GGSIPU Mathmatics 2004

1. If the angles between the pair of straight lines represented by the equation

 $X^{2} - 3xy + \lambda y^{2} + 3x - 5y + 2 = 0$ is $\tan^{-1}\frac{1}{3}$.

Where' λ' is a non-negative real number,then λ is :

a 2 b 0

```
c 3 d 1
```

2. The distance of the line 2x-3y = 4 from the point 1,1 measuring parallel to the line x+y = 1 is :

- a √2 b5/√2 c1/√2d6
- 3. The equations of bisectors of the angles between the lines $|\mathbf{x}| = |\mathbf{y}|$ are :

a y=	$\pm x$ and x=0
b x	$=\frac{1}{2}$ and y $=\frac{1}{2}$
c y =	0 and x =0
d no	one of these

4. The base of vertices of an isosceles triangle PQR are Q 1,3 and R -2,7. The vertex p can be :

a 1,6, b $\frac{1}{2}$, 5 c $\frac{5}{6}$, 6 d none of these

5. The normal at the point 3,4 on a circle cuts the circle at the point -1,-2. Then the equation of the circle is :

a $x^{2} + y^{2} + 2x - 2y - 13 = 0$ b $x^{2} + y^{2} - 2x - 2y - 11 = 0$ c $x^{2} + y^{2} - 2x + 2y + 12 = 0$ d $x^{2} + y^{2} - 2x - 2y + 14 = 0$

6. If $\cos P = \frac{1}{7}$ and $\cos Q = \frac{13}{14}$ where 'P' and 'Q' both are acute angles. Then the value of P-Q is :

https://www.freshersnow.com/

	c 45 [°] d 75 [°]
7. The equation 3 cos x + 4 sin x = 6 has solution	
	a finite b infinite
	cone dno
8. If sec ⁻¹ x = cosec ⁻¹ y, then $\cos^{-1}\frac{1}{x} + \cos^{-1}\frac{1}{y}$ is equal to :	
	a π b π /4
	c - π/2 d π/2
9. If 'n' be any integer ,then nn+1 2n+1 is :	
multiple of 6	a odd number b integral
necessarily have any of the foregoing proof	c perfect square d does not
10. If $\tan \theta = -\frac{4}{3}$, than the value of $\sin \theta$ is :	
	a $\frac{4}{5}$ but $\neq \frac{4}{5}$ b $-\frac{4}{5}$ or $\frac{4}{5}$
	$\left(\begin{array}{cc} \frac{4}{5} \text{ but } \neq -\frac{4}{5} & \text{d} & \frac{1}{5} \end{array}\right)$
11. If c = 2 cos θ , then the value of the determinant =	c 1 0 1 c 1 is: 6 1 c
$a \frac{\sin 4 \ \theta}{\sin \theta}$	$b \frac{2 \sin^2 29}{\sin t}$
c 4cos ² θ 2	2 cos $ \theta$ - 1 $$ d none of these
12. the set of values of x for which the inequality $ x-1 $	+ x+1 < 4 always holds true is :
2 , ∞	a -2,2 b -∞,2 ∪

c $-\infty,1] \cup [1,\infty \text{ d none}]$

of these.

13. The equation of the parabola whose vertex is -1,-2, axis is vertical and which passes through the point 3,6, is :

 $a \quad x^{2} + 2x - 2y - 3 = 0$ $b \quad 2x \quad ^{2} = 3y$ $c \quad x \quad ^{2} - 2x + 2y - 3 = 0$ $d \quad x \quad ^{2} - 2x + 2y - 3 = 0$ 14. The length of the axis of the conic $9x^{2} + 4y^{2} - 6x + 4y + 1 = 0$ are : $a \quad \frac{1}{2}, 9 \qquad b \quad 3, \quad \frac{2}{5}$ $(c) , \quad \frac{2}{3} \qquad d \quad 3, 2$ 15. If $fx = \cot^{-1}\left(\frac{3x - x^{3}}{1 - 3x^{2}}\right)$ and $gx = \cos^{-1}\left(\frac{1 - x^{2}}{1 + x^{2}}\right)$, then $\lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)}, 0 \le 4 \le \frac{1}{2}$, is : $a \quad \frac{3}{2(1 + a^{2})} \quad b \quad \frac{3}{2(1 + x^{2})}$ $c \quad \frac{3}{2} \qquad d \quad - \quad \frac{3}{2}$ 16. If $f(x = \left\{\frac{x}{2x - 1}, \frac{0 \le x}{1 \le x}, x \le 1 \text{ then } :$

a f is discontinuous at x

b f is differentiable at x

c f is continuous but

d none of these

not differentiable at x = 1

17. $\lim \frac{sin^{-1}(x+2)}{x^2+2x}$ is equal to : x -2

a 0 b
$$\infty$$

c $-\frac{1}{2}$ d none of these

= 1

= 1

.	18.	Let fx = x ^p cos $\frac{1}{x}$, when x \neq 0 and f(x = 0, when x = 0. then f(x w	ill be differe	entiable at
x = 0,it	:			
			a p>0	b p>>
			c 0 < p < 1	d $\frac{1}{2}$
1				
	19.	The derivative of f(x = 3 $ 2+x $ atv the point x ₀ = -3 is :		
			a 3	b -3
- f 4 h	_		c 0	d none
of these	е			
	20.	Derivative of the function f(x = log 5 (log 7x), x>7 is :		
			a $\frac{1}{x \log 5}$	$\frac{1}{(\log 7)(\log_7 x)}$
			b	1
			x (1	og 5)(<i>log</i> 7)
			$c = \frac{1}{x \log x}$	<u>x)</u>
			d none c	of these
	21.	If z = x+iy, $z^{1/3} = a - ib$, then $\frac{x}{a} - \frac{y}{b} = k a^2 - b^2$, where k is equal to :		
			a 1	b 2
			c 3	d 4
	22.	The number of real solutions of the equation $1+ e^{x}-1 =e^{x}e^{-x}-2$	is :	
			a 1	b 2
			c 4	d 8
	23.	The points of extrema of $f(x = \frac{x \sin t}{0} dt$ in a domain x>0 are :		
			a 2n+1	$\frac{\pi}{2}$, n =
1,2,				
			b 4n+1	$\frac{\pi}{2}$, n =
1,2,				

	с	2n-	$1 \frac{\pi}{4}$, n =	
1,2,					
	d	n π,	,n =1,	2,	•
24. If $i=x^2 + y^2$ and $x=s+3t$, $y=2s-t$, then $\frac{d^e u}{ds^2}$ is equal to :					
	а	12	b 10		
	С	32	d 36	6	
25. If the equation $x^2+qx+p = 0$ have a common root then $p+q+1$ is equal to	:				
	а	0	b 1		
	с	2	d	-1	
26. The value of aa b for which the sum of the cubes of the roots of x 2 - a assumes the last value is :	-2 :	x+a ∘	-3 =0	I	
	а	3	b	4	
	с	5	d		
none of these					
27. Let z_1, z_2, z_3 be three vertices of an equilateral triangle circumscribing the	cir	cle z	= <mark>1</mark> . I	f z 1 =	$\frac{1}{2}$ +
$\frac{l\sqrt{3}}{2}$ and z_1, z_2, z_3 were in anticlockwise sense, then z_2 is :					
	а	1+	<u>3i</u>	b	
1- 3 <i>i</i>					
	C	1		d	-1
28. If $z = \frac{-2}{1 + \sqrt{3l}}$, then the value of arg z is :					
- /2	а	π		b	
π/3					
π/4	С	2 π /	3	d	

29. Let $\boldsymbol{\omega}$ is an imaginary cube roots of unity ,then the value of

21+ ω **1**+ ω^2 + **32** ω +**12** ω^2 +**1**+ ...+ **n**+**1 n** ω +**1 n** ω^2 + **1 is** :

a [<u>m</u>	$\left[\frac{(n+1)}{2}\right]^2$ + n (t $\left[\frac{n^2(n+1)^2}{4}\right]$
c	$\left[\frac{n(n+1)}{2}\right]^2$ -n d none of these
30. The locus of the point z satisfying arg $\left[\frac{z-1}{z+1}\right] = k$, (vhere k is n	on zero is :
centre on y-axis	a a circle with
centre on v-avis	b circle with
	c a straight line
parallel to x- axis	
making an angle 60° with the x-axis	d a straight line
31. If 3,4,5,Q(4,6,3,R -1,2,4,s1,0,5,then the projection of RS of	on PQ is :
4/3	a -2/3 b -
	c ½ d2
32. If a line makes α , β , γ with the positive direction of x,y,z-axe $\cos^2\alpha$ + $\cos^2\beta$ + $\cos^2\gamma$ is equal to :	es respectively.Then
	a ½ b -1/2
	c -1 d 1
33. The projection of a line on co-ordinate axes are 2,3,6.Then	the length of the line is :
	a 7 b 5
	c 1 d 11
34. The decimal equivalent of the binary number 10011.1 is :	
11001.11	a 19.50 b
	c 5005.55
d 19.10	
35. The binary represents of 60 is :	

111100	a 101110 b
	c 110011 d
110000	
36. Which of the following statement is not tautology?	
b р	a ∼p q p
d ~p q∩~p p	cq ~pq
37. The period of f(x = sin $\left(\frac{rx}{n-1}\right)$ + cos $\left(\frac{rx}{n}\right)$, n \in z,n>2 is :	
b 4nn -1	a 2rn n - 1
d none of these	c 2nn -1
39. The radius of the circle whose arc of length 15 km makes an angle of $\frac{3}{4}$ radia	n at the centre ,is :
b 20 cm	a 10 cm
	c 11 $\frac{1}{4}$ cm
d 22 $\frac{1}{2}$ cm	
40. If $f_n x = e f(n - 1^x)$, for all $n \in N$ and $f_0 x = x$, then $\frac{d}{dx} \{f_n x\}$ is equal to :	
$b f_n x \frac{d}{dx} \{ f_{n+1} 9 x \}$	af _n xf _{n-1} x
f ₂ x f $_1$ x d none of these	c f _n x f _{n-1} x
41. if $3^x + 2^{2x} \ge 5^x$, then the solution set for x is :	
b [2, ∞	a -∞,2]

	c [0,2]
d {2}	
42. The number of integral solution of $\frac{x+1}{x^{2+2}} > \frac{1}{4}$ is :	
	a 1
b 2	
	c 5
d none of these	
43. The value of k for which the equation k -2 x 2 + 8x + k +4 = 0 has both real, dis	stinct and -ve,is :
	a 0
b 2	
	c 3
d -4	
44. The triangle PQR of which the angles P,Q,R satisfy $\cos P = \frac{\sin Q}{2 \sin R is}$:	
	a equilateral
b right angled	
	c any triangle
d isosceles	
45. If $fx = a -x^{n 1/n}$, where a>0 and n is a positive integer, then f[f x] is equal t	o :
	ax ³
b x ²	
	сх
d none of tese	
46. The function $f(x = [x]^2 - [x^2]$ where [y] is the gretest integer less then or equivalent discontinuous at :	qual to y is

a all integers

b all integers

except 0 and 1

except 0	c all integers
	d all integers
except 1	
47. the function fx = $ px-q + r x , x \in -\infty, \infty$ where p>0,q.0,r>0 only at one point, if :	assumes its maximum value
	an ≁a h
q≠r	a þ ≁y – v
	cr≠n d
p=q=r	
48. A function f(x = $\frac{x^2 - 3x + 2}{x^2 + 2x - 3}$ is :	
v= 2	a maximum at
x= -3	
	b maximum
at x= -3 and maximum at x= 1	
	c maximum at
x= 1	
	d function is
increasing in its domain	
49. The locus of the point px,y) satising thinreletitin	
$\sqrt{(x-3)^2 + y-1^2} + \sqrt{(x+3)^2}$	$\frac{1}{2} + y - 1^2 = 6$ is
a Str	aight line
b Pair	r of straight lines
c Circ	le
d Ellip	ose

50. If z_1 , z_2 and z_3 are complex number such that $|z_1| = |z_2| = |z_3| = \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} = 1$ then $|z_1 + z_2 + z_3|$ is :

a equal to 1

b less than 1

than 3

c greater

	d e	qual to 3
51. Let a_1,a_2,a_3 be any positive real numbers , then which of the following statement	is no	ot true ?
$a_1^3 + a_2^3 + a_3^3$	a 3	a ₁ a₂a₃≤
$a_3 > 2$	b	$\frac{a_1}{a_2} + \frac{a_2}{a_3} + \frac{a_3}{a_3} + $
$\overline{a_1} \leq \mathbf{S}$		
$\left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3}\right) \ge 9$	са	1 ₁ a ₂ a ₃
$\left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3}\right)^3 \le 27$	d	a ₁ a ₂ a ₃
52. If ab = 2a +3b,a>0,b<0,then the minimum value of ab is :		
b 24	а	12
d none of these	C	$\frac{1}{4}$
53. Let N be +ve integer \neq 1, then none of the numbers 2,3,,N is divisor of N $!$ -1.So conclude that N! -1 is :	we	can
number	а	prime
one of this number N+1, N+2,,N ! – 2 is divisor of N! – 1	b	at least
smallest numbers between N and N ! which is divisor of N ! -1 is pr ime number	c ⁻	The
these	d	none of
54 . If f(x = cos [π^2] x+cos [- π^2] x,then :		

a f π/4=2

https://www.freshersnow.com/

b f
$$-\pi=2$$

c f $\pi = 1$
d f $\pi/2=-1$
55. let fx = $\frac{x^2-4}{x^2+4}$, for $|x| > 2$, then the function f: $-\infty, -2$] $\cup [2,\infty]$ -1,1 is :
a one -
one into b one -one onto
c many -
one into d many-one onto
56. The function f(x = sin log x+ $\sqrt{x^2 + 1}$ is :
a even
function b odd function
b neither
even nor odd d periodic function
57. The range of f(x = sec $(\frac{\pi}{4} \cos^2 x), -\infty < x < \infty$ is :
a $[1, \sqrt{2}]$
b $[1,\infty]$

c[-
$$\overline{2}$$
,-
1] \cup [1, $\overline{2}$] d - ∞ ,1] \cup [1, ∞

58. For any three sets A_1 , A_2 , A_3 . Let $B_1 = A_1$, $B_2 = A_2$ - A_1 and $B_3 = A_3 - A_1 \cup A_2$, then which of the following statement is always true ?

$$a\ A_{\ 1}\cup$$

$$A_{2}\cup A_{3}\supset B_{1}\cup B_{2}\cup B_{3}$$

bA
$$_1 \cup$$

c A
$$_1 \cup$$

$$\mathsf{A}_2 \cup \mathsf{A}_3 \subset \mathsf{B}_1 \cup \mathsf{B}_2 \cup \mathsf{B}_3$$

of these

 $\textbf{A}_2 \cup \textbf{A}_3 = \textbf{B}_1 \cup \textbf{B}_2 \cup \textbf{B}_3$

59. the domain of the function
$$f(x = \frac{sin^{-1}(3-x)}{\log(\sqrt{x}-2)}$$
 is :

d none

https://www.freshersnow.com/

b 3,4]	a [2,4]
d -∞,3 ∪ [2,∞	c [2, ∞
60. The remainder obtained when 1! + 2! + + 200! Is divided by 14 is :	
	a 3
D 4	c 5
d none of these	C S