M.SC ENTRANCE TEST SYLLABUS

Physics (PH)

Mathematical Methods:

Calculus of single and multiple variables, partial derivatives, Jacobian, imperfect and perfect differentials, Taylor expansion, Fourier series. Vector algebra, Vector Calculus, Multiple integrals, Divergence theorem, Green's theorem, Stokes' theorem. First order equations and linear second order differential equations with constant coefficients. Matrices and determinants, Algebra of complex numbers.

Mechanics and General Properties of Matter:

Newton's laws of motion and applications, Velocity and acceleration in Cartesian, polar and cylindrical coordinate systems, uniformly rotating frame, centrifugal and Coriolis forces, Motion under a central force, Kepler's laws, Gravitational Law and field, Conservative and non-conservative forces. System of particles, Center of mass, equation of motion of the CM, conservation of linear and angular momentum, conservation of energy, variable mass systems. Elastic and inelastic collisions. Rigid body motion, fixed axis rotations, rotation and translation, moments of Inertia and products of Inertia, parallel and perpendicular axes theorem. Principal moments and axes. Kinematics of moving fluids, equation of continuity, Euler's equation, Bernoulli's theorem.

Oscillations, Waves and Optics:

Differential equation for simple harmonic oscillator and its general solution. Superposition of two or more simple harmonic oscillators. Lissajous figures. Damped and forced oscillators, resonance. Wave equation, traveling and standing waves in one-dimension. Energy density and energy transmission in waves. Group velocity and phase velocity. Sound waves in media. Doppler Effect. Fermat's Principle. General theory of image formation. Thick lens, thin lens and lens combinations. Interference of light, optical path retardation. Fraunhofer diffraction. Rayleigh criterion and resolving power. Diffraction gratings. Polarization: linear, circular and elliptic polarization. Double refraction and optical rotation.

Electricity and Magnetism:

Coulomb's law, Gauss's law. Electric field and potential. Electrostatic boundary conditions, Solution of Laplace's equation for simple cases. Conductors, capacitors, dielectrics, dielectric polarization, volume and surface charges, electrostatic energy. Biot-Savart law, Ampere's law, Faraday's law of electromagnetic induction, Self and mutual inductance. Alternating currents. Simple DC and AC circuits with R, L and C components. Displacement current, Maxwell's equations and plane electromagnetic waves, Poynting's theorem, reflection and refraction at a dielectric interface, transmission and reflection coefficients (normal incidence only). Lorentz Force and motion of charged particles in electric and magnetic fields.

Kinetic theory, Thermodynamics:

Elements of Kinetic theory of gases. Velocity distribution and Equipartition of energy. Specific heat of Mono-, di- and tri-atomic gases. Ideal gas, van-der-Waals gas and equation of state. Mean free path. Laws of thermodynamics. Zeroth law and concept of thermal equilibrium. First law and its consequences. Isothermal and adiabatic processes. Reversible, irreversible and quasi-static processes. Second law and entropy. Carnot cycle. Maxwell's thermodynamic relations and simple applications. Thermodynamic potentials and their applications. Phase transitions and Clausius-Clapeyron equation. Ideas of ensembles, Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein distributions.

Modern Physics:

Inertial frames and Galilean invariance. Postulates of special relativity. Lorentz transformations. Length contraction, time dilation. Relativistic velocity addition theorem, mass energy equivalence. Blackbody radiation, photoelectric effect, Compton effect, Bohr's atomic model, X-rays. Wave-particle duality, Uncertainty principle, the superposition principle, calculation of expectation values, Schrödinger equation and its solution for one, two and three dimensional boxes. Solution of Schrödinger equation for the one dimensional harmonic oscillator. Reflection and transmission at a step potential, Pauli exclusion principle. Structure of atomic nucleus, mass and binding energy. Radioactivity and its applications. Laws of radioactive decay.

Solid State Physics, Devices and Electronics:

Crystal structure, Bravais lattices and basis. Miller indices. X-ray diffraction and Bragg's law; Intrinsic and extrinsic semiconductors, variation of resistivity with temperature. Fermi level. p-n junction diode, I-V characteristics, Zener diode and its applications, BJT: characteristics in CB, CE, CC modes. Single stage amplifier, two stage R-C coupled amplifiers. Simple Oscillators: Barkhausen condition, sinusoidal oscillators. OPAMP and applications: Inverting and non-inverting amplifier. Boolean algebra: Binary number systems; conversion from one system to another system; binary addition and subtraction. Logic Gates AND, OR, NOT, NAND, NOR exclusive OR; Truth tables; combination of gates; de Morgan's theorem.

Chemistry (CY)

PHYSICAL CHEMISTRY

Basic Mathematical Concepts: Functions; maxima and minima; integrals; ordinary differential equations; vectors and matrices; determinants; elementary statistics and probability theory.

Atomic and Molecular Structure: Fundamental particles; Bohr's theory of hydrogen-like atom; wave-particle duality; uncertainty principle; Schrödinger's wave equation; quantum numbers; shapes of orbitals; Hund's rule and Pauli's exclusion principle; electronic configuration of simple homonuclear diatomic molecules.

Theory of Gases: Equation of state for ideal and non-ideal (van der Waals) gases; Kinetic theory of gases; Maxwell-Boltzmann distribution law; equipartition of energy.

Solid State: Crystals and crystal systems; X-rays; NaCl and KCl structures; close packing; atomic and ionic radii; radius ratio rules; lattice energy; Born-Haber cycle; isomorphism; heat capacity of solids.

Chemical Thermodynamics: Reversible and irreversible processes; first law and its application to ideal and nonideal gases; thermochemistry; second law; entropy and free energy; criteria for spontaneity.

Chemical and Phase Equilibria: Law of mass action; Kp, Kc, Kx and Kn; effect of temperature on K; ionic equilibria in solutions; pH and buffer solutions; hydrolysis; solubility product; phase equilibria–phase rule and its application to one-component and two-component systems; colligative properties.

Electrochemistry: Conductance and its applications; transport number; galvanic cells; EMF and free energy; concentration cells with and without transport; polarography; concentration cells with and without transport; Debey-Huckel-Onsagar theory of strong electrolytes.

Chemical Kinetics: Reactions of various order; Arrhenius equation; collision theory; transition state theory; chain reactions – normal and branched; enzyme kinetics; photochemical processes; catalysis.

Adsorption: Gibbs adsorption equation; adsorption isotherm; types of adsorption; surface area of adsorbents; surface films on liquids.

Spectroscopy: Beer-Lambert law; fundamental concepts of rotational, vibrational, electronic and magnetic resonance spectroscopy.

ORGANIC CHEMISTRY

Basic Concepts in Organic Chemistry and Stereochemistry: Electronic effects (resonance, inductive, hyperconjugation) and steric effects and its applications (acid/base property); optical isomerism in compounds with and without any stereocenters (allenes,

biphenyls); conformation of acyclic systems (substituted ethane/n-propane/n-butane) and cyclic systems (mono- and di-substituted cyclohexanes).

Organic Reaction Mechanism and Synthetic Applications: Chemistry of reactive intermediates (carbocations, carbanions, free radicals, carbenes, nitrenes, benzynes etc.); Hofmann-Curtius-Lossen rearrangement, Wolff rearrangement, Simmons-Smith reaction, Reimer-Tiemann reaction, Michael reaction, Darzens reaction, Wittig reaction and McMurry reaction; Pinacol-pinacolone, Favorskii, benzilic acid rearrangement, dienone-phenol rearrangement, Baeyer-Villeger reaction; oxidation and reduction reactions in organic chemistry; organometallic reagents in organic synthesis (Grignard, organolithium and organocopper); Diels-Alder, electrocyclic and sigmatropic reactions; functional group interconversions and structural problems using chemical reactions.

Qualitative Organic Analysis: Identification of functional groups by chemical tests; elementary UV, IR and 1H NMR spectroscopic techniques as tools for structural elucidation.

Natural Products Chemistry: Chemistry of alkaloids, steroids, terpenes, carbohydrates, amino acids, peptides and nucleic acids.

Aromatic and Heterocyclic Chemistry: Monocyclic, bicyclic and tricyclic aromatic hydrocarbons, and monocyclic compounds with one hetero atom: synthesis, reactivity and properties.

INORGANIC CHEMISTRY

Periodic Table: Periodic classification of elements and periodicity in properties; general methods of isolation and purification of elements. Chemical Bonding and Shapes of Compounds: Types of bonding; VSEPR theory and shapes of molecules; hybridization; dipole moment; ionic solids; structure of NaCl, CsCl, diamond and graphite; lattice energy.

Main Group Elements (s and p blocks): General concepts on group relationships and gradation in properties; structure of electron deficient compounds involving main group elements.

Transition Metals (d block): Characteristics of 3d elements; oxide, hydroxide and salts of first row metals; coordination complexes: structure, isomerism, reaction mechanism and electronic spectra; VB, MO and Crystal Field theoretical approaches for structure, color and magnetic properties of metal complexes; organometallic compounds having ligands with back bonding capabilities such as metal carbonyls, carbenes, nitrosyls and metallocenes; homogenous catalysis.

Bioinorganic Chemistry: Essentials and trace elements of life; basic reactions in the biological systems and the role of metal ions, especially Fe2+, Fe3+, Cu2+ and Zn2+; structure and function of hemoglobin and myoglobin and carbonic anhydrase.

Instrumental Methods of Analysis: Basic principles; instrumentations and simple applications of conductometry, potentiometry and UV-vis spectrophotometry; analysis of water, air and soil samples.

Analytical Chemistry: Principles of qualitative and quantitative analysis; acid-base, oxidation-reduction and complexometric titrations using EDTA; precipitation reactions; use of indicators; use of organic reagents in inorganic analysis; radioactivity; nuclear reactions; applications of isotopes.

APPLIED MATHEMATICS (MA) AND COMPUTING

Sequences and Series of Real Numbers: Sequence of real numbers, convergence of sequences, bounded and monotone sequences, convergence criteria for sequences of real numbers, Cauchy sequences, subsequences, Bolzano-Weierstrass theorem. Series of real numbers, absolute convergence, tests of convergence for series of positive terms – comparison test, ratio test, root test; Leibniz test for convergence of alternating series.

Functions of One Real Variable: Limit, continuity, intermediate value property, differentiation, Rolle's Theorem, mean value theorem, L'Hospital rule, Taylor's theorem, maxima and minima.

Functions of Two or Three Real Variables: Limit, continuity, partial derivatives, differentiability, maxima and minima.

Integral Calculus: Integration as the inverse process of differentiation, definite integrals and their properties, fundamental theorem of calculus. Double and triple integrals, change of order of integration, calculating surface areas and volumes using double integrals, calculating volumes using triple integrals.

Differential Equations: Ordinary differential equations of the first order of the form y'=f(x,y), Bernoulli's equation, exact differential equations, integrating factor, orthogonal trajectories, homogeneous differential equations, variable separable equations, linear differential equations of second order with constant coefficients, method of variation of parameters, Cauchy-Euler equation.

Vector Calculus: Scalar and vector fields, gradient, divergence, curl, line integrals, surface integrals, Green, Stokes and Gauss theorems.

Group Theory: Groups, subgroups, Abelian groups, non-Abelian groups, cyclic groups, permutation groups, normal subgroups, Lagrange's Theorem for finite groups, group homomorphisms and basic concepts of quotient groups.

Linear Algebra: Finite dimensional vector spaces, linear independence of vectors, basis, dimension, linear transformations, matrix representation, range space, null space, rank-nullity

theorem. Rank and inverse of a matrix, determinant, solutions of systems of linear equations, consistency conditions, eigenvalues and eigenvectors for matrices, Cayley-Hamilton theorem.

Real Analysis: Interior points, limit points, open sets, closed sets, bounded sets, connected sets, compact sets, completeness of R. Power series (of real variable), Taylor's series, radius and interval of convergence, term-wise differentiation and integration of power series.

M.Sc Computer Science

Section A. MATHEMATICS

- a) **Logic :** Statement, Negation, Implication, Converse, Contraposititve, Conjuction, Disjunction, tautology, Truth Table, Principle of Mathematical induction.
- b) Sets, Relation and Function : Union, Intersection, Difference, Symmetric difference and Complement of sets , De Morgan's laws, Venn diagram, Cartesian product of sets, Power Set, Relation and function : domain , codomain and range of a relation, types of relations, Equivalence relation, Representation of three dimensional space by RxRxR, types of functions and their domain and range such as: Constant function, identity function, modulus function, logarithm function, exponential function, greatest integer function. surjective, injective and bijective functions, sum , difference and quotient of functions and their range, Composite function, Inverse of a function.
- c) Number system : Real numbers (algebraic and order properties, rational and irrational numbers), Absolute value, Triangle inequality, $AM \ge GM$, Inequalities(simple cases), Complex numbers as ordered pairs of reals, representation of a complex number in the form a +ib and their representation in a plane, Argand diagram, Algebra of complex numbers, modulus and argument of complex numbers, Conjugate a complex number, Quadratic equation in real numbers, and their solution, Relation between roots and coefficients, nature
- d) of roots, formation of quadratic equation with roots. Permutations and Combinations, fundamental principle of counting, permutation as an arrangement and combination as a selection, meaning of P(n,r) and C(n,r), simple applications, Binomial theorem for positive integral index, general term and middle term, properties of Binomial coefficient and their applications, Identities involving binomial co-efficients.
- e) **Determinants and matrices :** Determinants and matrices up to third order, Minors and cofactors, Properties of determinants, Matrices upto third order, Types of matrices, algebra of matrices, properties of determinant, evaluation of determinants, Adjoint and inverse of matrix, Application of determinants and matrices to the solution of linear equations (in three unknowns).
- f) **Trigonometry:** Compound angles, Multiple and Submultiple angles, Trigonometric identities, Solution of trigonometric equations, trigonometric functions, Properties of triangles, Inverse trigonometric function and their properties

- g) **Co-ordinate geometry of two dimensions:** Cartesian system of rectangular coordinates in a plane, distance formula, section formula, locus and its equation, translation of axes, slope of a line, parallel and perpendicular lines, intercepts of a line on the coordinate axes. Various forms of equations of a line, intersection of lines, angles between two lines, conditions for concurrence of three lines, distance of a point from a line equations of internal and external bisectors of angles between two lines, coordinates of centroid, orthocentre and circumcentre of a triangle, equation of family of lines satisfying various conditions. Pairs of straight lines, Standard form of equation of a circle, general form of the equation of a circle, radius and centre of a circle, equation of a circle when the end points of a diameter are given, points of intersection of a line and a circle and condition for a line to be tangent to a circle, Equations of tangents to a circle, Equations of parabola, Ellipse and hyperbola in simple forms, their tangents in standard form. Condition of tangency.
- h) Coordinate geometry of three dimensions: Coordinates of a point in space, distance between two points, section formula, Direction cosines and direction ratios, Projection, angle between two intersecting lines. Angle between two planes, Angle between a line and a plane. Distance of a point from a line and a plane. Equations of a line and a plane in different forms, intersection of a line and a plane, coplanar lines.
- i) **Sequence and Series:** Definition, Infinite geometric series, Arithmetico-geometric series, Exponential and Logarithmic series, Geometric mean between two given numbers, Relation between AM and GM
- j) **Vectors:** Vectors and scalars, addition of vectors, components of a vector in two dimensions and three dimensional space, scalar and vector products, scalar and vector triple product.
- k) Differential calculus: Concept of limit, limits of polynomial functions, rational functions, trigonometric functions, exponential and logarithmic functions, Continuity of functions, Continuity and differentiability, Derivative of standard Algebraic and Transcendental functions, Differentiation of trigonometric, inverse trigonometric, logarithmic and exponential functions, Derivative of composite functions, functions in parametric form, Implicit differentiation, Differentiation of the sum, difference, product and quotient of two functions, derivatives of order upto two, Rolle's and Lagrange's Mean Value Theorems, Applications of derivatives: Rate of change of quantities, monotonic increasing and decreasing functions, Maxima and minima of functions of one variable, tangents and normals, Geometrical application of derivatives such as finding tangents and normals to plane curves.
- Integral calculus: Standard methods of integration (substitution, by parts, by partial fraction, etc), Integration of rational, irrational functions and trigonometric functions. Definite integrals and properties of definite integrals, Fundamental Theorem of Calculus, Evaluation of definite integrals, determining areas of the regions bounded by simple curves in standard form.
- m) **Differential equations:** Definition, order, degree of a differential equation, General and particular solution of a differential equation, Formation of a differential equation, Solution of a differential equations by method of separation of variables,

Homogeneous differential equations of first order and first degree, Linear differential equations of the form dy/dx + p(x)y = q(x)

n) **Probability and statistics:** Measures of Dispersion: Calculation of mean, median, mode of grouped and ungrouped data, calculation of standard deviation, variance and mean deviation for grouped and ungrouped data, Probability: Probability of an event, addition and multiplication theorems of probability, Mutually exclusive events, Independent events, Compound events, Conditional probability, Addition theorem, Baye's theorem, random variables, probability distribution of a random variate (Binomial distribution only)

Section B. COMPUTER AWARENESS

- a) **Introduction to Computer:** Brief history of Computers, Components of a Computer, Computer related general knowledge, Application of Computers, Classification of Computers, Windows.
- b) **Computer Arithmetic:** Number System with general base, Number base conversion, Elementary arithmetic operation.
- c) **C Language:** Keywords, Constants, Variables, Identifiers, operators, statements. Writing simple C program. Arithmetic and logical expression, simple if, nested if, ifelse-ladder, conditional operators, switch case, for, while and do while loops. Concept of functions in C.