GGSIPU mathmatics 2008

1. Let \vec{n} and \vec{n} be two equal vectors inclined at an angle θ , then a $\sin \frac{\theta}{2}$ is equal to

$$a = \frac{|\vec{m} - \vec{b}|}{|\vec{a}|} | \quad b = \frac{|\vec{m} - \vec{b}|}{|\vec{a}|}$$

c
$$|\vec{i} - \vec{b}|$$
 d $|\vec{i} + \vec{b}|$

2. $\int \frac{dx}{x^2+4x+13}$ is equal to

a
$$loc x ^{2}+4x+13) +c$$

b
$$\frac{1}{3}$$
tan⁻¹ $\left(\frac{x+2}{3}\right)$ + c

d
$$\frac{2x+4}{x^2+4x+13))^2}+c$$

3. The general solution $y^2 dx + x^2 - xy + y^2 dy = 0$ is

a tan
$$\frac{x}{y} | \log y + c = 0$$

b
$$2\tan^{-1}\frac{x}{y}$$
) + $\log c + c = 0$

c log y+ +
$$\sqrt{x^2 + y^2}$$
 + log y + c = 0

(d)
$$\sinh^{-1}(\frac{x}{y}) + \log y + c = 0$$

4. $\int_0^{\pi/4} \cos x - \sin x dx + \int_{\pi/4}^{5\pi/4} \sin x - \cos x dx + \int_{2\pi}^{\pi/4} (\cos x - \sin x) dx$ is equal rto

a
$$\sqrt{2}$$
 - 2 b 2 $\sqrt{2}$ - 2

b 2
$$\sqrt{2}$$
 - 2

c
$$3\sqrt{2}$$
 - 2 d 4 $\sqrt{2}$ - 2

d 4
$$\sqrt{2}$$
 - 2

5. Out of 40 consecutive natural numbers , two are chosen at random. Probability that the sum of the number is odd, is

a
$$\frac{14}{29}$$
 b $\frac{20}{39}$

c
$$\frac{1}{2}$$
 d None of the e

6. Equation of tengents to the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$, which are perpendicular to the line 3x+4y = 7, are

a 4x -3y =
$$\pm \sqrt{20}$$
 b 4x -3y = $\pm \sqrt{12}$

c
$$4x + 3y = \pm \sqrt{1}$$
 d $444 - 3y = \pm 1$

71. If \vec{a} is perpendicular to \vec{b} and \vec{c} , $|\vec{a}| = 2$, $|\vec{b}| = 3$, $|\vec{c}| = 4$ and the angle between \vec{b} and $|\vec{c}|$ is equal to

a 4
$$\sqrt{3}$$
 b 6 $\sqrt{3}$

c 12
$$\sqrt{3}$$
 (d 18 $\sqrt{3}$

8. The solution of the equation $\frac{d^2y}{dx^2} = e^{-2x}$ is

a
$$y = \frac{1}{4}e^{-2x} + \frac{cx}{2} + d$$

$$by = \frac{1}{4}e^{-2x} + cx + d$$

$$c y = \frac{1}{4}e^{-2x} + cx^2 + d$$

d|)
$$y = \frac{1}{4}e^{-2x} + cx^3 + d$$

9. The value of $\int_2^3 \frac{x+1}{x^{2\ell}x-1} dx$ is

a
$$\log \frac{16}{9} + \frac{1}{6}$$
 b $\log \frac{16}{9} \cdot \frac{1}{6}$

c 2 log 2
$$-\frac{1}{6}$$
 d log $\frac{4}{3}$ - $\frac{1}{6}$

10. The length of the chord of the parabola x^2 =4y passing through the vertex and having slope cot α is

- a 4 cos α cosec² α b 4 tan α sec α
- c 4 sin $\alpha \sec^2 \alpha$ d None of these

11. The records of a hospital show that 10% of the cases of a certain disease, then the probability that only three will die, is

- a 8748x10 ⁻⁵ b 1458x10⁻⁵
- c 1458x10 ⁻⁶ d 41x10 ⁻⁶

12. From the point P16,7 tangents PQ and PR are drawn to the circle $x^2+y^2-2x-4y-20=0$. If c be the centre of the circle, then area of quadrilateral PQCR is

a 450 sq unit b 15 sq unit

13. If $\tan x = \frac{b}{a}$, then the value of a $\cos 2x + b \sin 2x$ is

b a -b аа

ca+b d b

14. In a triangle ABC, right angled at C, the value of cot A + cot B is

a $\frac{c^2}{ab}$ b a-a-

c $\frac{a^2}{bc}$ d $\frac{b^2}{ac}$

16. If α , β are roots of the equation lx² + mx + n = 0,then the equation whose roots are α^3 β and α β^3 is,

a $I^{4}x^{2} - nIm^{2} - 2nIx + n^{4} = 0$

b $1^{4}x^{2} + nIm^{2} - 2nIx + n^{4} = 0$

 $c I ^{4}x^{2} + nIm^{2} - 2nIx - n^{4} = 0$

d $1^{4}x^{2}$ - nlm 2 - 2nlx + n 4 = 0

17. The value of $2^{1/4} \cdot 4^{1/8} \cdot 8^{1/16} \cdot 16^{1/32} \dots$

a 3/2 b 5/2

c 2 d 1

18. $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ [2 1 -1] is equal to

a $\begin{bmatrix} 2 \\ -1 \\ -2 \end{bmatrix}$ b $\begin{bmatrix} 2 & -1 & -1 \\ -2 & -1 & 1 \\ 4 & 2 & -2 \end{bmatrix}$

(c) [-1] d not defined

19. $\lim_{x \to \infty} \frac{(2x-3)(3x-4)}{(4x-5)(5x-6)}$ is equal to

a $\frac{1}{10}$ b 00

 $c = \frac{1}{5}$ (c $\frac{3}{10}$

20. Function f(x = $\begin{cases} x-1, & x < 2 \\ 2x-3, & x \ge 2 \end{cases}$ is a continuous function

- a for x = 2 only
- b for all real values of x such that $x \neq 2$
- c for all real values of x
- d for all integgral values of x only
- 21. Differential coefficient of $\sqrt{\sec \sqrt{x}}$ is
 - a $\frac{1}{4\sqrt{x}}$ sec \overline{x} sin \overline{x}
 - b $\frac{1}{4\sqrt{x}} (\operatorname{ec} \ \overline{x})^{3/2} . \sin \sqrt{x}$
 - c $\frac{1}{2}$ \overline{x} sec \overline{x} sin \overline{x}
 - d $\frac{1}{2}$ \overline{x} sec $\overline{x}^{3/2}$. sin \overline{x}
- 22. The function x^5-5x^4+5x-1 is
 - a neither maximum nor minimum at x = 0
 - b maximum at x=0
 - c maximum at x=1 and minimum at x=3
 - (d)minimmm at x=0
- 23. If x= y $\sqrt{1-y^2}$, then $\frac{dy}{dx}$ is equal to
 - a xx $\rightarrow \frac{\sqrt{1-y^2}}{1+2y^2}$
 - $c \quad \frac{\sqrt{1-y^2}}{1-2y^2} \quad d \quad 0$
- 24. If the planes x+2y+kz = 0 and 2x+y-2z = 0, are at the right angles, then the value of k is
 - a !: b -2
 - $c = \frac{1}{2}$ $d = -\frac{1}{2}$
- 25. The ratio in which the line joining 2,4,5, 3,5, -4 is divided by the yz plane is
 - a 2:3 b 3:2
 - c 2:3 d 4: -3

- 26. If the lines $3x+4y+1=0,5x+\lambda y+3=0$ and 2x+y-1=0 are concurrent, then λ is equal to
 - a -8 (b) 8 c 4 d -4
- 27. The value of $\frac{1}{0} \frac{x^4+1}{x^2+1} dx$ is
 - a $\frac{1}{6}$ 3 -4 π b $\frac{1}{6}$ 3 π +4
 - c $\frac{1}{6}$ 3+4 π d $\frac{1}{6}$ 3 π -4
- 28. The solution of the differential equation

$$\frac{dy}{dx}$$
 = y tan x – 2 sin x,is

- a $Y \sin x = c + \sin 2x$
- b $Y \cos x = c + \frac{1}{2} \sin 2x$
- c $Y \cos x = c-\sin 2x$
- d $Y \cos x = c + \frac{1}{2} \cos 2x$
- 29. The value of 1- $\log 2 + \frac{(\log 2)^2}{2!} \frac{(\log 2)^3}{3!} + \dots$ Is
 - a klg3 b log2
 - c $\frac{1}{2}$ d None of these
- 30. The maximum value of $f(x = \frac{x}{4+x+x^2})$ on [-1,1] is
 - a $\frac{1}{3}$ b $-\frac{1}{4}$
 - $c = \frac{1}{5}$ $d = \frac{1}{6}$
- 31. If the redius of a circle be increasing at auniform rate of 2 cm/s. The area of increasing of area of circle, at the instant when the redius is 20 cm, is
 - a 70 π cm²/s b 70 cm²/s
 - c $80 \,\pi\,\text{cm}^2/\text{s}$ d $80 \,\text{cm}^2/\text{s}$
- 32. If PA = PB = $\frac{3}{k}$ and PA $\frac{1}{k} \cap B = PA' \cap B' = \frac{1}{3}$, then x is equal to
 - a $\frac{1}{2}$ b $\frac{1}{3}$
 - $c \quad \frac{1}{4} \quad d \quad \frac{1}{6}$

- 33. The focus of the parabola y^2 -x-2y+2 = 0 is
 - a $(\frac{1}{4}, 0 \ b \ 1, 1)$
 - c $\frac{5}{4}$,1 d $\frac{3}{4}$, $\frac{5}{2}$
- 34. The equation of normal at the point 0,3 of the ellipse $9x^{-2}+5y^2=45$ is
 - a x -axis b y -axis
 - c y+3=0 d y -3=0
- 35. The equation of the tengent parallel to y-x+5=0 drawn to $\frac{x^2}{3} \frac{y^2}{2} = 1$ is
 - a x -y+1=0 b x -y+2=0
 - c = x+y-1 = 0 d) x+y+y=2 0
- 36. Let the functions f,g,h are defined from the set of real numbers R to R such that f(x = x^2 -1, gx = $\sqrt{(x^2 + 1)}$ and hx = $\begin{cases} 0, & \text{if } x < 0 \\ x, & \text{if } x = 0 \end{cases}$

Then hofog x is defined by

- a X
- b X²
- c 0
- d None of these
- 37. The angle of elevation of the sum, If the length of the shadow of a tower is $\overline{3}$ times the height of the pole, is
 - a 150 ° b 30 °
 - c 60 ° d 45°
- 38. If sin A = n sin B, then $\frac{n-1}{n+1} \tan \frac{A+B}{2}$ is equal to
 - a sin $\frac{A-B}{2}$ b tan $\frac{A-B}{2}$
 - c cot $\frac{A-B}{2}$ d None of these
- 39. 3 tan⁻¹ a is equal to
 - a tan $\frac{-1}{1+3a^2}$

b
$$\tan^{-1} \frac{3a-a^3}{1+3a^2}$$

c tan
$$\frac{-1}{1-3a^2}$$

d tan
$$\frac{1}{1-3a^2}$$

- 40. In which quadrant of the complex plane ,the point $\frac{1+2l}{1-l}$ lies ?
 - a Fourth b Fir st
 - c Second d Third
- 41. If $\sin \alpha$ and $\cos \alpha$ are the roots of the equation $px^2+qx+r=0$, then

a p
$$^{2}+q^{2}-2pr=0$$

b p
2
-q 2 +2pr = 0

c
$$p^2-q^2-2pr = 0$$

$$d p^{2}+q^{2}+2pr=0$$

42. If a,b,c are in the GP,then the equations $ax^2+2bx+c=0$ and $dx^2+2ex+f=0$ have a common root, if $\frac{d}{a}$, $\frac{e}{b}$, $\frac{f}{c}$ are in

- c Hp d None of to ese
- 43. In the expension of $2x^2 \frac{1}{x}^{12}$, the term independent of x is

a 8
th
 b 7 th

c 9
th
 d 10 th

44. The general value of θ in the equation $\cos\theta = \frac{1}{\sqrt{2}}$, $\tan\theta = -1$ is

a 2n
$$\pi \pm \frac{\pi}{6}$$
, $n \in I$

b
$$2n\pi + \frac{7\pi}{6}$$
, $n \in I$

c n
$$\pi$$
 + -1 $\frac{\pi}{3}$, n \in I

d
$$n\pi + -1^{n} \frac{\pi}{4}, n \in I$$

45. If $A = \begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}$, then A^{-1} is equal to

$$\mathsf{a} \quad \begin{bmatrix} -5 & -2 \\ -3 & 1 \end{bmatrix}$$

b
$$\begin{bmatrix} 5/11 & 2/11 \\ 3/11 & -1/11 \end{bmatrix}$$

c
$$\begin{bmatrix} -5/11 & -2/11 \\ -3/11 & -1/11 \end{bmatrix}$$

$$d \begin{bmatrix} 5 & 2 \\ 3 & -1 \end{bmatrix}$$

46. The value of $\lim_{x\to\infty} \left(\frac{x^2+bx+4}{x^2+ax+5}\right)$ is

$$a \frac{b}{a} b o$$

c 11 (d)
$$\frac{4}{5}$$

47. Let $f(x) = \begin{cases} \frac{\sin \pi x}{5x} & x = 0 \\ k, & x = 0 \end{cases}$ if f(x) is the continuous at x = 0, then k is equal to

a
$$\frac{\pi}{5}$$
 b $\frac{5}{\pi}$

48. If θ be the angle between the vectors $\hat{k} = 2\hat{i} + 2\hat{j} - \hat{k}$ and $\hat{b} = 6\hat{i} - 3\hat{j} + 2\hat{k}$, then

a
$$\cos \theta = \frac{4}{21}$$

b cos
$$\theta = \frac{3}{19}$$

c cos
$$\theta = \frac{2}{19}$$

dibits
$$\theta \approx \frac{5}{21}$$

49 Let and F be vectors with magnitudes 3,4 and 5 respectively and + + + = 0, then the values of 1,0 + 1,0 + 1,1 is

50. The maximum value of z= 4x+2y subjected the constrains 2x+3y 18,x+y 10,x,y 0

- a 20 b 36
- c 40 d None of these