Quantitative Aptitude Q \& A

1.A father can do job as fast as $\mathbf{2}$ sons working together. If one son does the job in $\mathbf{3}$ hours and the other in $\mathbf{6}$ hours, the number of hours taken by the father, to do the job alone is
a. 1
b. 2
c. 3
d. 4

Ans. 2

Explanation:- The efficiency of first son $=1 * 100 / 3=33.33 \%$.

The efficiency of second son $=100 / 6=16.67 \%$.

Hence, the efficiency of father $=33.33+16.67=50 \%$.

And, the number of hours taken by father to complete the same job $=100 / 50=2$ hours.
2.The perimeter of a rhombus is $\mathbf{2 4 0} \mathbf{~ m}$ and the distance between any two parallel sides is $\mathbf{2 0} \mathbf{~ m}$. The area of the rhombus in sq.m. is
a. 600
b. 1200
c. 2400
d. 4800

Ans. 1200

Explanation:- the side of rhombus $=240 / 4=60 \mathrm{~m}$.

Altitude $=$ distance between any parallel sides $=20 \mathrm{~m}$.

Hence, the area of rhombus $=60 * 20=1200$ sq. m .
3.A man sold an article for Rs. 450, after allowing a discount of $16 \mathbf{2 / 3} \%$ on the printed price. What is that printed price?
a. Rs. 525
b. Rs. 530
c. Rs. 535
d. Rs. 540

Ans. Rs. 540

Explanation:-Let the printed price= Rs. x ;

If the discount is $(50 / 3) \%$, then the sold percentage will be $(250 / 3) \%$.
$x *[250 /(3 * 100)]=450$;
$\mathrm{x}=540$;
4. A sum of Rs. 770 has been divided among A, B, C in such a way that A receives 2/9th of what B and C together receive. Then A 's share is
a. Rs. 140
b. Rs. 154
c. Rs. 165
d. Rs. 170

Ans. Rs. 140

Explanation:- $\mathrm{A}=(2 / 9)(\mathrm{B}+\mathrm{C})$;

Hence, $\mathrm{B}+\mathrm{C}=9 \mathrm{~A} / 2$;

Since, $A+B+C=770$;
$11 \mathrm{~A} / 2=770 ;=>\mathrm{A}=$ Rs. 140.
5. A man bought 4 dozen eggs at Rs. 24 per dozen and 2 dozen eggs at Rs. 32 per dozen. To gain $\mathbf{2 0 \%}$ on the whole, he should sell the eggs at
a. 16 per dozen
b. 21 per dozen
c. 32 per dozen
d. 35 per dozen

Ans. 32 per dozen

Explanation:- Total price paid for the eggs $=4 * 24+2 * 32=$ Rs. 160.

The total price after 20% gain $=160 * 1.2=$ Rs. 192 ;

Hence, the selling price per dozen $=192 / 6=$ Rs. 32 ;
6. P 's salary is $\mathbf{2 5 \%}$ higher than Q, what percentage is Q 's salary lower than that of P ?
a. 20
b. 29
c. 31
d. $331 / 3$

Ans. 20

Explanation:- Let the salary of $\mathrm{Q}=$ Rs. x ; then, the salary of $\mathrm{P}=$ Rs. 1.25 x .
$\%$ change in salary $=(0.25 x / 1.25 x) * 100=20 \%$.
7. A and B start running at the same time and from the same point around a circle. If A can complete one round in 40 seconds and B in50 seconds, how many seconds will they take to reach the starting point simultaneously?
a. 10
b. 200
c. 90
d. 2000

Ans. 200

Explanation:- time taken to reach the starting point simultaneously= $\operatorname{LCM}(40,50)=200$ seconds.
8. If $x-\frac{1}{3 x}=\frac{1}{3}$ the value of $3 .\left(x-\frac{1}{3 x}\right)$ is
a. -1
b. 1
c. -2
d. 2

Ans. 1

Explanation:- The answer is obvious $=3 * 1 / 3=1$.
9. If $P=3+\frac{1}{p}$, the value of $p^{4}+\frac{1}{p^{4}}$ is:
a. 81
b. 27
c. 120
d. 119

Ans. 119

Explanation:- p-1/p=3;

Squaring both sides-
$\mathrm{P}^{2}+1 / \mathrm{p}^{2}-2=9 ;=>\mathrm{p}^{2}+1 / \mathrm{p}^{2}=11 ;$

Square again of both sides-
$\mathrm{P}^{4}+1 / \mathrm{p}^{4}+2=121 ; \Rightarrow \mathrm{p}^{4}+1 / \mathrm{p}^{4}=119 ;$
10. $\triangle \mathrm{ABC}$ is an isosceles triangle with $\mathrm{AB}=\mathrm{AC}=15 \mathrm{~cm}$ and altitude from A on BC is $\mathbf{1 2}$ cm . Length of side BC is
a. 9 cm
b. 12 cm
c. 18 cm
d. 20 cm

Ans. 18 cm

Explanation:- Since, BL=CL; Hence, using Pythagoras theorem;
$15^{2}=12^{2}+\mathrm{BL}^{2} ; \mathrm{BL}=9 \mathrm{~cm}$. Hence, the length of base $=9 * 2=18 \mathrm{~cm}$.

11.The mid points of AB and AC of a triangle ABC are respectively $\mathrm{X} \& Y$. If $B C+X Y=$ 12 units, then the value of $B C-X Y$ is:
a. 2 units
b. 6 units
c. 8 units
d. 4 units

Ans. 4 units

Explanation:- If the mid points of two sides of a triangle is merged, then $\mathrm{BC} \| \mathrm{XY}$ and $\mathrm{XY}=$ \&frac 12; BC. https://www.freshersnow.com/previous-year-question-papers/

By putting this value in the given equation, $\mathrm{BC}+\& \mathrm{frac} 12 ; \mathrm{BC}=12 ;=\mathrm{BC}=8$ units and $\mathrm{XY}=4$ units.

Hence, $B C-X Y=8-4=4$ units.

12. Which of the following relations is correct for $0<\theta<90$?
a. $\sin \theta=\sin 2 \theta$
b. $\sin \theta<\sin 2 \theta$
c. $\sin \theta>\sin 2 \theta$
d. $\sin \theta=\operatorname{cosec} \theta$

Ans. $\sin \theta>\sin 2 \theta$

Explanation:- substitute $\theta=30$;

Then, $\sin 30>\sin 60$; hence, option(c.) holds true.
13.The difference between two numbers is 9 and the difference between their squares is 207. The numbers are
a. 17,8
b. 16, 7
c. 15,6
d. 23,14

Ans. 16, 7

Explanation:- Let number be x and y . then -
$x-y=9 ;$

$x^{2}-y^{2}=207 ;$ \qquad
$x+y=23 ;$ \qquad
solving eq.(i) and (iii), we get-
$\mathrm{x}=16$ and $\mathrm{y}=7$;
14.The average of $\mathbf{2 0}$ numbers is calculated as 35 . It is discovered later on that while calculating the average, one number, namely 85 , was read as 45 . The correct average is
a. 36
b. 36.5
c. 37
d. 37.5

Ans. 37

Explanation:- the sum of estimated numbers $=35 * 20=700$;

The correct sum of the numbers will $\mathrm{be}=700-45+85=740$;

Hence, the correct average $=740 / 20=37$;
15.If $x^{2}-x y+y^{2}=2$ and $x^{4}+x^{2} y^{2}+y^{4}=6$, then the value of $x^{2}+x y+y^{2}$ is:
a. 1
b. 12
c. 3
d. 36

Ans. 3

Explanation:- $\mathrm{x}^{2}-\mathrm{xy}+\mathrm{y}^{2}=2$------------(i.)
$x^{4}+x^{2} y^{2}+y^{4}=6----------------(i i$.

Divide eq.(ii) by eq.(i)-
$\frac{\mathbf{x}^{4}+\mathbf{x}^{2} \mathbf{y}^{2}+\mathbf{y}^{4}}{x^{2}-x y+y^{2}}=\frac{6}{2} ;$
Multiply by $x^{2}-y^{2}$ in both numerator and deno \min ator -
$\frac{\left(x^{2}-y^{2}\right)\left(x^{4}+x^{2} y^{2}+y^{4}\right)}{\left(x^{2}-y^{2}\right)\left(x^{2}-x y+y^{2}\right)}=3 ;$
$\frac{x^{6}-y^{6}}{(x-y)(x+y)\left(\left(x^{2}-x y+y^{2}\right)\right.}=3$;
$\frac{\left(x^{3}+y^{3}\right)\left(x^{3}-y^{3}\right)}{(x-y)\left(x^{3}+y^{3}\right)}=3$;
$x^{2}-x y+y^{2}=3 ;$
16.If $a^{2}+13 b^{2}+c^{2}-4 a b-6 b c=0$, then $a: b: c$ is
a. 1:2:3
b. 2:3:1
c. $2: 1: 3$
d. 1:3:2

Ans. 2: 1: 3

Explanation:-

$\mathbf{a}^{2}+13 \mathbf{b}^{2}+\mathbf{c}^{2}-4 \mathbf{a b}-6 \mathrm{bc}=\mathbf{0}$
$(a-2 b)^{2}+9 b^{2}+c^{2}-6 b c=0 ;$
$(a-2 b)^{2}+(3 b-c)^{2}=0 ;$
first keep $a-2 b=0 ; \Rightarrow a: \mathrm{b}=2: 1$;
Then keep $3 \mathrm{~b}-\mathrm{c}=0 ; \Rightarrow \mathrm{b}: \mathrm{c}=1: 3$;
Hence, $\mathrm{a}: \mathrm{b}: \mathrm{c}=2: 1: 3$;
17.The circumcenter of a triangle ABC is O . If $\angle \mathrm{BAC}=85, \angle \mathrm{BCA}=75$, then $\angle \mathrm{OAC}$ is of
a. 70°
b. 72°
c. 75°
d. 74°

Ans. 70°

Explanation:- Since, $\mathrm{OA}=\mathrm{OB}=\mathrm{OC}$; hence, angle $\mathrm{OAC}=$ angle OCA ;

Hence, angle $\mathrm{OAC}=(180-40) / 2=70$ degree.

18.Radius of the incircle of an equilateral $\Delta A B C$ of sides $2 \sqrt{ } 3$ units is $x ~ c m$. The value of x is
a. $1 / 3$
b. \&frac 12 ;
c. 1
d. $\sqrt{ } 3$

Ans. 1

Explanation:- The altitude of the triangle $=\sqrt{3} / 2 *$ side $=3 \mathrm{~cm}$.

If $\mathrm{AD}=3 \mathrm{~cm} ; \mathrm{OA}=(3-\mathrm{x}) \mathrm{cm}$.
Then, $(3-x)^{2}=(\sqrt{3})^{2}+x^{2}$;
$9+x^{2}-6 x=3+x^{2} ; x=1 \mathrm{~cm}$.

19. If $\tan 3 \theta \cdot \tan 7 \theta=1$, then the value of $\tan \left(\theta+36^{\circ}\right)$ is
a. $1 / \sqrt{ } 3$
b. 0
c. 1
d. $\sqrt{ } 3$

Ans. 1

Explanation:- 1- $\tan 3 \theta \cdot \tan 7 \theta=0$;
$(\tan 3 \theta+\tan 7 \theta) /(1-\tan 3 \theta \cdot \tan 7 \theta)=\tan 90 ;$
$\tan (3 \theta+7 \theta)=\tan (90) ;$
$100=90 ;=>\theta=9 ;$

Hence, $\tan (9+36)=\tan 45=1$;
20.If the angle of elevation of a cloud from a point 200 m above a lake is $\mathbf{3 0}$ and the angle of depression of its reflection in the lake is $\mathbf{6 0}$. Then the height of the cloud above the lake is
a. 100 m
b. 200 m
c. 300 m
d. 400 m

Ans. 400 m

Explanation:- In triangle $\mathrm{ACD}, \tan 60=\mathrm{CD} / \mathrm{AC} ;=>\mathrm{CD}=300 * \tan 60$;

Since, $C D=A B$;

Hence, $\tan 30=\mathrm{MB} / \mathrm{AB} ;=>\mathrm{MB}=\mathrm{AB} * \tan 30$;
$M B=200 * \tan 60^{*} \tan 30=200 \mathrm{~m}$.

The required height of cloud $=M B+B D=200+200=400 \mathrm{~m}$.

21.The difference between the simple interest and compound interest (compounded annually) on Rs. 40,000 for $\mathbf{3}$ years at $\mathbf{8 \%}$ per annum is
a. Rs. 684.32
b. Rs. 788.48
c. Rs. 784.58
d. Rs. 4000

Ans. Rs. 788.48

Explanation:- SI= PRT/100; => SI $=40000 * 8 * 3 / 100=$ Rs. 9600 ;
$\mathrm{CI}=\mathrm{A}\left[(1+\mathrm{r} / 100)^{\mathrm{n}}-1\right] ;$
$\mathrm{CI}=40000\left[(1+8 / 100)^{3}-1\right]=$ Rs. 10388.48 ;

Hence, the difference between the interests $=10388.48-9600=$ Rs. 788.48;

The pie-chart shows Distribution of Special Children Population during the year 1994-96. Study the pie-chart and answer the following questions.

22. Find the approximate percentage distribution of children with auditory disorder.
a. 43.7%
b. 42.7%
c. 41.7%
d. 40.7%

Ans. 41.7\%

Explanation:- Percentage of children with auditory disorder= $871 * 100 /(871+222+275+657+60)=87100 / 2085=41.77 \%$;
23. What is the average number of cases in different types of special children during the year 1994-96.
a. 417
b. 413
c. 433
d. 465

Ans. 417

Explanation:-Average types of special children= total number of children/no. of categories; $=(871+222+275+657+60) / 5=2085 / 5=417$.
24. Find the ratio between articulatory disorder and speech disorder cases.
a. 21:55
b. 55:21
c. $55: 12$
d. 12:55

Ans. 12:55

Explanation:- Ratio $=60 / 275=12: 55$;
25. What is the ratio between language disorder and the average of the remaining disorder cases.
a. 219:119
b. 119:219
c. $919: 419$
d. 729:529

Ans. 219:119

Explanation:- Required Ratio $=657 /(2085-657)=657 / 1428=219: 119$;

