

SAMPLE PAPER

Model Question Paper

ATIT

INSTRUCTIONS

1. There are 120 questions in The Admission Test for IcfaiUniversity Technology (ATIT) 2013, and the allotted time is 120 minutes.

Section	Subject	No	. of Questions	Time
I	English	30	(1-30)	30 Minutes
II	Mathematics	30	(31-60)	30 Minutes
III	Physics	30	(61-90)	30 Minutes
IV	Chemistry	30	(91-120)	30 Minutes
	Total	120	X	120 Minutes

- **2.** Each question has four options (a, b, c and d). The candidates are required to choose the correct option.
- 3. Usage of any type of calculators and cell phones is strictly prohibited.
- **4.** Any kind of malpractice will disqualify the candidate from ATIT.

Section I

Subject : ENGLISH

Time : 30 Minutes

Questions : **30** (Serial No. 01-30)

Section I **English**

I.

(a) Postpone

(b) Equate

Directions: In the following questions, each word is followed by four options. Choose the

		losest synonym of the gr tions in the meaning an		sing your answer, keep in s.
1.	IDIOSYNCRASY			
	(a) Disgrace	(b) Esteem	(c) Eccentricity	(d) Rebellion
2.	APLOMB			
	(a) Composure	(b) Aspiration	(c) Fluency	(d) Revolt
3.	MUTILATE			
	(a) Injure	(b) Contaminate	(c) Mollify	(d) Reconcile
4.	CEREMONIOUS			
	(a) Peccable	(b) Floppy	(c) Pompous	(d) Lavish
5.	DESPOTIC		. 0	
	(a) Outspoken	(b) Simple	(c) Quick	(d) Tyrannical
6.	WOE			
	(a) Bliss	(b) Sadness	(c) Patience	(d) Knowledge
II.	option which is the ci		iven words. While choo	four options. Choose the sing your answer, keep in s.
7.	BANALITY			
	(a) Originality	(b) Preciseness	(c) Specialty	(d) Selfishness
8.	CURRENCY			
	(a) Bankruptcy	(b) Insolvency	(c) Obsolescence	(d) Complacence
9.	FIASCO			
	(a) Fun	(b) Success	(c) Disparity	(d) Succession
10.	FICTITIOUS			
	(a) Natural	(b) Real	(c) Inferior	(d) Blunt
11.	LAMENT			
	(a) Spin	(b) Defeat	(c) Rejoice	(d) Suppress
12.	QUASH			

(c) Support

(d) Validate

III.	Dire optic	-	e the following sente	ences by selecting a su	uitable word from the given
13.	Mon	ey is not like car	s or cups of tea, beca	use one cannot test-driv	ve or it.
	(a) T	aste	(b) Boil	(c) Heat	(d) Inhale
14.	Nehi			e, hard work and team socialistic pattern of so	spirit' among the people for ociety.
	(a) S	Suppression	(b) Expression	(c) Fulfillment	(d) Symbolism
15.	For 1	millions of patien	ts with terminal illne	esses, pain is an everyda	ay
	(a) R	Reality	(b) Surety	(c) Frequency	(d) Supposition
16.			ngs are not permitted d affect all the thinking	as inputs in the thinkinng in a hidden way.	g process, they will
	(a) S	Shroud	(b) Lurk	(c) Fulminate	(d) Prowl
IV.	• Directions: Four alternatives are provided for each of the following questions. Select the most acceptable and appropriate of the four options. In considering the alternatives, pacilose attention to grammar as well as clarity and precision.				
17.	 (a) Patients should not fly if they should have a heart attack in the past two weeks. (b) Patients should not fly if they might have a heart attack in the past two weeks. (c) Patients should not fly if they could have had a heart attack in the past two weeks. (d) Patients should not fly if they have had a heart attack in the past two weeks. 			he past two weeks. in the past two weeks.	
18.	 (a) Nearly a quarter of the world's land mammal species are at a risk through extinction. (b) Nearly a quarter of the world's land mammal species are at a risk of extinction. (c) Nearly a quarter of the world's land mammal species are at a risk with extinction. (d) Nearly a quarter of the world's land mammal species are at a risk for extinction. 			a risk of extinction. a risk with extinction.	
19.	(a) (b) (c) (d)	The more carbo The more carbo	hydrates we eat the rohydrates we eat more	nore efficiently our boo nost efficiently our boo e efficiently our body us efficiently our body us	ly uses them. ses them.
20.	(a) (b)	what democracy	y is. the idea of democra	•	e and argue all the time about

(c) That Americans love the idea of democracy and argue all the time about what that

Americans love the idea of democracy and argue all the time about what that democracy

democracy should look like.

should look like.

(d)

V. Directions: In the following questions, each sentence is divided into three parts (a), (b) and (c). Find out which part of the sentence contains an error. If there is no error, mark your answer as (d).

The drama had / §	so many numorous s	cenes /		
(a)	(b)			
that it was hard po	ossible to keep a stra	ight face.	No error	
	(c)		(d)	
Despite their best	efforts,/ they could	not convi	nce/	
(a)	-	(b)		
the members by cl	hanging their decision	on. No er	rror	
	(c)	(d))	
Teachers today are	e increasingly afraid	/ for being	ng victimized /	7'0"
	(a)		(b)	
by laws that prote	ct the children. No	error		
(c)	(d)		
Scarcely had the g	ame started / then t	he rain /	came pouring down.	No error
(a)		(b)	(c)	(d)
By the time / he h	nad won his commis	sion, the s	senior officer/	
(a)	(b)	V	
had start seeking e	employment elsewhe	ere. No e	rror	
	(c)	(d		

VI. *Directions:* The given passage is followed by questions based on its content. Read the passage and choose the best answer.

The control of fire was the first and perhaps the greatest of humanity's step towards a life-enhancing technology. To early man, fire was a divine gift randomly delivered in the form of lightning, forest fire or burning lava. Unable to make flame for themselves, the earliest people probably stored fire by keeping slow-burning logs alight or by carrying charcoal in parts.

How and where man learnt how to produce flame at will is unknown. It was probably a secondary invention, accidentally made during tool-making operations with wood or stone. Studies of primitive societies suggest that the earliest method of making fire was through friction. European peasants would insert a wooden drill in a round hole and rotate it briskly between their palms. This process could be speeded up by wrapping a cord around the drill and pulling on each end.

The ancient Greeks used lenses or concave mirrors to concentrate the sun's rays and burning glasses were also used by Mexican Aztecs and the Chinese. Percussion methods of fire lighting date to Paleolithic times, when the Stone Age toolmakers discovered that chipping flints produced sparks. The technique became more efficient after the discovery of iron, about five thousand years ago.

In Arctic North America, the Eskimos produced a slow-burning spark by striking quartz against iron pyrites, a compound that contains sulphur. The Chinese lit fire by striking porcelain with bamboo. In Europe, the combination of steel, flint and tinder remained the main method of fire-

lighting until the mid-nineteenth century.

26.	According to the passage, what was the first and the greatest of humanity's step towa life-enhancing technology?			f humanity's step towards a
	(a) Making of fire(c) Invention of to		(b) The control of(d) The discovery	
27.	How did the prim	nitive societies view fire?		
	(a) As a lightning (c) As a heavenly		(b) As a blessing(d) As a burning la	iva
28.	It is estimated that	at the earliest method of r	naking fire was through	
	(a) Rotation	(b) Drilling	(c) Chipping	(d) Friction
29.	Which of the foll	owing statements is true	according to the passage	e?
	(b) The Chines(c) Eskimos pr	nnot be used for producing produced fire by striking oduced fire with bambooul method of making fire with the control of the c	g porcelain with bambo	00
30.	Choose the synor	nym of 'primitive' as used	d in the passage.	
	(a) Ancient	(b) Expensive	(c) Innovative	(d) Perilous
		END OF	SECTION I	

Section II

Subject : MATHEMATICS

Time : 30 Minutes

Questions : 30 (Serial No. 31-60)

Section II

Mathematics

If a set A has m elements and B has n elements, then the number of functions from A to B is

Directions: Each question given below has a problem and four alternatives. You have to choose the best answer from the alternatives (a), (b), (c) and (d).

(b) $\{x \mid x > -1\}$ (c) [0, 1]

The domain of the function $f(x) = \sqrt{1 - \sqrt{1 - \sqrt{1 - x^2}}}$ is

31.

32.

(a) $\{x \mid x < 1\}$

	(a) n ^m	(b) 2 ^{min}	(c) m"	(d) 2 ^{m+n}
33.	Let $A = \{\phi\}$ and $B = F$	P(P(A)), the power set of	f the power set of A. Th	en B is
	(a) ф	(b) $\{\phi\}$	(c) $\{\{\phi\}\}$	(d) None of these
34.	If ω is a non real cub	pe root of unity, then the	the expression $(1-\omega)(1-\omega)$	$-\omega^{2} (1 + \omega^{4}) (1 - \omega^{8})$ is
	equal to			
	(a) 0	(b) 3	(c) 1	(d) 2
35.	The number of integra	I solutions of $\frac{x+2}{x^2+1} > \frac{1}{2}$	is	
	(a) 4	(b) 5	(c) 3	(d) Infinite
36.	For any $m \times n$ matrix n	A and a fixed k, if a mat	$\operatorname{trix} K \text{ satisfies } KA = kA$, then K is a
	(a) Transpose of A(c) Symmetric matrix		(b) Diagonal matrix(d) Skew Symmetric n	natrix
37.	The system of equation nontrivial solutions if		$y + z = 0; \lambda x - y + 2z =$	0 has infinite number of
	(a) 1	(b) 5	(c) -5	(d) 2
38.	The sum of two non in	the antegral roots of $\begin{vmatrix} x & 2 & 3 \\ 3 & x & 3 \\ 5 & 4 & 3 \end{vmatrix}$	$\begin{vmatrix} 5 \\ 3 \\ x \end{vmatrix} = 0$ is	
~	(a) 5	(b) -5	(c) -18	(d) 16
39.		nadrilateral. 3, 4, 5 and Γhe number of triangles		n the sides AB, BC, CD nt sides is
	(a) 270	(b) 220	(c) 282	(d) 342

(d) x²

40.	The term independent	of a in the expansion of	$f\left(1+\sqrt{a}+\frac{1}{\sqrt{a}-1}\right)^{-30}$ is	
	(a) 30 C ₂₀	(b) 0	(c) ${}^{30}C_{10}$	(d) 20 C ₁₀
41.	The minimum of $4^x +$	4^{1-x} , $x \in \mathbb{R}$, is		
	(a) 2	(b) 4	(c) 1	(d) 8
42.	Let $f(n) = \left[\frac{1}{2} + \frac{n}{100}\right]$	where [x] denotes the in	ntegral part of x. Then v	value of $\sum_{n=1}^{100} f(n)$ is
	(a) 50	(b) 51	(c) 1	(d) 25
43.	The last term in the l	pinomial expansion of	$\left(\sqrt[3]{2} - \frac{1}{\sqrt{2}}\right)^{n} \text{ is } \left(\frac{1}{3.\sqrt[3]{9}}\right)$	$\int_{0}^{\log_3 8} . \text{ Then the } 5^{\text{th}} \text{ term}$
	from the beginning is			
	(a) ${}^{10}C_6$	(b) $2.^{10}C_4$	(c) $\frac{1}{2}$. ¹⁰ C ₄	(d) ⁵ C ₄
44.	The number of real so	lutions of the equation	$\log_{0.5} x = x \text{ is}$	
	(a) 1	(b) 2	(c) 0	(d) 3
45.	The number of value	es of 'a' for which (a	$(x^2 - 3a + 2)x^2 + (a^2 - 5a)$	+6)x + a ² - 4 = 0 is ar
	identity in x is			
	(a) 0	(b) 2	(c) 1	(d) 3
46.	If x, y, z are real and c	distinct, then $f(x, y, z) =$	$= x^2 + 4y^2 + 9z^2 - 6yz -$	3zx – 2xy is always
	(a) Non-negative	(b) Non-positive	(c) Zero	(d) Complex
47.	The common root(s) is a non real cube root	_	$x^2 + 2x + 1 = 0$ and $1 + x$	$x^{130} + x^{1988} = 0$ (where α
	(a) ω and ω^2	(b) ω^3	(c) -1	(d) $\omega - \omega^2$
48.	$\lim_{x\to 0} \frac{\int_0^{x^2} \cos t^2 dt}{x \sin x}$ is	3		
	(a) 1	(b) 2	(c) 0	(d) ∞
49.	If [.] denotes the great	est integer function, the	$\operatorname{n \lim}_{n\to\infty} \frac{[x] + [2x] + \dots}{2}$	+[nx] is
	[.] wonoves me Brown	, the	n^2	

(c) x/2

(a) 0

(b) x

50.	Let $f(t) = \int_0^x t \sin \frac{1}{t} dt$. Then the number of points of discontinuity of the function $f(x)$ in the
	open interval $(0, \pi)$ is

(a) 0

(b) 1

(c) 2

(d) Infinite

- If $\int_0^x f(t) dt = x + \int_1^1 f(t) dt$, then the value f(1) is
 - (a) 1/2
- (b) 0

(c) 1

- The area of the region bounded by the pair of lines y = |x 1| and y = 3 |x| is 52.
 - (a) 3 unit²
- (b) 4 unit²
- (c) 6 unit²

 $\int \sqrt{1+x^2} d(x^2)$ is equal to

(a)
$$\frac{2}{3} \frac{\left(1 + x^2\right)^{3/2}}{x} + c$$

(b)
$$\frac{2}{3}(1+x^2)^{3/2}$$
 +

(c)
$$\frac{2}{3}x(1+x^2)^{3/2}+c$$

(a)
$$\frac{2}{3} \frac{\left(1+x^2\right)^{3/2}}{x} + c$$
 (b) $\frac{2}{3} \left(1+x^2\right)^{3/2} + c$ (c) $\frac{2}{3} x \left(1+x^2\right)^{3/2} + c$ (d) $\frac{2}{3} \frac{1}{\left(1+x^2\right)^{3/2}} + c$

54. Let
$$f(x) = \begin{cases} xe^{\left(\frac{-1}{|x|} + \frac{1}{x}\right)} & \text{for } x \neq 0, \text{ then } f(x) \text{ is } \\ 0 & \text{for } x = 0 \end{cases}$$

- Continuous for all x but not differentiable at x = 0(a)
- (b) Neither differentiable nor continuous at x = 0
- Discontinuous everywhere (c)
- Continuous and differentiable for all x (d)
- **55.** The polar coordinates of the vertices of a triangle are (0, 0), $(3, \pi/2)$ and $(3, \pi/6)$. Then the triangle is
 - (a) Right angled

(b) Isosceles

(c) Equilateral

- (d) Right-angled isosceles
- If the point (a, a) falls between the lines |x + y| = 2, then **56.**
 - (a) |a| = 2
- (b) |a| = 1
- (c) |a| < 1
- (d) |a| < 0.5
- The circle $x^2 + y^2 + 2\lambda x = 0$, $\lambda \in \mathbb{R}$, touches the parabola $y^2 = 4x$ externally. Then 57.
 - (a) $\lambda > 0$
- (b) $\lambda < 0$
- (c) $\lambda > 1$
- The number of integral values of λ for which $x^2 + y^2 + \lambda x + (1 \lambda)y + 5 = 0$ is the equation of **58.** a circle whose radius cannot exceed 5, is
 - (a) 14

- (b) 18
- (c) 16

(d) 12

The image of the origin in the line $\frac{x+1}{2} = \frac{y-1}{3} = \frac{z}{\sqrt{3}}$ is

(a)
$$\left(-1, \frac{11}{2}, \frac{\sqrt{3}}{2}\right)$$

(b)
$$\left(3, -\frac{5}{2}, \frac{\sqrt{3}}{2}\right)$$

(c)
$$\left(-3, \frac{5}{2}, -\frac{\sqrt{3}}{2}\right)$$

(a)
$$\left(-1, \frac{11}{2}, \frac{\sqrt{3}}{2}\right)$$
 (b) $\left(3, -\frac{5}{2}, \frac{\sqrt{3}}{2}\right)$ (c) $\left(-3, \frac{5}{2}, -\frac{\sqrt{3}}{2}\right)$ (d) $\left(1, -\frac{11}{2}, -\frac{\sqrt{3}}{2}\right)$

The shortest distance between the lines x - y = 0 = 2x + z and x + y - 2 = 0 = 3x - y + z - 1 is

(a) $\frac{1}{\sqrt{2}}$ (b) $\frac{1}{2\sqrt{2}}$ (c) $\frac{1}{2}$ (d) 1 **60.**

(a)
$$\frac{1}{\sqrt{2}}$$

(b)
$$\frac{1}{2\sqrt{2}}$$

(c)
$$\frac{1}{2}$$

Section III

Subject : PHYSICS

Time : 30 Minutes

Questions : **30 (Serial No.61 - 90)**

Section III Physics

Directions Each question given below has four alternatives. You have to choose the best answer from the alternatives (a), (b), (c) and (d).

61. A vernier caliper has 20 divisions on the vernier scale which coincide with 19 on the main scale. The leastcount of the instrument is 0.1 mm. The main scale divisions are of length

(b) 1 mm

(c) 2 mm

equal to

(a) 0.5 mm

62.		second ball. If the balls	•	t ball is at its maximum e difference of 1 second,
	(a) 19.6 m	(b) 9.8 m	(c) 4.9 m	(d) 2.45 m
63.	rectangular componen	t is		$50\sqrt{3}$ km h ⁻¹ . The other
	(a) $50\sqrt{3} \text{ km h}^{-1}$	(b) 50 km h ⁻¹	(c) $50\sqrt{2} \text{ km h}^{-1}$	(d) 25 km h^{-1}
64.		ch end of the rope so th	nat a condition of equili	with equal but opposite brium exists. What is the
	(a) 2000 N	(b) 1000 N	(c) Zero	(d) 6400 N
65.	velocity ω. Four poin	f mass M and radius F	R is rotating about its on are attached gently to	entral axis with angular the opposite ends of the
		(b) $\frac{M}{M+4m}$. ω		
66.	A body is thrown up	from the surface of the	earth with a velocity e	qual to $\frac{3}{4}$ of the escape
	velocity. Assume that	the radius of the earth is	s R, the height attained	by the body is
	(a) $\frac{19R}{20}$	(b) $\frac{9R}{7}$	(c) $\frac{7R}{9}$	$(d) \frac{11R}{7}$
67.		of a hydrogen molecule s at NTP occupying a ve	-	gy required to dissociate proximately
	(a) 20 J	(b) 30 J	(c) 40 J	(d) 60 J
68.	*	such that its motion i placement and 'k' a con		- kx, where 'a' is the cillation is
	(a) $2\pi\sqrt{k}$	(b) $\frac{2\pi}{\pi}$	(c) $\frac{2\pi}{}$	(d) 2πk

69. Two identical samples of a gas expand so that the volume is doubled. The first sample undergoes an isothermal expansion while the second is expanded adiabatically. The final

The radiation emitted by a perfectly black body is proportional to

pressure

(a) +1 D

(b) -2 D

70.

(a) In the first sample is greater

(c) Is equal in both the samples

Temperature on ideal gas scale

(b) In the second sample is greater

(d) Cannot be determined

	(c) Fourth power of	emperature on Kelvin's temperature on Kelvin's trature on Kelvin's scale	's scale	
71.	Charge of +q, 2q, +q at the intersection of 10 cm.	and –q are placed in the the diagonals of the so	e corners of a square. C quare when q is $5/3 \times$	alculate the electric field 10^{-9} C and each side is
	(a) $2.1 \times 10^3 \text{ Vm}^{-1}$	(b) $9.1 \times 10^{-2} \text{ Vm}^{-1}$	(c) $1.8 \times 10^4 \text{ Vm}^{-1}$	(d) $0.9 \times 10^4 \text{ Vm}^{-1}$
72.	The resistance of a witton times its original		be the new resistance if	it is stretched uniformly
	(a) nR	(b) $\frac{R}{n}$	(c) n^2R	(d) $\frac{R}{n^2}$
73.	•	positive charge +2q at the	ne centroid of the triangle	
	(a) Zero	(b) $\frac{3q}{4\pi\epsilon_0 d^2}$	(c) $\frac{7q}{4\pi\epsilon_0 d^2}$	(d) $\frac{9q}{4\pi\epsilon_0 d^2}$
74.	dielectric strength of 2	eitor is filled with a die $20 \times 10^6 \text{ Vm}^{-1}$. If the capential difference of 5000	pacitance of this capacit	c constant is 5 and has a for is 8.0×10^{-2} \square F and if area of the capacitor is
	(a) 0.45 m^2	(b) 0.62 m^2	(c) 0.54 m^2	(d) 0.24 m^2
75.				a square. The equivalent at a diagonally opposite
	(a) 1 🛘	(b) 2 []	(c) 4 []	(d) 8 🗌
76.	A certain compact disoperate the player in v	- ·	ent of 350 mA at 6.0 V	The power required to
	(a) 2.1	(b) 58.3	(c) 122.5	(d) 150.0
77.		From sodium light (λ = $^{\circ}$). To increase the fringe		slit experiment have an velength should be
	(a) 5896 Å	(b) 7321 Å	(c) 6300 Å	(d) 6479 Å
78.		ure of convex surface material is 1.6. The pov	-	lens is 15 cm and the

(c) +3 D

(d) +4 D

79.		aluminum is 4.2 eV. I then emission of photoe		energy 3.5 eV strike an
	(a) Will be possible(c) Will not be possible	e	(b) Depends on the sm (d) Both (a) and (b)	noothness of the surface
80.	If E is the kinetic ener wavelength associated		moving particle with ve	elocity v, the De-Broglie
	(a) 2mEv	(b) $\frac{hv}{E}$	(c) $\frac{hEv}{2m}$	(d) $\frac{h}{\sqrt{2mE}}$
81.		of wavelength 3000 Å 0 m W/m ² , then the rate		ce of area 4 cm ² . If the the target is
	(a) $3 \times 10^{10} \mathrm{s}^{-1}$	(b) $3 \times 10^{13} \text{ s}^{-1}$	(c) $7 \times 10^{15} \text{ s}^{-1}$	(d) $6 \times 10^{19} \text{ s}^{-1}$
82.		ive material is 1 day. It at will remain after 4 day		as a mass of 16 mg, the
	(a) 12 mg	(b) 8 mg	(c) 4 mg	(d) 1 mg
83.				Uranium-235 in 30 days. y released per fission is
	(a) 43.5 MW	(b) 58.5 MW	(c) 69.6 MW	(d) 73.1 MeV
84.	When a P-N junction i	s forward biased, poten	tial barrier	
	(a) Decreases(c) Remains constant		(b) Increases(d) Cannot be determine	ned
85.	connected in parallel.		of the wires are in the r	es of the same material, ratio of 4/3 and 2/3, then
	(a) 3	(b) 1/3	(c) 8/9	(d) 2
86.		series combination of tance is P. If $S = nP$, the		When they are joined in e value of n is
	(a) 4	(b) 3	(c) 2	(d) 1
87.		acitance is changed from ance should be changed		nant frequency to remain
4	(a) 4L	(b) 2L	(c) L/2	(d) L/4
88.	5 radians per second.		nent of the earth's magn	ends at angular velocity etic field is 0.2×10^{-4} T,
	(a) 5 []V	(b) 50 V	(c) 5 mV	(d) 50 mV
89.		satellite of the earth is and to 4 times the previous		on between the earth and eriod will become

(c) 80 hours

(d) 40 hours

(b) 10 hours

(a) 20 hours

- **90.** Consider the following two statements.
 - A. Linear momentum of a system of particles is zero.
 - B. Kinetic energy of a system of particles is zero.

Then

- (a) A implies B and B implies A
- (b) A does not imply B and B does not imply A
- (c) A implies B but B does not imply A
- (d) A does not imply B but B implies A

END OF SECTION III

Section IV

Subject : CHEMISTRY

Time : 30 Minutes

Questions : 30 (Serial No.91-120)

Section IV Chemistry

	Circini	y .		
	ctions: Each question given below has four al the alternatives (a), (b), (c) and (d).	ternatives. You have to	choose the best answer	
91.	The position of Na ⁺ ions in NaCl structure are			
	(a) Corners of the cube(c) Edge centres of the cube	(b) Body centre of the (d) Both (b) and (c)	cube	
92.	A matchbox exhibits			
	(a) Cubic geometry(c) Tetragonal geometry	(b) Monoclinic geome (d) Orthorhombic geom		
93.	The electrical conductivity of semiconductors			
	(a) Increases with temperature(c) Remains constant on heating	(b) Decreases with temperature(d) None of the above		
94.	A sample of a given mass of a gas at a constant of $9.962 \times 10^4 \text{ Nm}^{-2}$. At the same temperature	stant temperature occupied 95 cm ³ under pressure ure, its volume at a pressure of 10.13×10^4 Nm ⁻² is		
	(a) 190 cm ³ (b) 93 cm ³	(c) 46.5 cm^3	(d) 47.5 cm^3	
95.	The following equilibria are given below.			
	$N_2 + 3H_2 \ddagger ^* \dagger 2NH_3; K_1$			
	$N_2 + O_2 \hat{\ddagger}^{\uparrow} $ 2NO; K_2			
	$H_2 + \frac{1}{2} O_2 \hat{\ddagger}^{\uparrow} H_2O; K_3$			
	The equilibrium constant of the reaction $2NH_3 + 5/2 O_2 \hat{1}^{\dagger} $ $2NO + 3H_2O$ in terms of K			
	K ₂ and K ₃ is			
	(a) K_1K_2/K_3 (b) $K_1K_3^2/K_2$	(c) $K_2K_3^3/K_1$	$(d) K_1 K_2 K_3$	
96.	If the equilibrium constant of the reaction 2HI of the reaction $H_2 + I_2 \hat{\ddagger}^{} $ 2HI would be	$H_2 + H_2 = 0.25$,	the equilibrium constant	
	(a) 4 (b) 3	(c) 2	(d) 1	

97. When NaNO3 is heated in a closed vessel, oxygen is liberated and NaNO2 is left behind. At equilibrium,

- Addition of NaNO2 favours reverse reaction (a)
- Addition of NaNO₃ favours forward reaction (b)
- Increasing temperature favours forward reaction (c)
- All statements are correct (d)

98.	The effect of increasing	ig the pressure on the fo	llowing $2A + 3B \hat{\ddagger}^{\dagger}$	3A + 2B equilibrium is					
	that								
	(a) Forward reaction is(c) Neither reaction is		(b) Backward reaction(d) Both the reactions						
99.	A certain buffer solution. The pH of the buffer is	_	entrations of X ⁻ and HX	The K_a for HX is 10^{-8} .					
	(a) 3	(b) 8	(c) 11	(d) 14					
100.	The solubility product of AgI at 25°C is $1.0 \times 10^{-16} \text{ mol}^2\text{L}^{-2}$. The solubility of A solution of KI at 25°C is approximately (in mol L ⁻¹)								
	(a) 1.0×10^{-12}	(b) 1.0×10^{-10}	(c) 1.0×10^{-8}	(d) 1.0×10^{-16}					
101.	During isothermal exp	oansion of an ideal gas, i	ts) 0°					
	(a) Internal energy inc (c) Enthalpy remains u		(b) Enthalpy decreases(d) Enthalpy reduces to zero						
102.	Values of heats of formation for SiO ₂ and MgO are -48.4 and -34.7 kJ respectively. The heat of the reaction $2Mg + SiO_2 \rightarrow 2MgO + Si$ is								
	(a) 21.16 kJ	(b) -21.00 kJ	(c) -13.62 kJ	(d) 13.6 kJ					
103.	For a reaction to be sp	ontaneous at all tempera	atures						
	(a) ΔG and ΔH should (c) ΔG and ΔH should								
104.	75% of a reaction of completed?	the first order was con	mpleted in 32 minutes.	When was its half-life					
	(a) 8 minutes	(b) 16 minutes	(c) 10 minutes	(d) 7.5 minutes					
105.	Which of the followin	g is not a property of hy	drophilic sols?						
	(b) Coagulation is re(c) Viscosity and su(d) The charge of the	the following is not a property of hydrophilic sols? gh concentration of dispersed phase can be easily attained agulation is reversible scosity and surface tension are about the same as for water e charge of the particle depends on the pH value of the medium; it maybe positive, gative or even zero							
106.	The molar conductivit	y of a strong electrolyte							
	(a) Increases on dilution(c) Decreases on dilution		(b) Does not change considerably on dilution(d) Depends on density						
107.	Which of the followin	g has the maximum nun	nber of unpaired electro	ns?					
	(a) Mg^{2+}	(b) Ti ³⁺	(c) V^{3+}	(d) Fe ²⁺					

108.		ectively 23, 24, 25			ganese (Mn) and iron (Fe) are we the highest second ionization				
	(a) V	7	(b) Cr	(c) Mn	(d) Fe				
109.	The l	basic character of	f the transition metal m	onoxides follows	the order				
	· /	rO > VO > FeO 2 riO > VO > CrO 2		(b) TiO > FeO > VO > CrO (d) VO > CrO > TiO > FeO					
110.	On a	dding KI to a sol	ution of CuSO ₄						
	(a) (b) (c) (d)	Cupric oxide is Metallic copper Cuprous iodide No change takes	is precipitated is precipitated with the	e liberation of iodi	ne				
111.		tion of high propuse manganese	portions of manganese	makes steel usef	ful in making rails of railroads				
	(a) (b) (c) (d)	Can deform the	mation of oxides of iro						
112.	The radius of La^{3+} (atomic number of La is 57) is 1.06 Å. Which of the following values will be the closest to the radius of Lu^{3+} (atomic number of Lu is 71)?								
	(a) 1.	.60 Å	(b) 1.40 Å	(c) 1.06 Å	(d) 0.85 Å				
113.	X + I	$H_2SO_4 \rightarrow Y \text{ a col}$	lorless gas with irritatir	ng smell					
	Y + I	$K_2Cr_2O_7 + H_2SO_8$	₄ → Green solution						
	X an	d Y are							
	(a) S	O ₃ ²⁻ , SO ₂	(b) Cl⁻, HCl	(c) S^{2-} , H_2S	(d) CO_3^{2-} , CO_2				
114.		-	of FeSO ₄ .Al ₂ (SO ₄) ₃ are	nd chrome alum i	s heated with excess of Na ₂ O ₂				
			te and a green residue nd a brown residue		Itrate and a green residue rate and a brown residue				
115.	A ne	w carbon-carbon	bond formation is poss	sible in					
	,	annizzaro reactio		(b) Friedel-Craft alkylation(d) BVZ reaction					
116.	The formation of cyanohydrin from a ketone is an example of								
	` /	lectrophilic addit		(b) Nucleophili (d) Electrophili					

117. CH₃COCH₃ can be converted to CH₃CH₂CH₃ by the action of

(a) HIO₃

(b) HI

(c) HNO₃

(d) H₃PO₃

118. Butyramide is boiled with aqueous NaOH, then the reaction mixture is acidified with HCl. The products obtained are

(a) $CH_3 CH_2CH_2COO^- + NH_3$

(b) $CH_3 CH_2CH_2COO^- + NH_4^+ + CI^-$

(c) CH₃ CH₂CH₂COONa + NH₃

(d) $CH_3 CH_2CH_2COOH + Na^+ + Cl^-$

119. Quicklime and slaked lime are, respectively

(a) CaCO₃ and Ca(OH)₂

(b) CaO and Ca(OH)₂

(c) Ca(OH)2 and CaO

(d) CaO and CaCO₃

120. Which of the following structures represents the best resonance form for the following compound?

H C=
(a) \(\theta\) C - C : \(\theta\)
H H

(p) 0: C-C 0

(c) $\Theta: C - C'$

(d) \(\text{A} \) \(\text{C} - \text{O} \);

END OF SECTION IV

END OF QUESTION PAPER

Q.NO	SUBJECT	ANSWE	Q.NO	SUBJECT	ANSWER	Q.NO	SUBJECT	ANSWER	Q.NO	SUBJECT	ANSWER
Q.NO	SUBJECT	R	Q.NO	SUBJECT	ANSWER	Q.NO	SUBJECT	ANSWER	Q.NO	SUBJECT	ANSWER
1	ENGLISH	С	31	MATHEMATICS	D	61	PHYSICS	С	91	CHEMISTRY	D
2	ENGLISH	Α	32	MATHEMATICS	Α	62	PHYSICS	С	92	CHEMISTRY	D
3	ENGLISH	Α	33	MATHEMATICS	D	63	PHYSICS	В	93	CHEMISTRY	Α
4	ENGLISH	С	34	MATHEMATICS	В	64	PHYSICS	В	94	CHEMISTRY	В
5	ENGLISH	D	35	MATHEMATICS	С	65	PHYSICS	В	95	CHEMISTRY	С
6	ENGLISH	В	36	MATHEMATICS	В	66	PHYSICS	В	96	CHEMISTRY	Α
7	ENGLISH	A	37	MATHEMATICS	С	67	PHYSICS	D	97	CHEMISTRY	D
8	ENGLISH	С	38	MATHEMATICS	В	68	PHYSICS	В	98	CHEMISTRY	С
9	ENGLISH	В	39	MATHEMATICS	D	69	PHYSICS	Α	99	CHEMISTRY	В
10	ENGLISH	В	40	MATHEMATICS	В	70	PHYSICS	С	100	CHEMISTRY	Α
11	ENGLISH	С	41	MATHEMATICS	В	71	PHYSICS	D	101	CHEMISTRY	С
12	ENGLISH	D	42	MATHEMATICS	В	72	PHYSICS	D	102	CHEMISTRY	В
13	ENGLISH	A	43	MATHEMATICS	Α	73	PHYSICS	A	103	CHEMISTRY	Α
14	ENGLISH	С	44	MATHEMATICS	Α	74	PHYSICS	A	104	CHEMISTRY	В
15	ENGLISH	A	45	MATHEMATICS	С	75	PHYSICS	В	105	CHEMISTRY	С
16	ENGLISH	В	46	MATHEMATICS	Α	76	PHYSICS	A	106	CHEMISTRY	В
17	ENGLISH	D	47	MATHEMATICS	Α	77	PHYSICS	D	107	CHEMISTRY	D
18	ENGLISH	В	48	MATHEMATICS	Α	78	PHYSICS	D	108	CHEMISTRY	В
19	ENGLISH	Α	49	MATHEMATICS	С	79	PHYSICS	С	109	CHEMISTRY	С
20	ENGLISH	D	50	MATHEMATICS	Α	80	PHYSICS	D	110	CHEMISTRY	С
21	ENGLISH	С	51	MATHEMATICS	Α	81	PHYSICS	В	111	CHEMISTRY	Α
22	ENGLISH	С	52	MATHEMATICS	В	82	PHYSICS	D	112	CHEMISTRY	В
23	ENGLISH	В	53	MATHEMATICS	В	83	PHYSICS	В	113	CHEMISTRY	Α
24	ENGLISH	В	54	MATHEMATICS	Α	84	PHYSICS	Α	114	CHEMISTRY	С
25	ENGLISH	С	55	MATHEMATICS	С	85	PHYSICS	Α	115	CHEMISTRY	В
26	ENGLISH	В	56	MATHEMATICS	С	86	PHYSICS	Α	116	CHEMISTRY	В
27	ENGLISH	С	57	MATHEMATICS	Α	87	PHYSICS	С	117	CHEMISTRY	В
28	ENGLISH	D	58	MATHEMATICS	С	88	PHYSICS	В	118	CHEMISTRY	D
29	ENGLISH	В	59	MATHEMATICS	С	89	PHYSICS	D	119	CHEMISTRY	В
30	ENGLISH	Α	60	MATHEMATICS	В	90	PHYSICS	D	120	CHEMISTRY	D