2016

MATHEMATICS

Full Marks - 80
Pass Marks - 20
Time: Three hours
Attempt all questions.
The figures in the right hand margin indicate full marks for the questions.
For Question Nos. I to 5, write the letter corresponding to the correct answer.

1. The expression $(a+b+c)^{3}-\left(a^{3}+b^{3}+c^{3}\right)$ factorises to:

(A) $(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{a})$
(B) $(\mathrm{a}+\mathrm{b})(\mathrm{b}+\mathrm{c})(\mathrm{c}+\mathrm{a})$
(C) $3(\mathrm{a}+\mathrm{b})(\mathrm{b}+\mathrm{c})(\mathrm{c}+\mathrm{a})$
(D) $3(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{a})$
2. The number of multiples of 7 between 100 and 300 are :

(A) 27
(B) 28
(C) 29
(D) 30
3. The areas of two similar triangles $A B C$ and DEF are $2500 \mathrm{~cm}^{2}$ and $1600 \mathrm{~cm}^{2}$ respectively. Then the ratio of the perimeter of $\triangle \mathrm{ABC}$ to the perimeter of $\triangle \mathrm{DEF}$ is:

 उইलबभि $\triangle \mathrm{ABC}$ की perimeter গा $\triangle \mathrm{DEF}$ गो perimeter भा उই्नया ratio मू মथभीजिनि :
(A) $16: 25$
(B) $25: 16$
(C) $5: 4$
(D) $4: 5$
4. If the points $(x, y),(a, 0)$ and $(0, b)$ are collinear, then $\frac{x}{a}+\frac{y}{b}$ equals :

 अभिभा মাঢ़ा :
(A) 1
(B) 0
(C) $a b$
(D) $\mathrm{a}+\mathrm{b}$
5. The area of the largest circle which can be inscribed in a square of side a is :
 whilvofot:
 মयগীসিनि :
(A) πa^{2}
(B) $2 \pi a^{2}$
(C) $\frac{\pi \mathrm{a}^{2}}{2}$
(D) $\frac{\pi \mathrm{a}^{2}}{4}$
6. Stare Euclid's DivisionLemma. 1

Euclid's Division Lemma গी बादरान 'যু।
7. Find the value of k if $x+2$ is a factor of $k x^{2}-3 x+2 k$.

$\mathrm{x}+2$ अभि $\mathrm{kx}-3 \mathrm{x}+2 \mathrm{k}$ গो factor অया ওইরयभि k গी value भूटোকউ।
8. Define a cyclic expression.

Cyclic expression शाযयमि করিবুনো তাকউ।
9. Fiind the value of $\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}$.
$\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}$ mot value mixisura ?
$\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}$ को value भूषथाक्ट ।
10. Find the volume of a hemisphere of radius 21 cm .

11. Define mutually exclusive events associated with a random experiment.

Random experiment অমগी mutually exclusive उ'नया event শिश হায়বসি করিবুना অকই।
12. If A, B, C are the angles of a triangle, prove that $\cos \left(\frac{A+B}{2}\right)=\sin \frac{C}{2}$.

 প্রমান ঢৈ।
13. A fair die is thrown. What is the probability for the occurrence of a prime number? 1 Ef

14. Show that the square of an odd integer is of the form $8 k+1$.
 Odd integer खมभी square मू $8 \mathrm{k}+1$ गी मउश्ना दन হाয়বा উৎनू।
15. Factorise : $a b(a+b)+b c(b+c)+c a(c+a)+3 a b c$. 2

Factorise $s^{n}: a b(a+b)+b c(b+c)+c a(c+a)+3 a b c$.
Factorise ট্ট : $a b(a+b)+b c(b+c)+c a(c+a)+3 a b c$
16. If the roots of the equation $x^{2}+p x+q=0$ are in the ratio $3: 4$, prove that $12 p^{2}=49 q, 2$

 शाइ़या প্রমাণ ঢে।
17. Find the sum of the first n natural odd numbers.

18. The perimeter of a sector of a circle of radius 6.5 cm is 21 cm . Find the area of the sector.

Radius ना 6.5 cm ऊইया circle अघগी sector जघগी perimeter 21 cm नि । Sector অদूभी area भুৰোক্ট।
19. State and prove Factor Theorem.

20. Solve graphically:

Graph wet moxer solve sit:

$$
\begin{aligned}
& 3 x+y=11 \\
& x-2 y+1=0
\end{aligned}
$$

21. Solve the quadratic equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ by the method of completing perfect square.
 $a x^{2}+b x+c=0$ शाख़बा quadratic equation अभि perfect square মभू? खाश्न<গী भाप्वृना solve खた।
22. In a right $\triangle A B C$ right angled at B, show that:

(i) $\cos ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~A}=1$
(ii) $\sec ^{2} \mathrm{~A}-\tan ^{2} \mathrm{~A}=1$
23. If PA and PB are tangent segments drawn from an external point P to a circie wilh centre O , Prove that $\angle \mathrm{OAB}=\frac{1}{2} \angle \mathrm{APB}$,

24. Give mathematical definition of probability of the occurrence of an event. If A and $\overline{\mathrm{A}}$ are two complementary events. prove that $\mathrm{P}(\mathrm{A})+\mathrm{P}(\overline{\mathrm{A}})=1$.

 ञ゙॥

25. For, $x, a, \delta \in R$ and $\delta>0$, prove that $|x-a|<\delta \Leftrightarrow a-\delta<x<a+\delta$.

$x, a, \delta \in R$ अมमूश $\delta>0$ उইइबनि, भ्रघाण তৌ : $|x-a|<\delta \Leftrightarrow a-\delta<x<a+\delta$

If $\mathrm{x}, \mathrm{y} \in \mathbf{R}$, prove that $\mathrm{xy}=0 \Rightarrow \mathrm{x}=0$ or $\mathrm{y}=0$

করিগুস্বা $\mathrm{x}, \mathrm{y} \in \mathrm{R}$ उইᄎ্রবमि, প্রমাণ তো : $\mathrm{xy}=0 \Rightarrow \mathrm{x}=0$ or $\mathrm{y}=0$
26. The ratio of incomes of two persons is $9: 7$ and the ratio of their expenditures is $4: 3$. If each of them saves Rs. 8000 per month, find their monthly incomes.

มী অनीগी income গी ratio $9: 7$ नि जमूগा ম丬োয়ীी expenditure গो ratio ना $4: 3$ नि। बরिश्रुन्दा

27. Find the coordinates of the point which divides the line segment joining the points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ internally in the ratio $\mathrm{m}: \mathrm{n}$.
 8f(xe
 খায়োক্রিবা বিन्দू অদूগী coordinate শिशू भু<োকউ।
28. Construct a triangle similar to a given triangle ABC with its sides equal to $\frac{8}{5}$ of the corresponding sides of the $\triangle \mathrm{ABC}$. Write the steps of construction. $2+3=5$

अभीবा $\triangle \mathrm{ABC}$ मा similar ওইবा, side শिशদूना $\triangle \mathrm{ABC}$ गी চाझ्सया side শिशগी $\frac{8}{5}$ ఆইবा, triangle अมा construct তো। Construction গी step শिश्नू ইযू।
29. From a point on the ground, the angles of elevation of the bottom and the top of a transmission tower fixed at the top of a building of height h are α and β respectively. Prove that the height of the tower is $\frac{\mathrm{h}(\tan \beta-\tan \alpha)}{\tan \alpha}$.

ट̈tinn

 $\mathrm{h}(\tan \beta-\tan \alpha)$ नि হाझखा ध्रयाণ जে। $\tan \alpha$
30. The median of the following distribution is 35 . Find the value of x and also the mode of the distribution.

มथाभा পীরিবा distribution अসिগী median 35 नि $1 x$ की value भूcথাকউ जমসুং distribution अসिडी mode সু भूषোকট ।

Class Interval	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$
Frequency	2	3	x	6	5	3	2

31. State and prove Basic Proportionality Theorem.

State and prove Converse of Pythagoras Theorem.

Converse of Pythagoras Theorem গী বার্小ান ইযু অমসুং প্রมাन जো।
32. A container is in the form of a fustum of a right circular cone of height 12 cm with radii of its upper and lower ends as 17 cm and 8 cm respectively. Find the cost of milk the container can hold at the rate of Rs. 20 per litre. Also find the curved surface area of the copnainer (take $\pi=3.14$)

 ($\pi=3.14$ (लि)

Aright circular cone is divided by plane parallel to its base into a smaller cone of volume v_{1} and a fristum of volume v_{2}. If $\mathrm{v}_{1}: \mathrm{v}_{2}=8: 19$, find the ratio of the radius of the smaller cone to that of the given cone.

