https://www.freshersnow.com/

VITEEE -2015

MATHEMATICS

1. The line passing through the points A(1, -2, -3) and B(4, -5, -6) intersects the plane z = 1 at the point

A)
$$\left(\frac{7}{3}, -\frac{10}{3}, 1\right)$$

A)
$$\left(\frac{7}{3}, -\frac{10}{3}, 1\right)$$
 B) $\left(-\frac{7}{3}, -\frac{10}{3}, 1\right)$ C) $(-3, 2, 1)$ D) $(-3, 6, 1)$

2. A box contains 8 items of which 2 are defective. A person draws 3 items from the box. Determine the expected number of defective items.

C)
$$0.2$$

If $a = \cos \alpha + i \sin \alpha$, $b = \cos \beta + i \sin \beta$, $c = \cos \gamma + i \sin \gamma$ and a + b + c = 0, the value of $a^{-1} + b^{-1} + c^{-1}$ 3.

B) 0

C)
$$-1$$

The value of λ for which the system of equations x+y-2z=0, 2x-3y+z=0. $x-5y+4z=\lambda$ is consistent is 4.

Suppose \vec{a} and \vec{b} are vectors such that $\vec{a} \times \vec{b} = 2\hat{i} + \hat{j} - \hat{k}$ and $\vec{a} + \vec{b} = \hat{i} - \hat{j} + \hat{k}$. The least value of is $|\vec{a}|$ 5.

A)
$$\frac{1}{\sqrt{2}}$$

C) $\sqrt{2}$ D) $\sqrt{2} - 1$

A general solution to $y'' - \sqrt{5}y = 0$ is 6.

A)
$$y = c_1 e^{\sqrt{5}t} + c_2 t$$

B)
$$y = c_1 \cos \sqrt{5} t + c_2 \sin \sqrt{5} t$$

C)
$$v = c_1 e^{\sqrt{5}t} + c_2 t e^{\sqrt{5}t}$$

D)
$$v = c_1 e^{\sqrt[4]{5}t} + c_2 e^{-\sqrt[4]{5}t}$$

7. In a binary communication channel, the probability that a transmitted zero is received as zero is 0.95 and the probability that a transmitted one is received as one is 0.90. If the probability that a zero is transmitted is 0.4, then the probability that a one was transmitted, given that a one was received is

A)
$$\frac{17}{28}$$

B)
$$\frac{27}{37}$$

C)
$$\frac{29}{37}$$
 D) $\frac{27}{28}$

D)
$$\frac{27}{28}$$

If $(\vec{a},\vec{b},\vec{c})$ are three vectors such that if $\vec{a}\times\vec{b}=\vec{c}$ and $\vec{b}\times\vec{c}=\vec{a}$, then 8.

A) If \vec{a}, \vec{b} and \vec{c} are pair-wise perpendicular

B)
$$|\vec{a}| = |\vec{b}| = |\vec{c}| = 1$$

C)
$$|\vec{a}| = |\vec{b}| = |\vec{c}| \neq 1$$

D)
$$|\vec{a}| \neq |\vec{b}| \neq |\vec{c}|$$

If [×] denotes the greatest integer $\leq \times$, then the value of the integral $\int_{1}^{10} \frac{[x^2]dx}{[x^2 - 28x + 196] + [x]^2}$ is 9.

$$\int_{4}^{10} \frac{[x^2]dx}{[x^2 - 28x + 196] + [x]^2}$$
 is

B) 1

C) 3

10. The proposition $p \land (P \lor q)$ is

A) a tautology

B) a contradiction

C) logically equivalent to $p \wedge q$

D) logically equivalent to $p \vee q$