#### (EEE)

### ELECTRICAL AND ELECTRONICS ENGINEERING

#### INSTRUCTIONS TO CANDIDATES

- Candidates should write their Hall Ticket Number only in the space provided at the top left hand corner of this page, on the leaflet attached to this booklet and also in the space provided on the OMR Response Sheet. BESIDES WRITING, THE CANDIDATE SHOULD ENSURE THAT THE APPROPRIATE CIRCLES PROVIDED FOR THE HALL TICKET NUMBERS ARE SHADED USING H.B. PENCIL ONLY ON THE OMR RESPONSE SHEET. DO NOT WRITE HALL TICKET NUMBER ANY WHERE ELSE.
- Immediately on opening this Question Paper Booklet, check:
  - Whether 200 multiple choice questions are printed (50 questions in Mathematics, 25 questions in Physics, 25 questions in Chemistry and 100 questions in Engineering)
  - In case of any discrepancy immediately exchange the Question paper Booklet of same code by bringing the error to the notice of invigilator.
- Use of Calculators, Mathematical Tables and Log books is not permitted. 3.
- Candidate must ensure that he/she has received the Correct Question Booklet, corresponding to 4. his/her branch of Engineering.
- Candidate should ensure that the booklet Code and the Booklet Serial Number, as it appears on this page 5. is entered at the appropriate place on the OMR Response Sheet by shading the appropriate circles provided therein using H.B. pencil only. Candidate should note that if they fail to enter the Booklet Serial Number and the Booklet Code on the OMR Response Sheet, their Answer Sheet will not be valued.
- Candidate shall shade one of the circles 1, 2, 3 or 4 corresponding question on the OMR Response Sheet using H.B. Pencil only. Candidate should note that their OMR Response Sheet will be invalidated if the circles against the question are shaded using Black / Blue ink pen / Ball pen / any other pencil other than H.B. Pencil or if more than one circle is shaded against any question.
- One mark will be awarded for every correct answer. There are no negative marks. 7.
- The OMR Response Sheet will not be valued if the candidate:
  - Writes the Hall Ticket Number in any part of the OMR Response Sheet except in the space provided for
  - Writes any irrelevant matter including religious symbols, words, prayers or any communication whatsoever in any part of the OMR Response Sheet.
  - Adopts any other malpractice.
- Rough work should be done only in the space provided in the Question Paper Booklet.
- 10. No loose sheets or papers will be allowed in the examination hall.
- Timings of Test: 10.00 A.M. to 1.00 P.M.
- 12. Candidate should ensure that he / she enters his / her name and appends signature on the Question paper booklet, leaflet attached to this question paper booklet and also on the OMR Response Sheet in the space provided. Candidate should ensure that the invigilator puts his signature on this question paper booklet, leaflet attached to the question paper booklet and also on the OMR Response Sheet.
- Before leaving the examination hall candidate should return both the OMR Response Sheet and the leaflet attached to this question paper booklet to the invigilator. Failure to return any of the above shall be construed as malpractice in the examination. Question paper booklet may be retained by the candidate.
- 14. This booklet contains a total of 32 pages including Cover page and the pages for Rough Work.

(EEE)

|       |     | Set Code: T2                                                                                                                                                                                                                                       |
|-------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |     | Booklet Code : B                                                                                                                                                                                                                                   |
| Note: | (1) | Answer all questions.                                                                                                                                                                                                                              |
|       | (2) | Each question carries I mark. There are no negative marks.                                                                                                                                                                                         |
|       | (3) | Answer to the questions must be entered only on OMR Response Sheet provided separately by completely shading with H.B. Pencil, only one of the circles 1, 2, 3 or 4 provided against each question, and which is most appropriate to the question. |
|       | (4) | The OMR Response Sheet will be invalidated if the circle is shaded using ink / ball pen or if more than one circle is shaded against each question.                                                                                                |

### **MATHEMATICS**

(2) 4 sinA cosB sinC

(4) 4 sinA sinB sinC

(2) x=0(4)  $x = n\pi + \alpha, n \in \mathbb{Z}$ 

If  $A+B+C = \pi$ , then  $\sin 2A + \sin 2B + \sin 2C =$ 

The principal solution of Tanx = 0 is

(1) 4 cosA sinB cosC

(3) 4 cosA cosB cosC

(3)  $x=(2n+1) \pi/2, n \in \mathbb{Z}$ 

(1)  $x = n\pi, n \in \mathbb{Z}$ 

| 3. | The   | value of Tan-1 (                   | 2) + Ta  | m <sup>-1</sup> (3) is |          |          | *               |              |                  |
|----|-------|------------------------------------|----------|------------------------|----------|----------|-----------------|--------------|------------------|
|    | (1)   | $\frac{\pi}{4}$                    | (2)      | $\frac{\pi}{2}$        | ii .     | (3)      | $\frac{\pi}{3}$ | . (4)        | $\frac{3\pi}{4}$ |
| 4. | If th | e sides of a righ                  | t angle  | e triangle             | are in A | A.P., th | en the ratio    | of its sides | is               |
|    |       | 1:2:3                              |          | 2:3:4                  |          |          | 3:4:5           | (4)          | 4:5:             |
| 5. | The   | value of $r.r_1.r_2$               | $r_3$ is |                        |          |          |                 |              |                  |
|    | (1)   | $\Delta^2$                         | (2)      | $\Delta^{-2}$          |          | (3)      | $\Delta^{-3}$   | (4)          | $\Delta^4$       |
|    |       |                                    |          |                        |          |          | *               |              |                  |
| 6. | 1+    | $\frac{1}{r^2} + \frac{1}{r^3} = $ | **       |                        |          |          |                 | -            |                  |
|    | rı    | r2 r3                              |          |                        |          |          |                 |              |                  |

Set Code : Booklet Code :

If a=6, b=5, c=9, then the value of angle A is

- (1)  $\cos^{-1}(2/9)$
- $(2) \cos^{-1}(2/5)$
- (3)  $\cos^{-1}(7/9)$  (4)  $\cos^{-1}(1/3)$

The polar form of complex number 1-i is

- (1)  $\sqrt{2}e^{-i\pi/4}$  (2)  $\sqrt{2}e^{i\pi/4}$
- (3)  $\sqrt{2}e^{i\pi/2}$  (4)  $\sqrt{2}e^{-i\pi/2}$

If 1,  $\omega$ ,  $\omega^2$  be the cube roots of unity, then the value of  $2^{\omega^3} \cdot 2^{\omega^5} \cdot 2^{\omega}$  is

- (2)  $\omega^2$
- (3) 1
- (4) 0

10. The intercept made on X-axis by the circle  $x^2+y^2+2gx+2fy+c=0$  is

- (1)  $\sqrt{g^2-c}$  (2)  $\sqrt{f^2-c}$  (3)  $2.\sqrt{g^2-c}$  (4)  $2.\sqrt{f^2-c}$

11. If one end of the diameter of the circle  $x^2+y^2-5x-8y+13=0$  is (2, 7), then the other end of the diameter is

- (1) (3, 1)

- (2) (1,3) (3) (-3,-1) (4) (-1,-3)

12. The radius of the circle  $\sqrt{1+m^2}(x^2+y^2)-2cx-2mcy=0$  is

(1) 2c (2) 4c (3) c/2

- (4) c

13. The parametric equations of the ellipse  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  are

- (1)  $x = a \sec \theta, y = b \tan \theta$
- (2)  $x = b \sin\theta, y = a \cos\theta$
- (3)  $x = a \cos\theta, y = b \sin\theta$
- (4)  $x = a \csc\theta, y = b \cot\theta$

14. The equation of the directrix of the parabola  $2x^2 = -7y$  is

- (1) 8y+7=0
- (2) 8y-7=0
- (3) 7y+8=0 (4) 8x-7=0

15. The condition for a straight line y = mx + c to be a tangent to the hyperbola  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$  is

- (1) c = a/m
- (2)  $c^2 = a^2m^2 b^2$  (3)  $c^2 = a^2m^2 + b^2$  (4)  $c^2 = a/m$

Set Code: T2 Booklet Code:

16. 
$$Lt_{x \to 1} \frac{\sqrt{5x-4} - \sqrt{x}}{x-1}$$
 is

- (1) 3

17. 
$$\log i =$$

- (1)  $\pi/2$

18. 
$$\frac{d}{dx}[\log_7 X] =$$

- (1)  $\frac{1}{x}$  (2)  $X \log_7^6$  (3)  $\frac{1}{x} \log_7^7$  (4)  $\frac{1}{x} \log_7^6$

$$19. \quad \frac{d}{dx}[2\cosh x] =$$

- (1)  $\frac{e^x + e^{-x}}{2}$  (2)  $\frac{e^x e^{-x}}{2}$  (3)  $e^x + e^{-x}$

$$20. \quad \frac{d}{dx} \left[ \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) \right] =$$

- (1)  $\frac{1}{1+x^2}$  (2)  $\frac{-1}{1+x^2}$  (3)  $\frac{2}{1+x^2}$  (4)  $\frac{-2}{1+x^2}$

21. If 
$$x = at^2$$
,  $y = 2at$ , then  $\frac{dy}{dx} =$ 

- (2)  $\sqrt{\frac{x}{a}}$  (3)  $\sqrt{\frac{a}{x}}$  (4)  $\sqrt{\frac{x}{v}}$

22. The derivative of  $e^x$  with respect to  $\sqrt{x}$  is

- $(1) \quad \frac{2\sqrt{x}}{e^x} \qquad \qquad (2) \quad 2\sqrt{x}e^x \qquad \qquad (3) \quad \frac{e^x}{2\sqrt{x}}$

Set Code : T2 Booklet Code:

- 23. The equation of the normal to the curve  $y = 5x^4$  at the point (1, 5) is

  - (1) x + 20y = 99 (2) x + 20y = 101 (3) x 20y = 99 (4) x 20y = 101
- 24. The angle between the curves  $y^2 = 4x$  and  $x^2 + y^2 = 5$  is
  - (1)  $\frac{\pi}{4}$
- (2)  $tan^{-1}(2)$
- (3)  $tan^{-1}(3)$

- 25. If  $u = x^3y^3$  then  $\frac{\partial^3 u}{\partial x^3} + \frac{\partial^3 u}{\partial y^3} =$ 
  - (1)  $6(x^3+y^3)$  (2)  $6x^3y^3$
- (3)  $6x^3$

- 26.  $\int \csc x dx =$ 
  - (1)  $\log(\csc x + \cot x) + C$
- (2)  $\log(\cot x/2) + C$

(3)  $\log (\tan x/2) + C$ 

(4)  $-\csc x \cdot \cot x + C$ 

- 27.  $\int_0^{\frac{\pi}{2}} \cos^{11} x \, dx =$ 
  - (1)  $\frac{256}{693}$  (2)  $\frac{256\pi}{693}$

- 28. [f'(x).[f(x)]'' dx =
  - (1)  $\frac{[f(x)]^{n-1}}{n-1} + C$  (2)  $\frac{[f(x)]^{n+1}}{n+1} + C$  (3)  $n[f(x)]^{n-1} + C$  (4)  $(n+1)[f(x)]^{n+1} + C$

- $29. \quad \int \frac{dx}{(x+7)\sqrt{x+6}} =$ 
  - (1)  $Tan^{-1}(\sqrt{x+6})+C$

(3)  $Tan^{-1}(x+7)+C$ 

(4)  $2Tan^{-1}(x+7)+C$ 

Set Code: **Booklet Code:** 

30.  $\int \tan^{-1} x \, dx =$ 

(1) 
$$x.Tan^{-1}x + \frac{1}{2}\log(1+x^2) + C$$
 (2)  $\frac{1}{1+x^2} + C$ 

(2) 
$$\frac{1}{1+x^2} + C$$

(3) 
$$x^2 . Tan^{-1}x + C$$

(4) 
$$x.Tan^{-1}x - \log \sqrt{1+x^2} + C$$

$$31. \quad \int \frac{dx}{1 + e^{-x}} =$$

(1) 
$$\log (1+e^{-x}) + C$$
  
(3)  $e^{-x} + C$ 

(2) 
$$\log(1+e^x) + C$$

(3) 
$$e^{-x} + C$$

(4) 
$$e^{x} + C$$

32. 
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin|x| \, dx =$$

- (1) 0
- (2) 1
- (3) 2

33. Area under the curve  $f(x) = \sin x$  in  $[0, \pi]$  is

- (1) 4 sq. units
- (2) 2 sq. units
- (3) 6 sq. units

34. The order of  $x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} - 3y = x$  is

- (1) 1
- (2) 4
- (3) 3

35. The degree of  $\left[ \frac{d^2 y}{dx^2} + \left( \frac{dy}{dx} \right)^2 \right]^{\frac{5}{2}} = a \frac{d^2 y}{dx^2}$  is

- (2) 2
- (3) 1

36. The family of straight lines passing through the origin is represented by the differential equation

- (1) ydx + xdy = 0 (2) xdy ydx = 0 (3) xdx + ydy = 0 (4) xdx ydy = 0

Set Code : **Booklet Code:** 

- 37. The differential equitation  $\frac{dy}{dx} + \frac{ax + hy + g}{hx + hy + f} = 0$  is called
  - (1) Homogeneous (2) Exact
- (3) Linear
- (4) Legender
- 38. The solution of differential equation  $\frac{dy}{dx} = e^{-x^2} 2xy$  is
  - (1)  $y \cdot e^{-x^2} = x + c$  (2)  $y e^x = x + c$  (3)  $y e^{x^2} = x + c$  (4) y = x + c

- 39. The complementary function of  $(D^3+D^2+D+1)y = 10$  is

  - (1)  $C_1 \cos x + C_2 \sin x + C_3 e^{-x}$  (2)  $C_1 \cos x + C_2 \sin x + C_3 e^{x}$  (3)  $C_1 + C_2 \cos x + C_3 \sin x$  (4)  $(C_1 + C_2 x + C_3 x^2) e^{x}$
- 40. Particular Integral of  $(D-1)^4y = e^x$  is

  - (1)  $x^4 e^x$  (2)  $\frac{x^4}{24} e^{-x}$  (3)  $\frac{x^4}{12} e^x$  (4)  $\frac{x^4}{24} e^x$

- 41. If  $A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ , then  $A^4 =$ 
  - (1) 3I
- (2) 91
- (3) 271
- 42. If  $A = \begin{bmatrix} 0 & 2 & 1 \\ -2 & 0 & -2 \\ -1 & x & 0 \end{bmatrix}$  is a skew symmetric matrix, then the value of x is
- (2) 2
- (3) 3
- 43. What is the number of all possible matrices with each entry as 0 or 1 if the order of matrices is  $3 \times 3$ 
  - (1) 64
- (2) 268
- (3) 512
- (4) 256

Set Code : Booklet Code :

- 44. If  $A = \begin{bmatrix} 1 & i & -i \\ i & -i & 1 \\ -i & 1 & i \end{bmatrix}$ , then |A| = 1
  - (1) 1 . (2) 2
- (3) 3
- 45. The solution of a system of linear equations 2x y + 3z = 9, x + y + z = 6, x y + z = 2 is
  - (1) x = -1, y = -2, z = -3 (2) x = 3, y = 2, z = 1

(3) x = 2, v = 1, z = 3

- 46. If  $\frac{1}{r^2 + a^2} = \frac{A}{r + ai} + \frac{B}{r ai}$  then A =\_\_\_\_\_\_, B =\_\_\_\_\_\_.

  - (1)  $\frac{1}{2ai}$ ,  $-\frac{1}{2ai}$  (2)  $-\frac{1}{2ai}$ ,  $\frac{1}{2ai}$  (3)  $\frac{1}{ai}$ ,  $-\frac{1}{ai}$  (4)  $-\frac{1}{ai}$ ,  $\frac{1}{ai}$
- 47. If  $\frac{2x+4}{(x-1)^3} = \frac{A_1}{(x-1)} + \frac{A_2}{(x-1)^2} + \frac{A_3}{(x-1)^3}$  then  $\sum_{i=1}^3 A_i$  is equal to
  - (1) A,

- (2)  $2A_2$  (3)  $4A_2$  (4)  $4A_1$
- 48. The period of the function  $f(x) = |\sin x|$  is
  - (1)  $\pi$
- (2)  $2\pi$
- (3)  $3\pi$

- 49. If  $A+B=45^{\circ}$ , then  $(1-\cot A) \cdot (1-\cot B)$  is
  - (1) 1
- (2) 0
- (3) 2

- 50. The value of  $\sin 78^{\circ} + \cos 132^{\circ}$  is
- (1)  $\frac{\sqrt{5}+1}{4}$  (2)  $\frac{\sqrt{5}+1}{2}$  (3)  $\frac{\sqrt{5}-1}{2}$  (4)  $\frac{\sqrt{5}-1}{4}$

| Set Code :     | <b>T2</b> |
|----------------|-----------|
| Booklet Code : | В         |

#### PHYSICS

| 51. | The linear momentum of a parti | cle varies with time $t$ as $p = a$ | a+bt+ct2 which of the following is |
|-----|--------------------------------|-------------------------------------|------------------------------------|
|     | correct?                       |                                     |                                    |

- (1) Force varies with time in a quadratic manner.
- (2) Force is time-dependent.
- (3) The velocity of the particle is proportional to time.
- (4) The displacement of the particle is proportional to t. .

52. A shell of mass m moving with a velocity  $\nu$  suddenly explodes into two pieces. One part of mass m/4 remains stationary. The velocity of the other part is

- (1) v
- (2) 2v

53. The velocity of a freely falling body after 2s is

- (1) 9.8 ms<sup>-1</sup>
- (2) 10.2 ms<sup>-1</sup>
- (3) 18.6 ms<sup>-1</sup>
- (4) 19.6 ms<sup>-1</sup>

54. A large number of bullets are fired in all directions with the same speed u. The maximum area on the ground on which these bullets will spread is

- (1)  $\frac{\pi u^2}{g^2}$  (2)  $\frac{\pi u^4}{g^2}$  (3)  $\frac{\pi u^2}{g^4}$  (4)  $\frac{\pi u}{g^4}$

The minimum stopping distance for a car of mass m, moving with a speed v along a level road, if the coefficient of friction between the tyres and the road is µ, will be

- (1)  $\frac{v^2}{2\mu g}$  (2)  $\frac{v^2}{\mu g}$  (3)  $\frac{v^2}{4\mu g}$  (4)  $\frac{v}{2\mu g}$

56. When a bicycle is in motion, the force of friction excreted by the ground on the two wheels is such that it acts

- (1) In the backward direction on the front wheel and in the forward direction on the rear wheel
- (2) In the forward direction on the front wheel and in the backward direction on the rear wheel
- (3) In the backward direction on both the front and the rear wheels
- (4) In the forward direction on both the front and the rear wheels

|     |      |                                  |           |                               |             | ¥.1           | . 14          | Se        | t Code  | 12         |
|-----|------|----------------------------------|-----------|-------------------------------|-------------|---------------|---------------|-----------|---------|------------|
|     | n (§ |                                  |           |                               |             |               |               | Booklet   | Code    | : <b>B</b> |
| 57. | In a | perfectly inela                  | astic col | lision, the tv                | vo bodies   |               | 1.4           | 80        |         |            |
|     | (1)  | strike and ex                    | plode     |                               | (2)         | explode w     | ithout strik  | cing      |         |            |
|     | (3)  | implode and                      | explode   |                               | (4)         | combine a     | and move to   | ogether   |         |            |
| 58. |      | ler the action o                 | f a cons  | tant force, a                 | particle is | experiencii   | ng a consta   | nt accele | ration, | then the   |
|     | (1)  | zero                             |           |                               | (2)         | positive      |               |           |         | 4          |
|     | (3)  | negative                         |           |                               | (4)         | increasing    | guniformly    | with tim  | ie      |            |
| 59. | Con  | sider the follo                  | wing tw   | o statements                  |             |               |               |           |         | *          |
|     | A:   | Linear mome                      |           |                               |             | is zero.      |               |           |         |            |
|     | B:   | Kinetic energ                    |           |                               |             |               |               |           |         |            |
|     | Ther |                                  |           |                               |             |               |               |           |         |            |
|     | (1)  | A implies B                      | & B imp   | lies A                        |             |               |               | 124       |         |            |
|     | (2)  | A does not in                    | nply B &  | B does not                    | imply A     |               |               |           |         |            |
|     | (3)  | A implies B b                    | •         |                               |             |               |               |           | 10      |            |
|     | (4)  | A does not in                    |           |                               |             | 3563          |               |           | **      |            |
| 60. |      | engine develor<br>ht of 40 m? (G |           |                               | How mucl    | n time will   | it take to li | ft a mass | of 200  | kg to a    |
|     | (1)  | 4s                               | (2)       | 5s                            | (3)         | 8s            | (4)           | 10s       |         |            |
| 61. | Ifas | spring has time                  | period    | T, and is cut                 | into n equ  | al parts, the | n the time    | period w  | ill be  |            |
|     | (1)  | $T\sqrt{n}$                      | (2)       | $\frac{\mathrm{T}}{\sqrt{n}}$ | . (3)       | nТ            | (4)           | Т .       |         |            |
| 62. | Whe  | n temperature                    | increase  | es, the frequ                 | ency of a t | uning fork    | 6.1           | e .       |         |            |
|     | (1)  | increases                        |           |                               |             |               |               | 9         |         |            |
|     | (2)  | decreases                        |           |                               |             |               | 55            |           |         |            |
|     | (3)  | remains same                     | •         |                               |             |               |               |           |         |            |
|     | (4)  | increases or o                   | lecrease  | s depending                   | on the ma   | terials       |               |           |         |            |
|     |      |                                  |           |                               | 11-B        |               |               |           |         |            |
|     |      |                                  |           |                               | 3.65VT0     |               | 50            |           |         |            |
|     |      |                                  |           |                               |             |               |               |           |         |            |

|     |              |                                |                         |        |        |                 |         |                              |                  |           |                       | Set Co   | de: T2       |
|-----|--------------|--------------------------------|-------------------------|--------|--------|-----------------|---------|------------------------------|------------------|-----------|-----------------------|----------|--------------|
|     |              |                                |                         |        |        |                 |         |                              |                  |           | Book                  | let Co   | de : B       |
| 63. | Ifa          | simple harm                    | onic moti               | ion is | s repr | esent           | ed by   | $\frac{d^2x}{dy^2} + \alpha$ | x=0, its         | s time p  | eriod i               | s        |              |
|     | (1)          | $2\pi\sqrt{\alpha}$            | (2)                     | 2π     | ια     |                 | (3)     | $\frac{2\pi}{\sqrt{\alpha}}$ |                  | (4)       | $\frac{2\pi}{\alpha}$ |          |              |
| 64. | A c          | inema hall ha                  | s volume                | of 7   | 500 r  | n³. It<br>ld be | is requ | ired to l                    | nave rev         | erberat   | ion tin               | ne of 1. | 5 seconds.   |
|     | (1)          | 850 w-m <sup>2</sup>           | 50                      |        |        |                 | (2)     | 82.50                        | w-m <sup>2</sup> | *         |                       |          |              |
|     | (3)          | 8.250 w-m <sup>2</sup>         | 2                       |        |        |                 | (4)     | 0.825                        | w-m <sup>2</sup> |           |                       |          | 4            |
|     |              |                                |                         |        | 12 m   |                 |         |                              |                  |           |                       |          |              |
| 65. | Toa          | bsorb the sou                  | ind in a ha             | all w  | hich o | ofthe           | follow  | ing are                      | used             |           | *                     |          |              |
|     | (1)          | Glasses, sto                   |                         |        |        |                 | (2)     | _                            | ts, curta        | ins       |                       |          |              |
|     | (3)          | Polished su                    |                         |        |        |                 | (4)     | •                            |                  |           |                       |          |              |
|     | (-)          | · ononea oa                    | Tuces                   |        |        |                 | (+)     | 1 latit                      | illis .          |           |                       |          | * 1          |
| 66. | IfN          | represents av                  | agadro's                | num    | her t  | hen ti          | e num   | her of m                     | olecule          | s in 6 ar | nofh                  | drocer   | at NITD is   |
|     | (1)          |                                | (2)                     |        |        | ion u           | (3)     |                              | ·                |           | N/6                   | diogei   | I at IVIT IS |
|     | ,            |                                | ,                       |        |        |                 | (5)     | **                           |                  | (.)       | 1470                  |          |              |
| 67. | The          | mean transla                   | tional kin              | etic   | energ  | y of a          | a perfe | t gas m                      | olecule          | at the te | mpera                 | ature T  | K is         |
|     |              | 1                              |                         |        |        | 18              |         | 3                            |                  | 2.3       |                       |          |              |
| 19  | (1)          | $\frac{1}{2}kT$                | . (2)                   | kT     |        |                 | (3)     | $\frac{3}{2}kT$              |                  | (4)       | 2kT                   |          |              |
|     |              |                                |                         |        |        |                 | 25      | -                            | ero vi           |           |                       |          |              |
| 68. | The          | amount of he                   | at given t              | oab    | ody v  | vhich           | raises  | its temp                     | erature          | by 1°C    |                       |          | 10.00        |
| 101 | (1)          | water equiva                   | Carrier Co.             |        |        |                 | (2)     |                              | al heat c        |           |                       |          |              |
|     | (3)          | specific hea                   |                         |        |        |                 |         | to a self-trans              | rature gr        | ·         |                       | 6        | 5<br>20      |
|     | (5)          | эресте пси                     | •                       |        |        | 3.              | (4)     | tempe                        | rature gr        | adicin    |                       |          | 20 0         |
| 69. | Duri<br>abso | ng an adiabat<br>lute temperat | tic proces<br>ture. The | s, the | e pres | sure<br>V for   | of a ga | s is four                    | nd to be         | propor    | tional                | to the c | cube of its  |
|     |              | 3                              | 400                     | 4      |        |                 |         |                              |                  |           | 5                     |          |              |
|     | (1)          | 2.                             | (2)                     | 3      | ě.     |                 | (3)     | 2                            |                  | (4)       | 3                     |          |              |
|     |              |                                |                         |        |        |                 |         |                              | +                | 30        |                       |          |              |
|     |              |                                |                         |        |        |                 |         |                              | 0                |           |                       |          |              |

| Set Code :     | <b>T2</b> |
|----------------|-----------|
| Booklet Code : | В         |

- 70. Cladding in the optical fiber is mainly used to
  - (1) to protect the fiber from mechanical stresses
  - (2) to protect the fiber from corrosion
  - (3) to protect the fiber from mechanical strength
  - (4) to protect the fiber from electromagnetic guidance
- 71. Two quantities A and B are related by the relation A/B = m where m is linear mass density and A is force. The dimensions of B will be
  - (1) same as that of latent heat
  - (2) same as that of pressure
  - (3) same as that of work
  - same as that of momentum
- 72. The dimensional formula of capacitance in terms of M, L, T and I is
  - $(1) \quad [ML^2T^2I^2]$
- (2) [ML-2T4]
- (3)  $[M^{-1}L^3T^3I]$
- 73. If l, m and n are the direction cosines of a vector, then

  - (1) l+m+n=1 (2)  $l^2+m^2+n^2=1$  (3)  $\frac{1}{l}+\frac{1}{m}+\frac{1}{n}=1$

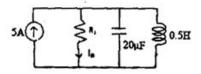
- 74. The angle between i+j and j+k is
  - (1) 0°
- (2) 90°
- (3) 45°
- 75. A particle is moving eastwards with a velocity of 5 ms-1. In 10 seconds the velocity changes to 5 ms-1 northwards. The average acceleration in this time is
  - (1)  $\frac{1}{\sqrt{2}}$  ms<sup>-2</sup> towards north-west
- (3)  $\frac{1}{2}$  ms<sup>-2</sup> towards north
- (4)  $\frac{1}{\sqrt{2}}$  ms<sup>-2</sup> towards north-east

| Set Code :     | T2 |
|----------------|----|
| Booklet Code : | В  |
|                |    |

#### CHEMISTRY

| 76. | Pota      | assium metal an                                    | d potas  | sium ions                                                   |                  |                                      |           |                              |               |
|-----|-----------|----------------------------------------------------|----------|-------------------------------------------------------------|------------------|--------------------------------------|-----------|------------------------------|---------------|
|     | (1)       | both react wit                                     | h water  |                                                             | (2)              | have the same                        | numbe     | er of protons                |               |
|     | (3)       | both react wit                                     | h chlor  | ine gas                                                     | (4)              | have the same                        | e electro | onic configu                 | ration        |
| 77. | stan      | dard flask. 10 m                                   | lofthis  | ide were dissolve<br>solution were pip<br>on. The concentra | etted<br>ation o | out into another<br>of the sodium cl | flask ar  | nd made up w<br>solution now | ith distilled |
|     | (1)       | 0.1 M                                              | (2)      | 1.0 M                                                       | (3)              | 0.5 M                                | (4)       | 0.25 M                       |               |
| 78. | Con       | centration of a                                    | 1.0 M s  | solution of phosp                                           | horic            | acid in water is                     | s         | 100 mg                       |               |
|     | (1)       | 0.33 N                                             | (2)      | 1.0 N                                                       | (3)              | 2.0 N                                | (4)       | 3.0 N                        | •             |
| 79. | Whi       | ich of the follov                                  | ving is  | a Lewis acid?                                               |                  |                                      |           |                              |               |
|     | (1)       | Ammonia                                            |          |                                                             | (2)              | Berylium chle                        | oride     |                              |               |
|     | (3)       | Boron trifluo                                      | ride     | 10                                                          | (4)              | Magnesium o                          | xide      |                              |               |
| 80. | Whi       |                                                    |          | nstitutes the com                                           |                  |                                      | solution  | 1?                           |               |
|     | (1)       |                                                    |          | nd potassium hyd                                            | droxic           | le                                   |           |                              | 9             |
|     | (2)       | Sodium aceta                                       |          |                                                             |                  |                                      |           |                              |               |
|     | (3)       |                                                    |          | and sulphuric aci                                           |                  |                                      |           |                              | *             |
|     | (4)       | Calcium chlo                                       | ride and | d calcium acetate                                           |                  | *:                                   |           |                              |               |
| 81. | Whi       | ich of the follow                                  |          | an electrolyte?                                             |                  |                                      | 832       | E November                   |               |
|     | (1)       | Acetic acid                                        | (2)      | Glucose                                                     | (3)              | Urea                                 | (4)       | Pyridine                     |               |
| 82. |           | culate the Standard Cu/Cu <sup>+2</sup> = $(-)$ 0. |          | of the cell, Cd                                             | /Cd+2            | //Cu <sup>+2</sup> /Cu give          | n that E  | $C^{0} Cd/Cd^{+2} =$         | 0.44V and     |
|     | (1)       | (-) 1.0 V                                          | (2)      | 1.0 V                                                       | (3)              | (-) 0.78 V                           | (4)       | 0.78 V                       |               |
| 83. | A so      | olution of nicke                                   | l chlori | de was electroly                                            | sed u            | sing Platinum 6                      | electrod  | es. After ele                | ctrolysis,    |
|     | (1)       | nickel will be                                     | deposi   | ted on the anode                                            | (2)              | Cl, gas will b                       | e libera  | ted at the cat               | hode          |
|     | (3)       |                                                    |          | ed at the anode                                             |                  |                                      |           |                              |               |
|     | 2017.03/6 |                                                    | 10       |                                                             | 14-B             |                                      |           |                              |               |
|     |           |                                                    | 20       |                                                             |                  |                                      |           |                              |               |

|     |           |                                   |          |                   |          |                     |        | Set Code : T2              |
|-----|-----------|-----------------------------------|----------|-------------------|----------|---------------------|--------|----------------------------|
|     |           |                                   |          |                   |          |                     |        | Booklet Code : B           |
| 84. | Whi       | ch of the follow                  | ing me   | tals will underg  | o oxid   | ation fastest?      |        | 2                          |
|     | (1)       |                                   | (2)      |                   |          | Zinc                | (4)    | Iron                       |
| 85. | Whi       | ch of the follow                  | ing ca   | nnot be used for  |          | erilization of drin |        |                            |
|     | (1)       | Ozone                             |          |                   | (2)      | Calcium Oxych       |        | e                          |
|     | (3)       | Potassium Chl                     | oride    |                   | (4)      | Chlorine water      |        |                            |
| 86. |           | ater sample showns of calcium car |          |                   | ng/litro | e of magnesium s    | ulpha  | ite. Then, its hardness in |
|     | .(1)      | 1.0 ppm                           | (2)      | 1.20 ppm          | (3)      | 0.60 ppm            | (4)    | 2.40 ppm                   |
| 87. | Soda      | a used in the L-S                 | proce    | ess for softening | of wa    | ter is, Chemicall   | y.     | •                          |
|     | (1)       |                                   |          | ,                 | (2)      |                     |        | cahydrate                  |
|     | (3)       | sodium carbon                     | ate      |                   | (4)      | sodium hydrox       | ide (4 | 0%)                        |
| 88. | The       | process of ceme                   | ntatio   | n with zinc pow   | der is k | cnown as            |        |                            |
|     |           | sherardizing                      | (2)      | 5 5               | (3)      |                     | (4)    | electroplating             |
| 89. | Carr      | osion of a metal                  | l is fas | test in           |          |                     |        |                            |
|     | (1)       | rain-water                        | (2)      | acidulated wat    | er (3)   | distilled water     | (4)    | de-ionised water           |
| 90. | Whi       | ch of the follow                  | ing is   | a thermoset poly  | ymer?    |                     |        |                            |
|     | (1)       | Polystyrene                       | J        |                   | (2)      | PVC                 |        |                            |
|     | (3)       | Polythene                         |          |                   | (4)      | Urea-formaldel      | hyde r | resin                      |
| 0.1 | <b>C1</b> |                                   |          |                   |          |                     |        | ar u                       |
| 91. | ***       | mically, neoprem                  |          |                   | (2)      |                     |        |                            |
|     | (1)       | polyvinyl benze                   |          |                   | (2)      | polyacetylene       |        |                            |
|     | (3)       | polychloroprer                    | ne       |                   | (4)      | poly-1,3-butadi     | ene    | *                          |
| 92. | Vulc      | canization involv                 | es hea   | ting of raw rubb  | er with  | e 4                 |        |                            |
|     | (1)       | selenium elem                     | ent .    | 10                | (2)      | elemental sulph     | ur     |                            |
|     | (3)       | a mixture of Se                   | and e    | lemental sulphu   | r (4)    | a mixture of sel    | enium  | and sulphur dioxide        |
|     |           |                                   |          |                   | 15-B     |                     |        |                            |


|             |       |                                   |          |                                                 |           |                                  |         | Doorier Cou     | . <u>D</u> |
|-------------|-------|-----------------------------------|----------|-------------------------------------------------|-----------|----------------------------------|---------|-----------------|------------|
| 93.         | Petr  | ol largely conta                  | ins      |                                                 |           | 2                                |         | 9               |            |
|             | (1)   | 10.7                              |          | nted hydrocarbo                                 | ons C,-   | C.                               |         |                 |            |
|             | (2)   |                                   |          | , toluene and xy                                |           | •                                |         |                 |            |
|             | (3)   | no company of the same a north in |          | d hydrocarbons                                  |           | n                                |         |                 |            |
|             | (4)   |                                   |          | d hydrocarbons                                  |           | 100.00                           |         |                 |            |
|             | (.)   | 8 6                               |          |                                                 | 0 8       |                                  |         |                 |            |
| 94.         | Whi   | ch of the follow                  | ving ga  | ses is largely re                               | esponsil  | ole for acid-rain                | ?       |                 |            |
|             |       | SO, & NO,                         |          |                                                 |           | CO2 & water v                    |         |                 |            |
|             | (3)   | CO, & N,                          |          | u 9                                             | (4)       | N <sub>2</sub> & CO <sub>2</sub> |         |                 |            |
|             |       |                                   |          |                                                 |           |                                  |         |                 |            |
| 95.         | BOI   | Stands for                        | 720      | 9                                               |           | -                                |         |                 |            |
|             | (1)   | Biogenetic Ox                     | ygen [   | Demand                                          | (2)       | Biometric Oxy                    | gen D   | emand           |            |
| 1000        | (3)   | Biological Ox                     | ygen D   | emand                                           | (4)       | Biospecific Ox                   | xygen   | Demand          |            |
|             |       |                                   |          |                                                 |           |                                  |         |                 |            |
| 96.         | The   | valency electro                   | nic co   | ofiguration of F                                | hospho    | rous atom (At.)                  | No. 15  | ) is            |            |
| <i>7</i> 0. |       | 3s <sup>2</sup> 3p <sup>3</sup>   | (2)      | 3s <sup>1</sup> 3p <sup>3</sup> 3d <sup>1</sup> | (3)       | $3s^2 3p^2 3d^1$ .               | (4)     | 3s1 3p2 3d2     | 4          |
|             |       |                                   |          |                                                 |           |                                  |         | 0 TO            |            |
| 97.         | And   |                                   |          |                                                 | n an eler | nent 'B' of At.N                 | lo.17.7 | The compound    | formed is  |
|             | (1)   | covalent AB                       | (2)      | ionic AB <sub>2</sub>                           | (3)       | covalent AB <sub>2</sub>         | (4)     | ionic AB        |            |
| ,           |       | 27                                |          | 1                                               | c         | D - 137 :-                       |         |                 |            |
| 98.         |       | number of neut                    |          |                                                 |           |                                  | (4)     | 81              |            |
|             | (1)   | 56                                | (2)      | 137                                             | (3)       | 193                              | (4)     | 01              |            |
| 00          | T T   | rogen bonding                     | in west  | molecule is r                                   | ecnonci   | ble for                          |         | , 1             |            |
| 99.         | (1)   | decrease in its                   |          |                                                 | (2)       |                                  | degree  | e of ionization |            |
|             | (3)   |                                   |          |                                                 | (4)       | decrease in its                  |         |                 | . •        |
|             | (3)   | merease m its                     | Comm     | 5 point                                         | (.)       |                                  |         |                 |            |
| 100.        | In th | ne HCl molecule                   | e, the b | onding between                                  | n hydro   | gen and chlorin                  | e is    |                 |            |
|             | (1)   |                                   |          | purely ionic                                    | (3)       | polar covalent                   | (4)     | complex coo     | rdinate    |
|             |       | 18 B                              |          | # 14 B                                          |           | 38                               |         |                 |            |
|             |       |                                   |          |                                                 |           |                                  |         |                 |            |
|             |       |                                   |          |                                                 | 44 B      |                                  |         |                 |            |

Set Code : T2 Booklet Code :

### ELECTRICAL AND ELECTRONICS ENGINEERING

| <ol> <li>In a given below circuit, at resonance I<sub>p</sub> is equal</li> </ol> | ual | is ec | I, i | at resonance | v circuit, | belov | given | In a | 101. |
|-----------------------------------------------------------------------------------|-----|-------|------|--------------|------------|-------|-------|------|------|
|-----------------------------------------------------------------------------------|-----|-------|------|--------------|------------|-------|-------|------|------|

- (1) 0A
- (2) 10A
- (3) 5A
- (4) 0.5 A



102. An alternating current has a peak value of 2A. If its Peak Factor is  $\sqrt{2}$  and its form factor is

 $\frac{\pi}{2\sqrt{2}}$ , then its average value is

- (1)  $\frac{8}{\pi}A$  (2)  $\frac{4}{\pi}A$  (3)  $\frac{\pi}{2}A$  (4)  $\frac{\pi}{4}A$

103. The power factor of an incandescent bulb is

- (1) 0.8 lagging
- (2) 0.8 leading
- (3) unity

104. The power factor of a circuit comprising resistance R and reactance X in series is

(1) 
$$\frac{R}{\sqrt{R^2 + X^2}}$$
 (2)  $\frac{X}{\sqrt{R^2 + X^2}}$  (3)  $\frac{R}{R^2 + X^2}$  (4)  $\frac{X}{R^2 + X^2}$ 

$$(2) \quad \frac{X}{\sqrt{R^2 + X^2}}$$

$$(3) \quad \frac{R}{R^2 + X}$$

$$(4) \quad \frac{X}{R^2 + X^2}$$

105. The working principle of a Transformer is

(1) Electromagnetism

(2) Conduction

(3) Energy transfer

(4) Mutual induction

106. The equivalent resistance of a transformer having transformation ratio (K) = 5 and R1 = 0.1  $\Omega$ when referred to secondary is

- (1)  $150 \Omega$
- (2)  $0.02 \Omega$
- (3)  $0.004 \Omega$
- (4)  $2.5 \Omega$

107. What is load at which maximum efficiency occurs in case of a 100 kVA transformer with iron loss of 1 kW and full load copper loss of 2 kW

- (1) 100 kVA
- (2) 70.7 kVA
- (3) 50.5 kVA
- (4) 25.2 kVA

17-B

(EEE)

|      |       |                                       |         |                      |        |           | 14               |            | Set Co        | de: T2       |
|------|-------|---------------------------------------|---------|----------------------|--------|-----------|------------------|------------|---------------|--------------|
|      |       | 20                                    |         |                      |        |           |                  |            | Booklet Co    | de : B       |
| 108  | In hi | gh frequency tra                      | nefor   | mers the n           | nateri | ial used  | d for core is    |            |               |              |
| 100. |       | Ferrite                               |         | Iron                 | iutor  |           | Cast iron        | (4)        | Silica        |              |
|      | (1)   | Territe                               | (2)     | 11011                |        | (-)       |                  | . ( )      | 100 00 COVERS |              |
| 109. | Buc   | hholz relay is use                    | d to    |                      |        |           |                  |            |               | 8 5          |
|      | (1)   | identify faults                       |         |                      |        |           |                  |            |               |              |
|      | (2)   | rectify the fault                     | ĺ       |                      |        |           |                  |            |               |              |
|      | (3)   | trip-off connec                       | tions v | when fault           | exist  | S         |                  |            |               |              |
|      | (4)   | clears the fault                      |         |                      |        |           |                  |            | 17            |              |
| Ε.   |       |                                       |         |                      |        |           |                  |            | and connorm   | losses are   |
| 110. |       | ribution transfor                     |         |                      | ed to  | keep      | core losses i    | nınımum    | and copper    | losses are   |
|      |       | ively less import<br>The primary of s | ant be  | ecause<br>anaformand | ara a  | naraiza   | d for all the 2/ | hours in   | a day and cor | e loss occur |
|      | (1)   | throughout the                        | lay wh  | ile copper           | loss o | ccur or   | nly when the se  | econdary   | is supplying  | the load     |
|      | (2)   | To ensure maxi                        |         |                      |        |           |                  |            |               |              |
| 10   | (3)   | Greater core lo                       | sses n  | ny destroy           | in in  | sulatio   | n                |            |               |              |
|      | (4)   | Greater core lo                       | sses w  | vill heat up         | the o  | oil of th | ne transforme    | r rapidly  |               |              |
|      |       |                                       |         | 101                  |        |           | *                |            |               | - C 14       |
| 111. |       | ch one of the fo                      |         | ng methods           | give   | es more   | e accurate res   | sult for d | etermination  | of voltage   |
|      | _     | lation of an alter                    | nator   | 97                   |        | (2)       | C                | . :        | n'ao mathad   |              |
|      | (1)   | MMF method                            | 12.1    |                      |        | (2)       | Synchronou       |            | nce memou     |              |
|      | (3)   | Potier triangle                       | metho   | od                   |        | (4)       | ASA method       | 18         |               |              |
|      |       |                                       |         |                      |        | 1         |                  |            |               |              |
| 112. |       | rogen is used in l                    |         |                      | main   |           |                  |            |               |              |
|      | (1)   | reduce distortion                     |         |                      |        | (2)       |                  |            | locces        |              |
|      | (3)   | strengthen the                        | nagne   | etic field           |        | (4)       | reduce eddy      | current    | 108868        |              |
| 113  | The   | frequency of em                       | fgene   | erated in an         | 8-pc   | ole alte  | rnator runnin    | g at 900 i | pm is         |              |
| 115. |       | 50 Hz                                 |         | 120 Hz               |        |           |                  |            | 60 Hz         |              |
|      | (1)   | 30 HZ                                 | (2)     | 120112               |        | (3)       | 70112            | (.)        |               |              |
| 114  | The   | angle between sy                      | nchr    | onously rot          | ating  | stator    | flux and rotor   | poles of   | a synchrono   | ous motor is |
|      |       | ed angle                              |         |                      |        |           |                  |            |               |              |
|      | (1)   | Synchronizing                         | (2)     | Slip                 | 150    | (3)       | Power facto      | r (4)      | Torque        |              |
|      |       | 7.55                                  |         |                      |        |           |                  |            |               |              |
|      |       |                                       |         |                      |        | 18-B      | 77               | 10         |               | (EEE)        |
|      |       |                                       |         |                      |        | -         |                  |            |               |              |

|      |                   |                                                   |           |                                                          |                   |                           |                       | Dookiet      | Code .[    | ь      |
|------|-------------------|---------------------------------------------------|-----------|----------------------------------------------------------|-------------------|---------------------------|-----------------------|--------------|------------|--------|
| 115. | If θ <sub>e</sub> | be the electric                                   | cal angle | e and $\theta_m$ be the which one of the                 | mecha<br>e follov | nical angle a             | nd P be t<br>is true? | he numbe     | r of pole  | s of a |
|      | (1)               | $\theta_e = P \times \theta_m$                    |           |                                                          | (2)               | $\theta_e = (P/2) \times$ | θ_                    |              |            |        |
|      |                   | $\theta_{\rm e}^{\rm e} = \theta_{\rm m}/{\rm P}$ |           |                                                          |                   | $\theta_e = P/\theta_m$   | m                     |              |            | ×      |
| 116. |                   | essential condi                                   | ition for | parallel operat                                          | ion of tv         | wo single pha             | se transfo            | ormers is th | nat they s | hould  |
|      | (1)               | Polarity                                          | (2)       | KVA rating                                               | (3)               | Voltage rati              | o (4)                 | Percenta     | age impe   | dance  |
| 117. | The               | V-curve of a s                                    | ynchron   | ous motor is a                                           | plot of           |                           |                       |              |            |        |
|      | (1)               | State current                                     | versus s  | stator power fa                                          | ctor              | 200                       | 10                    |              |            |        |
| -    | (2)               | Stator curren                                     | t versus  | rotor current a                                          | at all loa        | ids                       |                       |              |            | v in   |
|      | (3)               | Stator curren                                     | t versus  | rotor currents                                           | when p            | ower delivere             | d is cons             | tant         |            |        |
|      | (4)               |                                                   |           | power delivere                                           | _                 |                           |                       |              | 19         |        |
|      |                   |                                                   |           |                                                          |                   |                           |                       |              |            |        |
| 118. | rotor             | r resistance is (                                 | .25 ohn   | motor runs wit<br>n per phase. If a<br>is the slip for f | an exter          | nal resistance            |                       | •            | -          |        |
|      | (1)               | 0.03                                              | (2)       | 0.06                                                     | (3)               | 0.09                      | (4)                   | 0.1          |            |        |
| 119. | The               | torque develor                                    | ed in a   | three phase ind                                          | luction           | motor depend              | ls on                 |              |            |        |
|      | (1)               | Stator flux an                                    |           |                                                          | (2)               |                           |                       | current      |            |        |
|      | (3)               | stator current                                    | and rot   | or flux                                                  | (4)               | rotor currer              | t and rot             | or flux      |            |        |
| 120. | A sir             | ngle phase ac i                                   | nductio   | n motor is not                                           | self star         | ting because              | it has                |              |            |        |
|      | (1)               | No slip                                           |           |                                                          | (2)               | rotor is sho              | rt circuit            | ed           |            |        |
|      | (3)               | high intertia                                     |           |                                                          | (4)               | absence of                | otating n             | nagnetic f   | ield       |        |
|      |                   |                                                   |           |                                                          |                   |                           | 60.5                  |              |            |        |
| 121. |                   |                                                   |           | a single phase r                                         |                   |                           |                       | 1            |            |        |
|      | (1)               | an alternating                                    |           |                                                          | (2)               | •                         | _                     |              |            |        |
|      | (3)               | a rotating ma                                     | gnetic fi | eld                                                      | (4)               | a steady ma               | gnetic fie            | ld           |            |        |
|      |                   |                                                   |           |                                                          | 19-B              |                           |                       |              |            | (EEE)  |
|      |                   |                                                   |           |                                                          |                   |                           |                       |              |            |        |
|      |                   |                                                   |           |                                                          |                   |                           |                       |              |            |        |

|      |      |                        |          |                                                                                       |         |                                                        |        | Set Code:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T2    |
|------|------|------------------------|----------|---------------------------------------------------------------------------------------|---------|--------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|      |      |                        |          |                                                                                       |         |                                                        |        | <b>Booklet Code:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B     |
| 122. | Und  | ler no-load cond       | litions  | , power factor of                                                                     | an in   | duction motor is                                       | about  | ı.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
|      | (1)  | 0.2 lag                | (2)      | 0.9 lag                                                                               | (3)     | Unity                                                  | (4)    | 0.5 lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| 123. | Ofa  | all the plants, min    | nimum    | quantity of fuel                                                                      | used i  | s required in                                          | . plan | it.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|      | (1)  | Diesel power           | (2)      | Steam                                                                                 | (3)     | Hydro-electric                                         | (4)    | Nuclear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| 124. | The  | overall efficien       | cy (η)   | of a Thermal Pov                                                                      | wer St  | ation is                                               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|      | (1)  | $\eta_{\text{boiler}}$ | (2)      | $\boldsymbol{\eta}_{\text{boiler}} \! \times \! \boldsymbol{\eta}_{\text{generator}}$ | (3)     | $\eta_{\text{generator}} \times \eta_{\text{turbine}}$ | (4)    | $\eta_{\text{turbine}} \times \eta_{\text{boiler}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100   |
| 125. | The  | effect of water h      | amme     | er can be minimiz                                                                     | zed by  | using .                                                |        | TRI ST STATE OF THE STATE OF TH | 9     |
|      | (1)  | Spill way              | (2)      | Anvil                                                                                 | (3)     | Surge Tank                                             | (4)    | Draft tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| 126. | In a | diesel power pla       | ınt susj | pended impuritie                                                                      | s in th | e fuel are remov                                       | ed by  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|      |      | Cyclone separa         | ators    |                                                                                       | (2)     | Electrostatic se                                       | parat  | ors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|      | (3)  | Fabric filters         |          | 9                                                                                     | (4)     | Strainer*                                              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×     |
| 127. | The  | rupturing capac        | ity of a | circuit breaker i                                                                     | is mea  | sured in                                               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|      | (1)  | Ampere                 | (2)      | Volt-Ampere                                                                           | (3)     | Watt                                                   | (4)    | Volt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|      |      |                        |          |                                                                                       |         |                                                        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 128. | A ci | rcuit breaker is       | essenti  | ally                                                                                  |         |                                                        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|      | (1)  | An arc extingu         | isher    |                                                                                       |         |                                                        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|      | (2)  | A current intern       | rupting  | device                                                                                |         |                                                        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|      | (3)  | A power factor         | corre    | cting device                                                                          |         |                                                        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|      | (4)  | A device for ne        | eutralia | zing the effect of                                                                    | trans   | ients                                                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 129. | Mho  | relay normally         | is used  | d for protection of                                                                   | of      |                                                        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|      | (1)  | Long transmiss         | sion lir | nes                                                                                   |         |                                                        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|      | (2)  | Medium Trans           | missio   | n lines                                                                               |         |                                                        |        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
|      | (3)  | Short transmis         | sion li  | nes                                                                                   |         |                                                        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| *1   | (4)  | No length crite        | rion     | 9                                                                                     |         |                                                        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|      |      |                        |          | i' <b>a</b>                                                                           |         | u. S                                                   |        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (EEE) |
|      |      |                        |          |                                                                                       | 0-0     |                                                        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (300) |

|       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |          | Set Code            | : T2  |
|-------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|----------|---------------------|-------|
|       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |          | <b>Booklet Code</b> | : B   |
| 1     | 130 Th  | e scheme adopted for bus-bar prot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | taation is    |                |          |                     | E.    |
|       | (1)     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | differential - |          | 4                   |       |
|       | (3)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2)           | •              |          |                     |       |
|       | (3)     | over current protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (4)           | reverse power  | er prote | ection              |       |
| 1     | 31. Du  | e to the ferrari effect on long over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rhead lines   |                |          |                     |       |
|       | (1)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |          |                     |       |
|       | (2)     | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.1           | □              |          |                     |       |
|       | (3)     | (#) S (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 77            |                |          |                     |       |
|       | (4)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |          |                     |       |
|       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |          |                     |       |
| 1     | 32. Co  | rona occurs between two transmiss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sion lines w  | hen they are   |          | 9 9                 |       |
|       | (1)     | closely spaced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (2)           | widely spaced  | 1        |                     | 0 60  |
|       | (3)     | having high potential difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (4)           | carrying DC I  | ower     |                     |       |
|       |         | and the Contract of the Contra |               |                |          |                     |       |
| 1.    | 33. Sur | ge impedence of a transmission lin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ne is given l | ру             |          | 0.9                 |       |
|       | (1)     | $\sqrt{(L/C)}$ (2) $\sqrt{(C/L)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (3)           | $\sqrt{LC}$    | (4)      | $1\sqrt{LC}$        |       |
|       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | ottess<br>L    |          | 1105 IN 89450       | 151   |
| 1.    | 34. The | general distance for short transm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ission line   | is             |          | **                  |       |
|       | (1)     | less than 80 km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2)           | 80 km-250 km   | n        |                     |       |
|       | (3)     | more than 250 km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (4)           | 150 km-300 k   | cm       |                     |       |
|       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6             |                |          |                     |       |
| 13    | 35. The | resistance of the line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 113            |          |                     |       |
|       | (1)     | increases with increase in freque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ency (2)      | decreases with | n increa | ase in frequency    |       |
|       | (3)     | is independent of frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (4)           | increases with | decrea   | ase in frequency    |       |
| 12/12 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |          | 18                  |       |
| 13    |         | VDC Transmission System AC is o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | converted to  | DC using       |          |                     |       |
|       | (1)     | Rectifier (2) Inverter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (3)           | Chopper        | (4)      | Cycloconverter      |       |
| 12    | 7.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |          | 21<br>21            |       |
| 13    |         | pension type insulators are used for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                |          |                     |       |
|       | (1)     | 220 V (2) 400 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (3)           | 11 KV          | (4)      | 33 KV               |       |
|       |         | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21-B          |                |          |                     | (EEE) |

|      |      |                                           |          |                   |        | Ser         | oue .   | 12     |
|------|------|-------------------------------------------|----------|-------------------|--------|-------------|---------|--------|
|      |      | *                                         |          |                   | 38     | Booklet (   | Code :  | B      |
| 138. | Pow  | er Factor of Industrial loads is genera   | lly      |                   |        |             |         |        |
|      | (1)  | Unity (2) Leading                         | (3)      | Lagging           | (4)    | Zero        |         |        |
| 139. | Pole | mounted transformer stations are me       | ant for  |                   |        |             |         |        |
|      | (1)  | Primary transmission                      | (2)      | Primary distrib   | ution  |             |         |        |
|      | (3)  | Secondary transmission                    | (4)      | Secondary distr   |        |             |         |        |
| 140. | Tran | smission lines are transposed to          |          | 54                |        |             |         |        |
|      | (1)  | Reduce copper loss                        |          |                   |        | *           |         |        |
|      | (2)  | Reduce skin effect                        |          |                   |        |             |         |        |
|      | (3)  | Prevent interference with communic        | ation I  | ines              | - •    | 9           |         |        |
|      |      | Present short circuit between condu       |          |                   |        |             |         |        |
|      | (4)  | riesent short cheun between condu         | CiOis    |                   |        |             |         |        |
|      | 701  |                                           |          | d to traction is  |        |             |         |        |
| 141. | The  | units for specific energy consumption     | i relate | d to traction is_ |        |             |         |        |
|      | (1)  | Watt-Hour<br>Tonne-km (2) Watt-Hour<br>km | (3)      | Joules/Sec        | (4)    | Watt        |         |        |
| 142. | In K | ando system of track electrification      |          | is converted      | l into |             |         |        |
|      |      | single phase, dc                          | (2)      |                   | e      | 100         |         |        |
|      | (3)  | single phase, three phase                 | (4)      |                   |        | nase        | ×       |        |
| 143. |      | nin has a scheduled speed of 60 kmph b    |          |                   | are 6  | km apart. T | he actu | al run |
|      | (1)  | 60 sec (2) 360 sec                        | (3)      | 240 sec           | (4)    | 300 sec     |         |        |
| 144  | Ανα  | rage speed of a train is dependent on     |          |                   |        |             |         |        |
| 144. |      |                                           |          |                   |        |             |         |        |
| 10   | (1)  | Distance between two stops & run tim      | 6        |                   |        |             |         |        |
|      | (2)  | Run time & stop time                      |          | n 190             |        |             |         |        |
|      | (3)  | Stop time & acceleration                  |          |                   |        |             |         |        |
|      | (4)  | Acceleration & deceleration               |          |                   |        |             |         |        |
|      |      | 2<br>2                                    | 22-B     |                   |        |             |         | (EEE)  |

|      |        |                                                   |          |                        | Set Code :     | <b>T2</b> |
|------|--------|---------------------------------------------------|----------|------------------------|----------------|-----------|
|      |        |                                                   |          |                        | Booklet Code : | В         |
| 145. | The    | electric motor used for traction work             | shoul    | d have                 |                |           |
|      | (1)    | Low starting torque                               | (2)      | High starting torque   | -              |           |
|      | (3)    | Rise in speed with increase in load               | (4)      | No braking capability  | y              |           |
| 146. | Trac   | ctive effort of an electric locomotive            | can be   | increased by           |                |           |
|      | (1)    | Increasing the supply voltage                     |          | 5900 107 10            |                |           |
|      | (2)    | Increasing the speed                              |          |                        |                |           |
|      | (3)    | Increasing the dead weight over the               | driving  | axles                  |                |           |
|      | (4)    | Using high rating motors                          |          |                        |                |           |
|      |        |                                                   |          |                        | *              |           |
| 147. | Trac   | ctive effort required for a train going d         | own fr   | om an upgradiant is    |                |           |
|      | (1)    | less than tractive effort on level trac           | k        |                        |                |           |
|      | (2)    | more than tractive effort on level tra            | ck       |                        |                |           |
|      | (3)    | equal to the tractive effort on level t           | rack     |                        |                |           |
|      | (4)    | independent of mass of the train                  |          |                        |                |           |
|      |        | **                                                |          |                        | 49             |           |
| 148. | The    | area under speed-time curve of a train            | repres   | ents                   |                |           |
|      | (1)    | average speed                                     | (2)      | average acceleration   |                |           |
|      | (3)    | distance travelled                                | (4)      | average velocity       |                |           |
| 140  | A c +1 | as number of wire avers incresses th              |          |                        |                |           |
| 147. | (1)    | ne number of wire guage increases th<br>increases |          |                        |                |           |
|      |        |                                                   | (2)      | remains same           |                |           |
|      | (3)    | becomes neglible                                  | (4)      | decreases              |                |           |
| 150. | Whi    | ch of the following wiring is not visib           | le outsi | de?                    |                |           |
|      |        | conduit wiring                                    | (2)      | •                      |                |           |
|      | (3)    | casing and capping wiring                         | (4)      | concealed wiring       |                |           |
| 151. | Resis  | stance of earth system of power static            | ns sho   | uld not exceed the lim | it of          |           |
|      |        | 0.5 ohms (2) 2 ohms                               | (3)      |                        | 5 ohms         |           |
|      |        | 3                                                 |          | 19                     |                |           |
|      |        |                                                   | 23.R     |                        |                | (EEE)     |

|      |         | £                                      |                     |                   |            |                      |                       | Set Code                      | : T2     |
|------|---------|----------------------------------------|---------------------|-------------------|------------|----------------------|-----------------------|-------------------------------|----------|
|      |         |                                        |                     |                   |            |                      |                       | Booklet Code                  | : B      |
| 152. | In el   | ectrical installat                     | ions t              | he fuse is alwa   | ays conn   | ected in             |                       | wire.                         |          |
|      | (1)     | earth                                  | (2)                 | neutral           | (3)        | phase                | (4)                   | ground                        |          |
| 1.52 | T.      |                                        |                     | 1:6               |            | ·                    |                       |                               |          |
| 155. |         | transistor used in                     | n amp               | illier circuits ( |            |                      | -ion                  |                               |          |
|      | (1)     | Active region                          |                     |                   | (2)        | Saturation reg       |                       |                               |          |
|      | (3)     | Cut off region                         |                     |                   | (4)        | Reverse region       | m                     |                               |          |
| 154. | The     | gain of an ampli                       | fier is             | given by the fo   | ollowing   | formula              |                       |                               |          |
|      | (1)     | $G(dB) = 10 \log$                      | (p <sub>in</sub> /p | out)              | (2)        | G(dB) = 10 lo        | og (pout)             |                               |          |
|      | (3)     | $G(dB) = 10 \log$                      | (p <sub>out</sub> / | p <sub>in</sub> ) | (4)        | G(dB) = 10 lo        | og (p <sub>in</sub> ) |                               |          |
|      | 4.0     |                                        |                     |                   |            |                      |                       |                               |          |
| 155. | The     | number of diode                        | s that              | are used in hal   | lf wave r  | ectifier and ful     | l wave                | bridge rectifier              | are      |
|      | (1)     | 1,2                                    | (2)                 | 1,4               | (3)        | 2,4                  | (4).                  | 2,1                           |          |
|      |         |                                        |                     |                   |            | **                   |                       |                               |          |
| 156. | The 50H | average voltage o<br>z is              | f a ful             | l wave rectifier  | fed from   | an ac source of      | f peak vo             | oltage, V <sub>m</sub> and fi | requency |
|      | (1)     | $V_m/\pi$                              | (2)                 | $2V_{\rm m}/\pi$  | (3)        | $V_{\rm m}/\sqrt{2}$ | (4)                   | V_/2                          |          |
|      |         | 12*                                    |                     | v 0               |            |                      |                       |                               |          |
| 157. | Ina     | transistor which                       | of the              | following lay     | er is ligh | tly doped            |                       | 29                            |          |
|      | (1)     | Emitter                                | (2)                 | Collector         | (3)        | Drain                | (4)                   | Base                          |          |
|      |         |                                        |                     |                   |            |                      | . 1                   |                               |          |
| 158. | Zene    | er diode regulate                      | s                   |                   |            |                      |                       |                               |          |
|      | (1)     | Voltage                                | (2)                 | Current           | (3)        | Resistance           | (4)                   | Power                         |          |
|      |         |                                        |                     |                   |            |                      |                       |                               |          |
| 159. | The     | frequency of osc                       | illatio             | on of wein brid   | ige oscil  | lator in Hz is       |                       |                               |          |
|      | (1)     | $1/2 \pi RC$                           | (2)                 | $2 \pi RC$        | (3)        | 1/RC                 | (4)                   | R/C                           |          |
|      |         |                                        |                     |                   |            |                      |                       |                               |          |
| 160. | XY      | $Z + (\overline{X} + \overline{YZ})XY$ | $Z + \widetilde{X}$ | YZ                |            |                      |                       |                               |          |
|      | (1)     | XYZ                                    | (2)                 | X                 | (3)        | Z                    | (4)                   | 0                             |          |
|      |         | 12                                     |                     |                   | 24-B       |                      |                       |                               | (EEE)    |
|      |         |                                        |                     |                   |            |                      |                       |                               |          |

|      |       |                                | 22                  |                       | 2        |                               |         | Booklet Code:                   | В        |
|------|-------|--------------------------------|---------------------|-----------------------|----------|-------------------------------|---------|---------------------------------|----------|
| 161. | The   | 2's complemen                  | t of the            | e number 1001         | 1100 is  | S                             |         |                                 | 15       |
|      |       | 0110 0011                      |                     |                       |          | 1001 1100                     | (4)     | 1001 1101                       |          |
| 162. | The   | bolean expressi                | on for              | NOR gate with         | inputs   | A and B is                    |         | *                               |          |
|      | (1)   | A+B                            | (2)                 | A.B                   | (3)      | A+B                           | (4)     | $\overline{A+B}$                |          |
| 163. | ΑD    | AC with 8 input                | bits h              | asre                  | solutio  | on compared wi                | th DA   | C with 4 input bits             | <b>.</b> |
|      | (1)   | High                           | (2)                 | Same                  | (3)      | Low                           | (4)     | Infinite                        |          |
| 164. | The   | power electron                 | ic devi             | ce, Silicon Cont      | trolled  | Rectifier has                 |         |                                 |          |
|      | (1)   | Two junctions                  | and th              | ree layers            | (2)      | Three junction                | is and  | three layers                    |          |
|      | (3)   | Three junction                 | s and               | four layers           | (4)      | Two junctions                 | and tw  | o layers                        |          |
| 165. | Whi   | ch one of the fo               | llowin              | g is a bidirection    | nal Co   | ntrolled switch               |         |                                 |          |
|      | (1)   | Thyristor                      | (2)                 | Triac                 | (3)      | GTO                           | (4)     | Diac                            | ×        |
| 166. | If th | e gate current of              | an SC               | R is increased, i     | its forv | vard break over               | voltag  | e V <sub>BO</sub> will          |          |
|      | (1)   | Increase                       | (2)                 | Decrease              | (3)      | Not be affecte                | d (4)   | Be infinity                     |          |
| 167. | Ìn ar | uUJT triggering                | circui              | t for SCR, pulse      | es are g | generated at                  |         | of UJT.                         |          |
|      | (1)   | Emitter (E)                    | (2)                 | Base 1 (B1)           | (3)      | Base 2(B2)                    | (4)     | B1-B2                           |          |
| 168. | In a  | half wave contro               | olled re            | ectifier feeding      | R-L lo   | ad, the range of              | firing  | angle of thyristor              | is       |
|      | (1)   | $0 \le \alpha \le 180^{\circ}$ | (2)                 | 90 ≤ α ≤ 180°         | (3)      | $0 \le \alpha \le 90^{\circ}$ | (4)     | $0 \le \alpha \le 360^{\circ}$  |          |
| 169. |       | DC output volta                | ige, V <sub>o</sub> | of a basic chopp      | er circ  | cuit with input v             | oltage, | , V <sub>in</sub> and duty cycl | le, δ is |
|      | (1)   | $V_o = V_{in} \times \delta$   | (2)                 | $V_o = V_{in}/\delta$ | (3)      | $V_o = V_{in}/(1-\delta)$     | (4)     | $V_{o} = V_{in}$                |          |
|      |       |                                |                     |                       |          |                               |         |                                 |          |
|      |       |                                |                     |                       |          |                               |         |                                 |          |

25-B

(EEE)

|      |       |                  |           |           |           |         |              |              | Set        | Code:      | <b>T2</b> |
|------|-------|------------------|-----------|-----------|-----------|---------|--------------|--------------|------------|------------|-----------|
|      |       |                  |           |           |           |         |              |              | Booklet    | Code :     | B         |
| 170  | . An  | AC regulator pr  | rovides   |           |           |         |              |              |            |            |           |
|      | (1)   | Variable freq    | uency, fi | ixed mag  | gnitudeA  | C       |              |              |            |            |           |
|      | (2)   | Fixed frequer    | ncy, vari | able mag  | gnitude A | C       |              |              |            |            |           |
|      | (3)   | Fixed frequen    | ncy, fixe | d magni   | tude AC   |         |              |              |            |            |           |
|      | (4)   | Variable freque  | uency, v  | ariable n | nagnitud  | eAC     |              |              |            |            |           |
| 171  | The   | output voltage   | of a sin  | gle phas  | e bridge  | inver   | ter is       |              |            |            | 17.0      |
|      | (1)   | Square wave      |           |           |           | (2)     | Sinusoida    | al wave      |            |            | 10        |
|      |       | Constant de      |           |           | . 6       | (4)     | Triangula    |              |            |            |           |
|      | , ,   |                  |           |           |           | , , ,   |              |              |            |            |           |
| 172. | Two   | quadrant oper    | ation of  | de moto   | or can be | obtai   | ned if it is | fed from a   |            |            |           |
|      | (1)   | Uncontrolled     |           |           |           |         |              | trolled conv | ertor      |            |           |
|      | (3)   | Half wave con    |           |           |           | . 555   |              | trolled con  |            |            |           |
|      | (-)   |                  |           |           |           | (.)     |              |              | · Crtox    |            |           |
| 173. | For   | controlling the  | speed o   | fa3nh     | ase indu  | ction t | motor V/f    | ratio is mai | ntained co | nstant f   | or        |
|      | (1)   | Constant air g   |           |           | io man    | (2)     |              | reactance    | itamed co  | i otulit i | 01        |
|      | (3)   | Varying the ai   |           |           |           |         | Variable     |              |            |            |           |
|      | (5)   | · my mg me m     | . gap m   |           |           | (1)     | variable     | Constance    |            |            | (2)       |
| 174. | 805   | l microcontrol   | ler has   |           | data lin  | es and  | d            | address      | lines.     |            |           |
|      |       | 16, 8            |           | 8, 8      |           |         | 8, 16        |              | 16, 20     |            | •         |
|      |       |                  |           |           |           |         |              |              |            |            |           |
| 175. | Whi   | ch of the follow | ving ins  | truction  | is not a  | data tr | ansfer inst  | truction?    |            |            |           |
|      | (1)   | XCH              | (2)       | PUSH      |           | (3)     | ADD          | (4)          | MOV        |            |           |
|      |       |                  |           |           |           |         |              |              |            |            |           |
| 176. | Inter | mal memory of    | f 8051 n  | nicro co  | ntroller  | consis  | sts of       |              |            |            |           |
|      | (1)   | 128 bytes of R   | AM, 2 K   | bytes o   | fROM      |         |              |              |            |            |           |
|      | (2)   | 4 K bytes of R   | RAM, 12   | 28 bytes  | of ROM    | [       |              |              |            |            |           |
|      | (3)   | 2 K bytes of R   | AM, 128   | 8 bytes o | fROM      |         |              |              |            |            |           |
|      | (4)   | 128 bytes of R   | RAM, 4    | K bytes   | of ROM    |         |              |              |            |            |           |
|      | .,    |                  | oderes (S |           |           |         |              |              |            | -          | 0         |
|      |       |                  |           |           |           |         |              |              |            |            | (EEC)     |
|      |       |                  |           |           | 2         | 6-B     |              |              |            |            | (EEE)     |

|      |        |               |          |        |            |         |         |               |                       |            | Se                              | t Code :  | <b>T2</b> |
|------|--------|---------------|----------|--------|------------|---------|---------|---------------|-----------------------|------------|---------------------------------|-----------|-----------|
| *    |        |               |          |        |            |         |         |               |                       |            | Bookle                          | Code:     | В         |
| 177. | The    | highest pri   | iority i | nterr  | upt is     |         |         |               |                       |            |                                 |           |           |
|      | (1)    | TF1           |          | (2)    | IE1        |         | (3)     | TF0           |                       | (4)        | IE0                             |           |           |
| 178. | Perc   | entage Vol    | ltage re | egula  | tion of a  | transm  | ission  | line is g     | iven by               |            |                                 |           |           |
|      |        | $(E_s-E_r)/E$ |          |        |            |         |         | 114           | )/E <sub>r</sub> *100 |            |                                 |           | 9 00      |
|      | (3)    | $(E_s-E_r)/E$ | *100     |        |            |         |         |               | )/E <sub>s</sub> *100 |            |                                 |           |           |
| 179. | In a   | main line     | service  | e of e | lectric tr | action  | system  |               | 11                    |            |                                 |           |           |
|      | (1)    | Distance      |          |        |            |         |         |               |                       |            |                                 |           |           |
|      | (2)    | Accelerat     | ion an   | d reta | ardation j | periods | are sm  | nall          |                       |            |                                 |           |           |
|      | (3)    | Free runn     | ing an   | d coa  | sting per  | iods ar | e short |               |                       |            |                                 |           |           |
|      | (4)    | Accelerat     | ion an   | d reta | ardation p | periods | are lor | ng            |                       |            |                                 |           | *         |
| 180. | For S  | SCR, dv/dt    | protec   | ction  | is achiev  | ed by c | onnect  | ting          |                       |            |                                 |           |           |
|      | (1)    | L in series   | л        |        |            |         | (2)     |               | eries witl            | h SCR      | t                               |           |           |
|      | (3)    | RC in seri    | ies witl | h SC   | R          |         | (4)     | RC in p       | arallel w             | ith SC     | CR                              |           |           |
| T.   |        |               |          |        |            |         |         |               |                       |            |                                 |           | 20        |
|      |        | effective re  | esistan  | ce be  | tween ter  | rminals | A and   | B in the      | below fi              | gure i     | S                               |           |           |
|      | (1)    | r             |          | ĸ.     |            | ۸۸      |         |               |                       |            |                                 |           |           |
|      | (2)    | 2r            |          | •      | <u></u>    | -rvv    | -L~~    | В             | 5.0                   |            |                                 |           |           |
|      | (3)    | 3r            |          |        |            |         | W-      | J             |                       |            |                                 |           |           |
|      | (4)    | 4r            |          |        |            |         |         |               |                       |            |                                 |           |           |
| 82.  | IfIb   | e the currer  | nt, C be | e the  | capacitan  | ice and | V be th | ne poten      | tial differ           | ences      | , the I/C                       | V will ha | ve the    |
|      | unit o |               |          | . 4    |            |         | ν.      |               |                       |            |                                 |           |           |
|      | (1)    | Time          |          | (2)    | Power      |         | (3)     | Freque        | ncy                   | (4)        | Reactiv                         | e Power   |           |
| 83.  | In a s | series R-C    | circuit  | exci   | ted by a I | OC volt | tage E, | the initi     | al curren             | t is       |                                 |           |           |
|      | (1)    | $\frac{E}{R}$ |          | (2)    | 0          | 78      | (3)     | $\frac{E}{C}$ |                       | (4)        | $\frac{\mathbf{C}}{\mathbf{F}}$ |           |           |
|      |        | K             |          |        |            | 5.4     | 3       |               |                       | ato a talk | L                               |           |           |
|      |        |               |          |        |            |         | 27-B    |               | (1)                   |            |                                 |           | (EEE)     |
|      |        |               |          |        |            |         |         |               |                       |            |                                 |           |           |

| Set Code :     | T2 |
|----------------|----|
| Booklet Code : | В  |

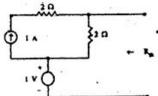
| 184  | The strength of electromagnet | can   | he increased | by |
|------|-------------------------------|-------|--------------|----|
| 104. | The strength of electromagnet | · can | oc mercuseu  | 0, |

- (1) Decreasing the length of the conductor (2) Increasing the length of the conductor
- (3) Increasing the number of turns
- Decreasing the number of turns (4)

### 185. Tesla is a unit of

- (1) Flux
- (2) Field strength (3) Current
- (4) Flux density

### 186. According to joule's law heat produced by an electric current is proportional to


- (1) square of the resistance
- (2) square of the current

(3) potential difference

square of the time

187. The Thevenin's equivalent resistance 
$$R_{th}$$
 for given below network is

- (1)  $\Gamma_{\Omega}$
- $(2) \cdot 2 \Omega$
- (3)  $4 \Omega$
- (4) Infinity



## 188. In a differential compound generator, the series field turns are provided on

- (1) Armature
- (2) Commutator
- (3) Interpole
- (4) Main pole

### 189. The function of the commutator in a dc machine is

- (1) to change alternating current to direct current
- (2) to improve commutation
- (3) for easy speed control
- (4) to change alternating voltage to direct voltage

# 190. If N is the speed and P is number of poles, then the frequency of induced e.m.f in DC generator will be

(EEE)

|      |                                                                                                                                                                |                          |         | 7                    | 67      |                                |            | Book         | let Code   | : B   |  |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------|----------------------|---------|--------------------------------|------------|--------------|------------|-------|--|--|
| 191. | The                                                                                                                                                            | demagnetizing            | flux in | de generator         |         |                                |            |              |            |       |  |  |
|      | (1)                                                                                                                                                            |                          |         |                      | (2)     | Decreases e                    | .m.f       |              |            |       |  |  |
|      | (3)                                                                                                                                                            | Increases spec           | d .     |                      | (4)     | Decreases s                    | peed       |              |            |       |  |  |
| 192. | If T <sub>a</sub> be the torque and I <sub>a</sub> the armature current for a dc series motor, then which of the following relation is valid before saturation |                          |         |                      |         |                                |            |              |            |       |  |  |
|      | (1)                                                                                                                                                            | $T_a \alpha I_a$         | (2)     | $T_a \alpha (1/I_a)$ | (3)     | $T_a\alpha(I_a^2)$             | (4)        | $T_a \alpha$ | $1/I_a)^2$ |       |  |  |
| 193. | Wha                                                                                                                                                            | at will happen if        | the ba  | ck e.m.f of a Do     | C motor | vanishes sud                   | denly      |              |            |       |  |  |
|      | (1) The motor will stop                                                                                                                                        |                          |         |                      | (2)     | The motor will continue to run |            |              |            |       |  |  |
|      | (3)                                                                                                                                                            | The armature             |         | ım ·                 | (4)     | The motor w                    | vill run n | oisy         |            |       |  |  |
|      | 9. 14                                                                                                                                                          |                          |         |                      |         | 9                              |            |              |            |       |  |  |
| 194. | The mechanical power developed by a DC motor is equal to                                                                                                       |                          |         |                      |         |                                |            |              |            |       |  |  |
|      | (1)                                                                                                                                                            | Power input + losses     |         |                      | (2)     | Back e.m.f × armature current  |            |              |            |       |  |  |
|      | (3)                                                                                                                                                            | Power output             | × loss  | es                   | (4)     | Power outpu                    | at × effic | iency        |            |       |  |  |
| 195. | Neglecting saturation, if current taken by a series motor is increased from 10A to 12A, the percentage increase in its torque is                               |                          |         |                      |         |                                |            |              |            |       |  |  |
|      | -                                                                                                                                                              | 20%                      |         | 44%                  | (3)     | 30.5%                          | (4)        | 16.69        | %          |       |  |  |
| 196. | Dynamometer type instrument have                                                                                                                               |                          |         |                      |         |                                |            |              |            |       |  |  |
|      | (1)                                                                                                                                                            |                          |         |                      | (2)     | Cramped at the end             |            |              |            |       |  |  |
|      | (3)                                                                                                                                                            | Cramped at th            |         | - CEO                | (4)     | Uniform sca                    |            |              |            |       |  |  |
|      |                                                                                                                                                                |                          |         |                      |         | 60 and 10 200                  |            |              |            |       |  |  |
|      | . To measure a signal of 10 mV at 75 Hz, which one of the following instrument can be used                                                                     |                          |         |                      |         |                                |            |              |            |       |  |  |
|      | (1)                                                                                                                                                            | cathode ray oscilloscope |         |                      | (2)     | VTVM                           |            |              |            |       |  |  |
|      | (3)                                                                                                                                                            | Moving Iron voltmeter    |         |                      | (4)     | digital multi                  | meter      |              |            | -     |  |  |
| 198. | Which one of the following a passive transducer                                                                                                                |                          |         |                      |         |                                |            |              |            |       |  |  |
|      | (1)                                                                                                                                                            | piezolectric             | (2)     | thermocouple         | (3)     | photovoltaio                   | cell       | (4)          | LVDT       |       |  |  |
|      |                                                                                                                                                                |                          |         |                      |         | 2                              |            |              |            |       |  |  |
|      |                                                                                                                                                                |                          |         |                      | 29-B    |                                |            |              |            | (EEE) |  |  |

Set Code: T2

| Set Code :     | <b>T2</b> |
|----------------|-----------|
| Booklet Code : | В         |

- 199. The voltage coil of a single phase house energy meter
  - (1) is highly resistive
  - (2) is highly inductive
  - (3) is highly capacitive
  - (4) has a phase angle equal to load power factor angle
- 200. The effective value of a triangular wave is
  - (1) Max. value

(2)  $\sqrt{3}$  (Max. value)

(3)  $\frac{\sqrt{3}}{\text{Max. value}}$ 

 $(4) \quad \frac{\text{Max. value}}{\sqrt{3}}$