and fruits 46. In which year "The Biological Diversity Act" was enacted in India A) 2004 B) 2002 C) 2005 D) 2016 47. Which of the following is not a type of copyright work? A) Engine Design B) Musical Work C) Literary D) Art 48. The term for patent protection under Indian Patent Act is: A) 15 Years B) 60 Years C) 20 Years D) 35 Years 49. What prominent amendment was made in The Patent Act, in 2005 A) Parallel importation B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology	44.	The flo	pating and drifting microbes are called	d	
45. The major carrier of Salmonellosis are A) Meat and eggs B) Meat and fish C) Eggs and fruits D) Eggs and fruits 46. In which year "The Biological Diversity Act" was enacted in India A) 2004 B) 2002 C) 2005 D) 2016 47. Which of the following is not a type of copyright work? A) Engine Design B) Musical Work C) Literary D) Art 48. The term for patent protection under Indian Patent Act is: A) 15 Years B) 60 Years C) 20 Years D) 35 Years 49. What prominent amendment was made in The Patent Act, in 2005 A) Parallel importation B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology		A)	Zooplanktons	B)	Benthos
A) Meat and eggs B) Meat and fish C) Eggs and fruits D) Eggs and fruits 46. In which year "The Biological Diversity Act" was enacted in India A) 2004 B) 2002 C) 2005 D) 2016 47. Which of the following is not a type of copyright work? A) Engine Design B) Musical Work C) Literary D) Art 48. The term for patent protection under Indian Patent Act is: A) 15 Years B) 60 Years C) 20 Years D) 35 Years 49. What prominent amendment was made in The Patent Act, in 2005 A) Parallel importation B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology		C)	Planktons	D)	Limnos
C) Eggs and fruits 46. In which year "The Biological Diversity Act" was enacted in India A) 2004 B) 2002 C) 2005 D) 2016 47. Which of the following is not a type of copyright work? A) Engine Design B) Musical Work C) Literary D) Art 48. The term for patent protection under Indian Patent Act is: A) 15 Years B) 60 Years C) 20 Years D) 35 Years 49. What prominent amendment was made in The Patent Act, in 2005 A) Parallel importation B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology	45.	The m	ajor carrier of Salmonellosis are		
 46. In which year "The Biological Diversity Act" was enacted in India		A)		B)	Meat and fish
A) 2004 B) 2002 C) 2005 D) 2016 47. Which of the following is not a type of copyright work? A) Engine Design B) Musical Work C) Literary D) Art 48. The term for patent protection under Indian Patent Act is: A) 15 Years B) 60 Years C) 20 Years D) 35 Years 49. What prominent amendment was made in The Patent Act, in 2005 A) Parallel importation B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology				,	
 47. Which of the following is not a type of copyright work? A) Engine Design B) Musical Work C) Literary D) Art 48. The term for patent protection under Indian Patent Act is: A) 15 Years B) 60 Years C) 20 Years D) 35 Years 49. What prominent amendment was made in The Patent Act, in 2005 A) Parallel importation B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology 50. Which of the following category does not fall under industrial property rights 	46.	. In whi	ch year "The Biological Diversity Ac	t" was o	enacted in India
A) Engine Design B) Musical Work C) Literary D) Art 48. The term for patent protection under Indian Patent Act is: A) 15 Years B) 60 Years C) 20 Years D) 35 Years 49. What prominent amendment was made in The Patent Act, in 2005 A) Parallel importation B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology		/	,	,	,
C) Literary D) Art 48. The term for patent protection under Indian Patent Act is: A) 15 Years B) 60 Years C) 20 Years D) 35 Years 49. What prominent amendment was made in The Patent Act, in 2005 A) Parallel importation B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology 50. Which of the following category does not fall under industrial property rights	47.				
 48. The term for patent protection under Indian Patent Act is: A) 15 Years B) 60 Years C) 20 Years D) 35 Years 49. What prominent amendment was made in The Patent Act, in 2005 A) Parallel importation B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology 50. Which of the following category does not fall under industrial property rights 		*	6	,	Musical Work
 A) 15 Years B) 60 Years C) 20 Years D) 35 Years 49. What prominent amendment was made in The Patent Act, in 2005 A) Parallel importation B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology 50. Which of the following category does not fall under industrial property rights 		/	<u> </u>	,	
 49. What prominent amendment was made in The Patent Act, in 2005 A) Parallel importation B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology 50. Which of the following category does not fall under industrial property rights 	48.				
 A) Parallel importation B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology 50. Which of the following category does not fall under industrial property rights 		A) 15	Years B) 60 Years	C)	20 Years D) 35 Years
 A) Parallel importation B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology 50. Which of the following category does not fall under industrial property rights 	40	What	orominent amendment was made in T	he Date	nt Act in 2005
 B) Establishment of appellate board C) Simplification of procedures D) Product patent for inventions in all fields of technology 50. Which of the following category does not fall under industrial property rights 	7/	-		ne i ate	iit Act, iii 2003
 C) Simplification of procedures D) Product patent for inventions in all fields of technology 50. Which of the following category does not fall under industrial property rights 		*			
D) Product patent for inventions in all fields of technology50. Which of the following category does not fall under industrial property rights					
50. Which of the following category does not fall under industrial property rights			<u> </u>	ialds of	technology
		D)	1 roduct patent for inventions in an i	icius 01	Comology
	50.	. Which	of the following category does not fa	ıll unde	r industrial property rights
A) Patents B) Trademarks		A)	Patents	B)	Trademarks
C) Trade secrets D) Copyrights		C)	Trade secrets	,	Copyrights

Microbiology

1.	Histo	zoic are the organisms residing in		
	A)	Colon	C)	Tissues
	B)	Blood	D)	Small Intestine
2.	India	was declared polio free country in		
	A)	2013	C)	2011
	B)	2015	D)	2014
3.	Micro	oparasites are		
	A)	Algae	C)	Protozoa
	B)	Fungi	D)	Insects
4.	Proto	zoa belong to kingdom		
	A)	Animalia	C)	Monera
	B)	Protista	D)	Plantae
5.	The p	parasite eradicated from India is		
	A)	Medinaworm	C)	Threadworm
	B)	Hookworm	D)	Pinworm
6.	GRA	S stands for		
	A)	Generally regarded as safe	C)	Generally registered as safe
	B)	Generally required safe	D)	Generally recognized as safe
7.	Probi	otics are generally		
	A)	Yeast	C)	Enterobacter
	B)	Streptococci	D)	Lactic acid bacteria
8.	HSC	represents		
	A)	Human stem cells	C)	Haem stem cells
	B)	Haemopoietic stem cells	D)	Human secretory cells
9.	Class	I MHC molecules are expressed in		
	A)	Antigen presenting cells	C)	B cells
	B)	Nucleated cells	D)	T cells
10	. Respi	iratory bursts is a		
	A)	Biochemical mechanism	C)	Physiological mechanism
	B)	Microbicidal mechanism	D)	Pathogenic mechanism

11. En	nil Von Behring got nobel prize for his re	esearch	work in		
A)	Anaphylaxis	C)	Antitoxins		
B)	Toxins	D)	Antibodies		
12. M	ultiple Sclerosis occurs due to				
A)	Hypersensitivity	C)	Autoimmune disorder		
B)	Sedentary life	D)	Malnutrition		
13. Ur	rease is the potent enzyme produced by				
A)	Campylobacter	C)	Helicobacter		
B)	Escherichia	D)	Enterobacter		
14. Late lactose fermenters are deficient in enzyme					
A)	β galactosidase	C)	β galactopermease		
B)	β galactosidase permease	D)	β galactoglucopermease		
15. To	oxoid is a				
A)	Polysaccharide	C)	Proteinaceous compound		
B)	Glycoprotein	D)	Glycolipid		
16. IS	COM is a				
A)	Protein antigen + Quil A	C)	Protein antigen + detergent		
B)	Protein antigen + Quil A + detergen	t D)	Protein antigen + detergent + MF 59		
17. Ci	der Vinegar is produced from				
A)	Molasses	C)	Apple juice		
B)	Wheat	D)	Barley		
18. En	nzyme saccharase acts on				
A)	Saccharin	C)	Sucrose		
B)	Maltose	D)	Fructose		
19. Ke	efir is produced by				
A)	Lactic acid bacteria (LAB)	C)	LAB + yeast		
B)	Yeast	D)	Bifidobacteria		
20. Cu	uring is the process of preservation of me	at by			
A)	Refrigeration	C)	Salts		
B)	Lyophilization	D)	Salts + refrigeration		
21. Eu	ıkaryotic mRNAs are				
A)	Polycistronic	C)	Monocistronic		
B)	Tricistronic	D)	Bicistronic		

22	.In hom	nofermentative process, the end produ	ct is alv	vays			
	A)	Lactic acid + ethanol	C)	Lactic acid alone			
	B)	Lactic acid + water + carbon dioxide	D)	Lactic acid + traces of other products			
23	.Geneti	c material in viruses may be					
	A)	RNA	C)	RNA and DNA			
	B)	DNA	D)	RNA or DNA			
24	. Riboso	ome 55s is found in					
	A)	Eukaryotes					
	B)	Prokaryotes					
	C)	Mitochondria of vertebrates					
	D)	Mitochondria in golgi bodies of eukaryotes					
25	.mRNA	A of prokaryotes are					
	A)	Stable and long shelf life	C)	Unstable and polycistronic			
	B)	Stable and polycistronic	D)	Stable and short shelf life			
26. RNA polymerase I is located in							
	A)	Nucleoplasm	C)	Nucleolus			
	B)	Cytoplasm	D)	Nuclear membrane			
27	. Autocl	ave and porcelain filters were discover	ered by				
	A)	Robert Koch	C)	T Needham			
	B)	Charles Chamberlain	D)	Elie Metchnikoff			
28	. Import	cance of microorganisms in carbon and	d nitrog	en cycle was discussed by			
	A)	Louis Pasteur	C)	Beijerinck			
	B)	Lister	D)	S N Winogradsky			
29	In biot	errorism, the most lethal organism is					
	A)	Yersinia	C)	Bacillus			
	B)	Vibrio	D)	Varicella			
30	. World	Health Day is celebrated every year is	n the m	onth of			
	A)	7 th January	C)	7 th March			
	B)	7 th June	D)	7 th April			
31	. 16s rR	NA has classified microbes into three	domair	n and is given by			
	A)	Carl Woese	C)	Holben			
	B)	Olsen	D)	Car Louis			

32. Second edition of Bergey's Manual of systematic bacteriology has						
	A)	Four volumes	C)	Three volumes		
	B)	Five volumes	D)	Six volumes		
33	. Geneti	c material in TMV is				
	A)	ssDNA	C)	dsRNA		
	B)	dsDNA	D)	ssRNA		
34. Intermediate host for filaria is						
	A)	Rat	C)	Human		
	B)	Culex	D)	Anopheles		
35	. Fastest	moving parasite is				
	A)	Giardia	C)	Trichomonas		
	B)	Paramaecium	D)	Trypanosome		
36. Malaria is caused by						
	A)	Tachyzoites	C)	Sporozoites		
	B)	Gametocytes	D)	Merozoites		
37	. Saproz	oic microorganism takes				
	A)	Solid foods	C)	Semi solid foods		
	B)	Soluble foods	D)	Solid and liquid foods		
38. Amoebic cyst are formed in						
	A)	Tissues	C)	Soil		
	B)	Colon	D)	Ileum		
39. The antibodies that crosses placental barriers is						
	A)	IgM	C)	IgA		
	B)	IgG	D)	IgD		
40. IgM is most effective antibody in neutralizing viruses because of its						
	A)	High valency	C)	Half life		
	B)	High amount	D)	Avidity		
41. CDC stands for						
	A) Centre for Disease Control & prevention					
	B)	Centre for Disease Control & protection				
	C)	Centre for Disease control & Progress				
	D) Centre for Disease control & Program					
42. Smallpox is eradicated even then virus is preserved in						

	A)	Baltimore, USA	C)	Rockfellar Institute, USA		
	B)	Atlanta, USA	D)	Texas University, USA		
43	• Peritrio	chous flagella is present in				
	A)	E. coli	C)	Pseudomonas		
	B)	Vibrio cholera	D)	Clostridium		
44	. Dienes	phenomena is exhibited by				
	A)	Klebsiella	C)	Proteus		
	B)	Escherichia	D)	Serratia		
45	. Amon	g different species of Klebsiella, wh	ich spec	ies is indole producing		
	A)	K. pneumonae	C)	K. oxytoca		
	B)	K. aerogenes	D)	K. ozaenae		
46. Capsule of <i>Klebsiella</i> can be seen with						
	A)	Simple staining	C)	Zeil Neilson staining		
	B)	Gram staining	D)	Negative staining		
47	. Red/pi	nk colonies are seen due to productio	n of pig	ment by		
	A)	E. coli	C)	Salmonella		
	B)	Shigella	D)	Serratia		
48	Pure cu	ulture concept was introduced by				
	A)	Lister	C)	Louis Pasteur		
	B)	Robert Koch	D)	John Tyndall		
49. Black centered colonies are observed on DCA by						
	A)	Shigella	C)	Salmonella		
	B)	Proteus	D)	Serratia		
50	. Missio	n Indradhanush was launched on				
	A)	25 th December 2014	C)	25 th December 2013		
	B)	25 th December 2016	D)	25 th December 2012		

x-x-x