I.F.S. EXAM-(M)2017

CHEMISTRY

Paper – I

Time Allowed : Three Hours

Maximum Marks : 200

Question Paper Specific Instructions

Please read each of the following instructions carefully before attempting questions:

There are **EIGHT** questions in all, out of which **FIVE** are to be attempted.

Questions no. 1 and 5 are compulsory. Out of the remaining SIX questions, THREE are to be attempted selecting at least ONE question from each of the two Sections A and B.

Attempts of questions shall be counted in sequential order. Unless struck off, attempt of a question shall be counted even if attempted partly. Any page or portion of the page left blank in the Question-cum-Answer Booklet must be clearly struck off.

All questions carry equal marks. The number of marks carried by a question/part is indicated against it.

Answers must be written in **ENGLISH** only.

Unless otherwise mentioned, symbols and notations have their usual standard meanings.

Assume suitable data, if necessary and indicate the same clearly.

Neat sketches may be drawn, wherever required.

$h = 6.626 \times 10^{-34} Js$	$\rm k_B = 1{\cdot}38 \times 10^{-23}~\rm JK^{-1}$
$R = 8.314 JK^{-1} mol^{-1}$	$\pi = 3.14$
$c = 3 \times 10^8 \text{ ms}^{-1}$	$\mathbf{F}=96500~\mathbf{C}$
$N_{\rm A}=6{\cdot}023\times10^{23}$	1 atm = 101325 Pa

FSI-P-CHM

SECTION A

- Q1. (a) NaCl (molecular weight : 58.5) consists of a face-centred cubic lattice of Na⁺ ions interlocked with a similar lattice of Cl^{-} ions and has a density of 2.17 g/cm³.
 - (i) Draw the unit cell structure of NaCl.
 - (ii) Calculate the number of Na⁺ and Cl⁻ ions that are present in a unit cell.
 - (iii) Calculate the volume of the unit cell.
 - (iv) The first-order reflection from the d_{100} planes of NaCl occurs at $5\cdot9^{\circ}$. Calculate the wavelength of X-ray. 5+5+5=20
 - (b) For the reaction

 $A \rightarrow B + C$,

the following data were obtained :

t in sec	0	900	1800
conc. of A	50.8	19.7	7.62

Prove that the reaction is of the first order.

- (c) What would be the value of the principal quantum number, if an electron in a hydrogen atom was in the orbital of energy $-0.242 \times 10^{-18} \text{ J}$? Given : $k = 2.179 \times 10^{-18} \text{ J}$.
- (d) Calculate the work done when 1 mole of He expands isothermally and reversibly from a volume of 1 litre to a volume of 10 litres at 25°C.
- **Q2.** (a) If uncertainty in position is written as Δx and in momentum as Δp , then Heisenberg Uncertainty principle is $\Delta p \ \Delta x \ge h/4\pi$. If the position of an electron is known to within 10^{-12} m, what is the uncertainty in its momentum? Given $h = 6.626 \times 10^{-34}$ Js and $\pi = 3.14$.
 - (b) One mole of water is vapourised reversibly at 100°C and 1 atm.

 $H_2O(l) \rightleftharpoons H_2O(g)$

The heat of vapourisation of water is 9720 cal/mol. Calculate $W, \Delta E, \Delta H$ and ΔS .

5

5

10

5

- (c) How is molecular partition function defined ? What is the physical significance of this property ? Discuss the effect of temperature on the molecular partition function.
- (d) Write brief notes on n-type and p-type semiconductors.

Q3. (a) Calculate the mean activity coefficient at 25°C of (i) 0.01 molal solution of LiCl, and (ii) 0.001 molal solution of BaCl₂. Given : A = 0.509 for water at 25°C.

- (b) Consider the Arrhenius equation. Derive the expression relating rate-constant, energy of activation and frequency factor, in the form of a straight line equation.
- (c) According to Van der Waals' equation, calculate the pressure required to confine one mole of CO_2 in a volume of 1 litre at 0°C. 10

Given : R = 0.082 litre atm a = 3.60 atm litre²/mol² $b = 4.27 \times 10^{-2}$ litre/mol

(d) For the photochemical reaction

 $A \rightarrow B$,

it is found that 1.00×10^{-5} mole of *B* is formed, as a result of the absorption of 6.00×10^7 ergs at 3600 Å. Calculate the quantum yield. 10 Given : Avogadro number 6.02×10^{23}

Planck's constant 6.626×10^{-34} J-sec Velocity of light 3×10^{10} cm/sec

- **Q4.** (a) Considering molecular-orbital energy level diagram, justify the O O bond distances in O_2 , O_2^- and O_2^{2-} as 1.21, 1.28 and 1.49 Å, respectively. 10
 - (b) Draw and discuss the pressure-temperature diagram for H_2O . Apply the phase rule to the diagram. 10
 - (c) Calculate the equilibrium constant for the following reaction at 25° C: Zn + Cu²⁺ \longrightarrow Zn²⁺ + Cu 10

3

Given at 25°C :

$$E^{0}(\text{Zn}^{2+}/\text{Zn}) = -0.76 \text{ V}$$
 and
 $E^{0}(\text{Cu}^{2+}/\text{Cu}) = 0.34 \text{ V}$

FSI-P-CHM

10

5

10

(d) Consider the reaction :

 $\mathrm{PCl}_{5}\left(\mathbf{g}\right) \rightleftharpoons \mathrm{PCl}_{3}\left(\mathbf{g}\right) + \mathrm{Cl}_{2}\left(\mathbf{g}\right)$

Derive the expression relating K_p and degree of dissociation α .

Given : At 250°C and 1 atm, K_p for the above reaction is 1.78. Calculate α . 8+2=10

FSI-P-CHM

SECTION B

- Q5. (a) Draw the structures and d-orbital splitting diagrams of (i) $[NiCl_4]^{2-}$, and (ii) $[Co(H_2O)_6]^{3+}$. Calculate their crystal-field stabilization energy (CFSE) and spin-only magnetic moment values. 10+10=20
 - (b) Draw the structures of the proteins (i) de-oxy myoglobin, and
 (ii) oxidised form of cytochrome-c. Comment on the properties of
 de-oxy myoglobin.
- Q6. (a) Explain the structure and bonding in $[Cr(CO)_6]$ and $[PtCl_3(C_2H_4)]^-$, showing metal-ligand orbital interactions, both σ -type and π -type. In each case, show the counting of valence-electrons around the metal. 10+10=20
 - (b) Consider CO insertion reaction in $[Rh(PPh_3)_2(CO)_2(CH_2CH_2R)]$. Draw the structure of the reactant and the product. Also identify the oxidation state of Rh in the reactant and in the product, showing valence-electron count around Rh in each case.
 - (c) The Δ_0 value for $[Mn(H_2O)_6]^{3+}$ is 21,000 cm⁻¹. For this metal ion, the value of pairing energy is 28,000 cm⁻¹. Decide the spin-state of the complex. Briefly justify your answer.
- **Q7.** (a) Draw the solid-state structure of $Co_2(CO)_8$ and show valence-electron count around Co atom.
 - (b) Explain the term 'over potential'. Discuss the application of over potential in (i) electro-deposition of metals from solutions, and (ii) corrosion of metals.
 - (c) Consider the complex $[Co(NH_3)_4Cl_2]^+$. Draw the structures of possible geometrical isomers.
 - (d) Draw the structure of ferrocene. Showing the number of electrons contributed, count the number of valence-electrons around the Fe atom. 10

https://www.freshersnow.com/previous-year-question-papers/

5

15

10

15

- **Q8.** (a) Comment on the consequences of 'Lanthanide Contraction'.
 - (b) Derive the B.E.T. equation for adsorption on a solid surface. How can the surface area be determined with the help of B.E.T. equation ?
 - (c) Discuss the merits and demerits of liquid hydrogen fluoride as a non-aqueous solvent. Give the chemical reactions which take place in this solvent. 10
 - (d) What do you understand by quantum yield ? Discuss high and low values of quantum yield by taking suitable examples. 10

https://www.freshersnow.com/previous-year-question-papers/

10