MATHEMATICS

- 1. Which of the following is correct ?
 - (A) A L.P.P always has unique solution
 - (B) Every L.P.P has an optimal solution
 - (C) A L.P.P admits two optimal solutions
 - (D) If a L.P.P admits two optimal solutions then it has infinitely many optimal solutions
- 2. Mean marks scored by the students of a class is 53. The mean marks of the girls is 55 and the mean marks of the boys is 50. What is the percentage of girls in the school ?
 - (A) 60 (B) 50 (C) 45
 - (C) 45 (D) 40

3. Let Q be the set of all rational numbers. Define an operation X on Q - {-1} by a * b = a + b + ab. Then identity element of * on X on Q - {-1} is
(A) -1
(B) 1

4. Let $f(x) = \begin{cases} x - [x], & x < 2 \\ 2x - 3, & x \ge 2 \end{cases}$, where [x] denotes the greatest integer function.

Then $\lim_{x \to 2} f(x)$ is equal to

(A) 2
(B) 1
(C) 0
(D) none of these

5. If
$$I = \int \frac{\cos x - \sin x}{\sqrt{\cos x \sin x}} dx$$
, then *I* equals

(A)
$$\sqrt{2} \log \left(\sqrt{\tan x} - \sqrt{\cot x} \right) + C$$

- (B) $\sqrt{2} \log \left| \sin x + \cos x + \sqrt{\sin 2x} \right| + C$
- (C) $\sqrt{2} \log \left| \sin x \cos x + \sqrt{2} \sin x \cos x \right| + C$

(D)
$$\sqrt{2} \log \left| \sin (x + \pi/4) + \sqrt{2} \sin x \cos x \right| + C$$

Mathematics (SET – A) [1] P.T.O.

- 6. The solution set of the equation $\begin{vmatrix} 5 & 3 & -1 \\ -7 & x & 2 \\ 9 & 6 & -2 \end{vmatrix} = 0$ is
- 7. If $A = \begin{bmatrix} 3 & -4 \\ -1 & 2 \end{bmatrix}$ and B is a square matrix of order 2 such that AB=I, then B is equal to

(A)
$$\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$$
 (B) $\begin{bmatrix} 1 & \frac{1}{2} \\ 2 & \frac{2}{3} \end{bmatrix}$
(C) $\begin{bmatrix} \frac{3}{2} & \frac{1}{2} \\ 1 & 2 \end{bmatrix}$ (D) $\begin{bmatrix} 1 & 2 \\ \frac{1}{2} & \frac{3}{2} \end{bmatrix}$

8. Satement 1: If the perpendicular bisector of the line segment joining P(1, 4) and Q(K, 4) has y-intercept -4, then $K^2 - 16 = 0$

Statement 2: Locus of a point equidistant from two given points is the perpendicular bisector of the line joining the given points

- (A) Statement 1 is true, Statement 2 is true; Statement 2 is a correct explanation for Statement 1
- (B) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for Statement 1
- (C) Statement 1 is true, Statement 2 is false
- (D) Statement 1 is false, Statement 2 is true

9.
$$\cot^{-1}(9) + \csc^{-1}\left(\frac{\sqrt{41}}{4}\right)$$
 is equal to
(A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$
(C) $\frac{\pi}{3}$ (D) $\frac{3\pi}{4}$

10. First term of a G.P of n terms is '*a*' and the last term is '*l*'. Then the product of all terms is

(A)
$$\frac{n}{2}(a+l)$$
 (B) $(a+l)^{\frac{n}{2}}$
(C) $(al)^{\frac{n}{2}}$ (D) $(al)^{n}$

- 11. $\lim_{x \to 0} \frac{8^x 2^x}{x}$ is equal to (B) 2^{3x} (A) log 2 (C) log 4 (D) log 8 12. If \vec{a} and \vec{b} are two unit vectors, then the value of $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b})$ is equal to (A) 0 (B) 1 (D) none of these (C) 2 13. If A and B are two independent events, then P $(\overline{A}/\overline{B})$ is equal to (A) 1 - P(A)(B) 1 - P(B)(C) 1 – P (\overline{A}/B) (D) $1 - P(A/\overline{B})$ 14. x-axis is the intersection of the two planes (B) yz and zx (A) xy and yz (C) xy and zx (D) none of these 15. $\begin{vmatrix} \frac{1}{a} & a^2 & bc \\ \frac{1}{b} & b^2 & ac \\ \frac{1}{c} & c^2 & ab \end{vmatrix}$ is equal to (A) 1 (B) 0
 - (C) -1 (D) abc

Mathematics (SET – A) [3]

16.
$$\int \sqrt{a^2 - x^2} dx \text{ is equal to}$$
(A)
$$\frac{x\sqrt{a^2 + x^2}}{2} + \frac{a^2}{2} \sin^{-1}\left(\frac{x}{a}\right) + C$$
(B)
$$\frac{x\sqrt{a^2 - x^2}}{2} - \frac{a^2}{2} \sin^{-1}\left(\frac{x}{a}\right) + C$$
(C)
$$\frac{x\sqrt{a^2 - x^2}}{2} + \frac{a^2}{2} \log\left(x + \sqrt{a^2 - x^2}\right) + C$$
(D)
$$\frac{x\sqrt{a^2 - x^2}}{2} + \frac{a^2}{2} \sin^{-1}\left(\frac{x}{a}\right) + C$$
17. The minimum value of P = 6x + 16y subject to the constraints

17. The minimum value of P = 6x + 16y subject to the constraints $x \le 40, y \ge 20$, x, y \ge 0 is

18. If the variance of α , β , γ is 9, then the variance of 5α , 5β and 5γ is

(A)
$$\frac{5}{4}$$
 (B) $\frac{9}{5}$
(C) 225 (D) 45

19.
$$\sin \left[\frac{1}{2} \sin^{-1} \left(\frac{4}{5} \right) \right]$$
 is equal to
(A) $\frac{1}{\sqrt{5}}$ (B) $\frac{2}{\sqrt{5}}$
(C) $\frac{1}{\sqrt{10}}$ (D) $\frac{2}{\sqrt{10}}$

20. The point of discontinuity of the function f defined by

$$f(x) = \begin{cases} x+2, & \text{if } x < 1 \\ 0, & \text{if } x=1 & \text{is} \\ x-2, & \text{if } x > 1 \end{cases}$$
(A) 0
(B) 1
(D) R-{1}

21. The equation of a circle which touches the x-axis and whose centre is (3,4) is

(A)
$$x^{2} + y^{2} + 3x + 4y = 16$$

(B) $x^{2} + y^{2} - 6x - 8y + 9 = 0$
(C) $x^{2} + y^{2} + 8x + 10y + 25 = 0$
(D) $x^{2} + y^{2} - 9x - 16y + 25 = 0$

Mathematics (SET – A) [4]

22.	If A = $\{1, 2, 3, 4, 5\}$ and B = $\{2, 3, 4, 5\}$	3, 6, 7},	then number of elements of
	$(\mathbf{A} \times \mathbf{B}) \cap (\mathbf{B} \times \mathbf{A})$ is equal to		
	(A) 5	(B)	4
	(C) 10	(D)	20
	$\begin{bmatrix} 2x & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix}$		
23.	$A = \begin{bmatrix} x & x \end{bmatrix} \text{ and } A^{-1} = \begin{bmatrix} -1 & 2 \end{bmatrix}, \text{ ther}$	n <i>x</i> is equa	l to
	(A) 1	(B)	2
	(C) $\frac{1}{2}$	(D)	- 2
24.	The anti derivative F of f defined by $f(x)$	$x) = 4x^3 - 6$	6, where $F(0) = 3$ is
	(A) $x^4 - 6x + 3$	(B)	$12x^2$
	(C) $x^4 - 6x$	(D)	$x^4 - 6x - 3$
25.	The line through the points $(-2, 6)$ and $(-2, 6)$	(4, 8) is pe	erpendicular to the line through
	the points $(8, 12)$ and $(x, 24)$, then the	value of x	is
	(A) 28	(B)	6
	(C) 4	(D)	3
26.	If A is a singular matrix, then A.(adjA) is	s equal to	
	(A) a null matrix	(B)	a unit matrix
27	(C) a scalar matrix $T_{\rm res}$ and are drawn from a peak of 52 a	(D)	none of these
21.	Two cards are drawn nonra pack of 52 c	alus. The	probability of being queens is
	(A) $\frac{1}{2}$	(B)	<u>1</u>
	26	(-)	2
	(C) 1		none of these
	(C) $\frac{1}{221}$	(D)	none of these
28.	$\frac{d}{dx}\log \tan \left(\frac{\pi}{4} + \frac{x}{2}\right)$ is equal to		
	(A) $\sec x$	(B)	cosec x
	(C) $\tan x$	(D)	cot x
29.	The general solution of the differential	equation	$\frac{dy}{dt} = e^{x-y}$ is
		(dx
	(A) $y = xC$	(B)	$e^y = e^x + C$
•	(C) $e^{x-y} = C$	(D)	none of these
30.	The arithmetic mean of values $0, 2, 4 \dots$	·····	.2n 1s
	(A) n	(B)	n + 1
	(C) 2n	(D)	2(11+1)
Math	nematics (SET – A) [5]]	Р.Т.О.

31.	If A and B are square matrices of order 4 such that $ A = -1$ and $ B = 3$, then		
	[3AB] is equal to		
	(A) – 243	(B) – 81	
	(C) 243	(D) 81	
32.	Let $f(x) = \begin{cases} x+2, & -1 \le x < 0 \\ 1, & x = 0 \\ \frac{x}{2}, & 0 < x \le 1 \end{cases}$. Then on	n $[-1,1]$ this function has	
	(A) a minimum	(B) a maximum	
	(C) a maximum and a minimum	(D) neither maximum nor minimum	
33.	The value of x for which the angle betw	ween the vectors $\vec{a} = x\hat{i} - 3\hat{j} - \hat{k}$ and	
	$\vec{b} = 2x\hat{i} + x\hat{j} - \hat{k}$ is acute, and the angle be	etween the vector \vec{b} and the axis of	
	ordinate is obtuse, are		
	(A) for all $x > 0$	(B) for all $x < 0$	
	(C) 1, – 1	(D) 2, -2	
34.	The value of the expression $1 - \frac{\sin^2 y}{1 + \cos y} + \frac{\sin^2 y}{1 + \cos y}$	$-\frac{1+\cos y}{\sin y} - \frac{\sin y}{1-\cos y}$ is	
	(A) 0	(B) 1	
	(C) $\sin y$	(D) $\cos y$	
35.	If $f(x) = x^2$, $g(x) = \tan x$ and $h(x) = \log x$,	then ho (gof) $\left(\sqrt{\frac{\pi}{4}}\right)$ is equal to	
	(A) 0	(B) 1 ()	
	(C) $\frac{1}{2}$	(D) $\frac{1}{2}\log\frac{\pi}{4}$	
36.	The value of θ and p, if the equation $x \cos \theta$	$\theta + y \sin \theta = p$ is the normal form of	
	the line $\sqrt{3} x + y + 2 = 0$ are		
	π	π	

(A)
$$\theta = \frac{\pi}{6}, p = -1$$

(B) $\theta = \frac{\pi}{6}, p = 1$
(C) $\theta = \frac{7\pi}{6}, p = 2$
(D) $\theta = \frac{7\pi}{6}, p = 1$

Mathematics (SET – A) [6]

37. Statement 1: $f(x) = e^{-|x|}$ is differentiable for all x Statement 2: $f(x) = e^{-|x|}$ is continuous for all x

- (A) Statement 1 is true, Statement 2 is true; Statement 2 is a correct explanation for Statement 1
- (B) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for Statement 1
- (C) Statement 1 is true, Statement 2 is false
- (D) Statement 1 is false, Statement 2 is true

38. If $n \in \mathbb{N}$ then $3 \cdot 5^{2n+1} + 2^{3n+1}$ is divisible by

(A) 24
(B) 19
(C) 17
(D) 13

39. If A and B are two square matrices such that AB=A and BA=B, then A² is equal to

(A)	В	(B)	А
(C)	Ι	(D)	0

40.
$$\lim_{x \to 0} f(x)$$
, where $f(x) = \begin{cases} \frac{x}{|x|}, & x \neq 0\\ 0, & x = 0 \end{cases}$
(A) is 0
(B) is 1
(C) is -1
(D) does not exist

41. If
$$k = e^{2007}$$
, then value of $I = \int_{1}^{k} \frac{\pi \cos(\pi \log x)}{x} dx$ is
(A) 0 (B) $-\pi$

(C)
$$\frac{\pi}{e}$$
 (D) 2007π

42. If one of the roots of the equation $x^2 = px + q$ is the reciprocal of the other, then the correct relationship is

(A)	pq = -1	(B)	q = -1
(C)	q = 1	(D)	pq = 1

Mathematics (SET – A) [7]

43. Q⁺ is set of all positive rational numbers and 'U' is a binary operation on Q⁺ defined by $a \sqcup b = \frac{ab}{2} \forall a, b \in Q^+$. Then the inverse of $a \in Q^+$ is equal to

(A)
$$\frac{2}{a}$$
 (B) $\frac{4}{a}$
(C) 2 (D) $\frac{1}{a}$

44. If
$$A = \begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}$$
, then $(A - 2I) (A - 3I)$ is equal to
(A) A (B) I
(C) O (D) 5I

Paragraph for question numbers 45, 46, 47, 48, 49 and 50

Consider the point P(2, 3, -4) and the vector $\vec{b} = 2\hat{i} - \hat{j} + 2\hat{k}$

- 45. Vector equation of a line L passing through the point P and parallel to \vec{b} is
 - (A) $\overset{\square}{r} = (2\hat{i}+3\hat{j}-4\hat{k}) + \lambda(2\hat{i}-\hat{j}+2\hat{k})$ (B) $\overset{\square}{r} = (2\hat{i}-\hat{j}+2\hat{k}) + \lambda(2\hat{i}+3\hat{j}-4\hat{k})$ (C) $\overset{\square}{r} = (4\hat{i}+2\hat{j}-2\hat{k}) + \lambda(2\hat{i}-\hat{j}+2\hat{k})$ (D) none of these
- 46. Cartesian equation of the plane passing through the point P and perpendicular to the vector \vec{b} is
 - (A) 2x y + 2z = 7(B) 2x + 3y - 4z = -7(C) 2x - y + 2z = -7(D) 2x + 3y - 4z = 7
- 47. Cartesian equation of a plane π passing through the point with position vector \vec{b} and perpendicular to the vector \overline{OP} , O being origin is
 - (A) 2x y + 2z + 7 = 0 (B) 2x y + 2z 7 = 0
 - (C) 2x + 3y 4z + 7 = 0 (D) 2x + 3y 4z 7 = 0
- 48. Sum of the lengths of the intercepts made by the plane π on the coordinate axes is
 - (A) 14 (B) 91/12
 - (C) 9/7 (D) 5/7

Mathematics (SET – A) [8]

- 49. The equation of a plane passing through point P, perpendicular to the plane π and parallel to the line L is
 - (A) x 4y + 6z = 0(B) x - 6y - 4z = 0(C) 2x - 3y + z = 3(D) 3x - 2y + 5z = 6
- 50. The angle between the plane π and the line L is

(A)
$$\sin^{-1}\left(\frac{-7}{3\sqrt{29}}\right)$$
 (B) $\sin^{-1}\left(\frac{7}{\sqrt{29}}\right)$
(C) $\cos^{-1}\left(\frac{-3}{\sqrt{29}}\right)$ (D) $\cos^{-1}\left(\frac{3}{\sqrt{29}}\right)$

- 51. Let 'S' be the set of real numbers and R be a relation on S defined by $aRb \iff a^2 + b^2 = 1$. Then R is
 - (A) equivalence relation
 - (B) reflexive but neither symmetric nor transitive
 - (C) transitive but neither reflexive nor symmetric
 - (D) symmetric but neither reflexive nor transitive
- 52. If A is a 3-rowed square matrix and |A| = 4, then adj (adj A) is equal to
 - (A) 4 A (B) 16 A

(C)
$$64 A$$
 (D) $-4 A$

- 53. If a line makes angle 90°, 60° and 30° with the positive X,Y and Z-axes respectively, its direction cosines are
 - (A) $1, \frac{\sqrt{3}}{2}, \frac{1}{2}$ (B) $0, \frac{1}{2}, \frac{\sqrt{3}}{2}$ (C) undefined, $\sqrt{3}, \frac{1}{\sqrt{3}}$ (D) none of these
- 54. Three dice are thrown together. The probability of getting a total of atleast 6 is

P.T.O.

(A)	$\frac{103}{108}$	(B)	$\frac{10}{216}$
(C)	$\frac{93}{108}$	(D)	$\frac{91}{108}$

Mathematics (SET – A) [9]

55. The locus of the points which are equidistant from (-a, 0) and the line x = a is

(A)
$$y^2 = 4ax$$

(B) $y^2 = -4ax$
(C) $x^2 + y^2 = a^2$
(D) $(x - a)^2 + (y + a)^2 = 0$

56. $\int \sin^3 x \cos^2 x \, dx$ is equal to

(A)
$$\frac{\sin^5 x}{5} - \frac{\sin^3 x}{3} + C$$
 (B) $\frac{\cos^4 x}{4} - \frac{\sin^4 x}{4} + C$
(C) $\frac{\cos^5 x}{5} - \frac{\cos^3 x}{3} + C$ (D) none of these

57. If the mean and variance of a binomial distribution are 2 and $\frac{4}{3}$, then the value of P(X=0) is

(A)
$$\frac{1}{8}$$
 (B) $\frac{1}{729}$
(C) $\frac{8}{2728}$ (D) $\frac{64}{729}$

58. The number of proper subsets of the set $\{1, 2, 3\}$ is

59. The line $\frac{x-2}{3} = \frac{y-2}{4} = \frac{z-4}{5}$ is parallel to the plane (A) 2x + y - 2z = 0 (B) 3x + 4y + 5z = 7(C) x + y + z = 2 (D) 2x + 3y + 4z = 0

60. If f(2) = 4 and f'(2) = 1, then $\lim_{x \to 2} \frac{xf(2) - 2f(x)}{x - 2}$ is equal to

Mathematics (SET – A) [10]

61. The value of $\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ}$ is equal to

(A)
$$\frac{5}{16}$$
 (B) $\frac{-5}{16}$

(C)
$$\frac{3}{16}$$
 (D) $\frac{3}{8}$

62.
$$\sin^{-1} \left[\cos \left(\sin^{-1} x \right) \right] + \cos^{-1} \left[\sin \left(\cos^{-1} x \right) \right]$$
 is equal to
(A) 0 (B) $\frac{\pi}{4}$
(C) $\frac{\pi}{2}$ (D) $\frac{3\pi}{4}$

63. The real value of α for which the expression $\frac{1-i\sin\alpha}{1+2i\sin\alpha}$ is purely real is

(A) $(n+1)\frac{\pi}{2}, n \in \mathbb{Z}$ (B) $(2n+1)\frac{\pi}{2}, n \in \mathbb{Z}$ (C) $n\pi, n \in \mathbb{Z}$ (D) none of these

64. If
$$y = \cos^{-1} x$$
, then $\frac{d^2 y}{dx^2}$ is equal to
(A) $\cos y \sin y$ (B) $-\csc y \cot y$
(C) $-\csc^2 y \cot y$ (D) none of these
65. The value of $\begin{bmatrix} u \\ a - b \\ b \\ -c \\ c \\ -a \end{bmatrix}$ is
(A) 3 (B) 2
(C) 1 (D) 0

66. If the points (3, -2), B(k, 2) and C(8, 8) are collinear, then k is equal to

(A)	2	(B)	-3
(C)	5	(D)	- 4

Mathematics (SET – A) [11]

- 67. The value of $\tan 15^\circ + \cot 15^\circ$ is
 - (A) $\sqrt{3}$ (B) $2\sqrt{3}$
 - (C) 4 (D) not defined
- 68. A die is rolled twice and the sum of the numbers appearing is observed to be 7. The conditional probability that the number 2 has appeared atleast once is
 - (A) $\frac{2}{3}$ (B) $\frac{1}{6}$ (C) $\frac{1}{8}$ (D) $\frac{1}{3}$

69. The statement "if x is divisible by 8, then it is divisible by 6" is false if x equals

- (A) 6 (B) 14
- (C) 32 (D) 48
- 70. A vector \vec{a} can be written as

(A)
$$\begin{pmatrix} \square & \hat{i} \end{pmatrix} \hat{i} + \begin{pmatrix} \square & \hat{j} \end{pmatrix} \hat{j} + \begin{pmatrix} \square & \hat{k} \end{pmatrix} \hat{k}$$

(B) $\begin{pmatrix} \square & \hat{j} \end{pmatrix} \hat{i} + \begin{pmatrix} \square & \hat{k} \end{pmatrix} \hat{j} + \begin{pmatrix} \square & \hat{i} \end{pmatrix} \hat{k}$
(C) $\begin{pmatrix} \square & \hat{k} \end{pmatrix} \hat{i} + \begin{pmatrix} \square & \hat{i} \end{pmatrix} \hat{j} + \begin{pmatrix} \square & \hat{j} \end{pmatrix} \hat{k}$
(D) $\begin{pmatrix} \square & \square & \hat{l} \end{pmatrix} (\hat{i} + \hat{j} + \hat{k})$

71. If A and B are two sets of the universal set 'U', then (A - B) equals

(A) $A \cap B^C$ (B) $A^C \cap B$ (C) $A \cap B$ (D) U-A

72. The probability of the safe arrival of one ship out of 5 is $\frac{1}{5}$. What is the probability of the safe arrival of atleast 3 ships out of 5 ?

(A) $\frac{181}{3125}$ (B) $\frac{183}{3125}$

(C)
$$\frac{185}{3125}$$
 (D) $\frac{184}{3125}$

- 73. The foci of the ellipse $9x^2 + 4y^2 = 36$ are
 - (A) (-5, 0) (B) $(\pm\sqrt{5}, 0)$
 - (C) $(0, \pm\sqrt{5})$ (D) (0, -5)

Mathematics (SET – A) [12]

74. Area between the curve y = x(x-4) and the x-axis from x = 0 to x = 5 is

(A)
$$\frac{25}{3}$$
 sq units
(B) 13 sq units
(C) $\frac{20}{3}$ sq units
(D) none of these

75. Range of the function
$$f(x) = \begin{cases} \frac{|x|}{x}, & \text{when } x \neq 0 \\ 0, & \text{when } x = 0 \end{cases}$$

(A) R (B) $\{-1, 0, 1\}$
(C) $[-1, 1]$ (D) $R - \{0\}$

76. The number of integral solutions of
$$\frac{x+2}{x^2+1} > \frac{1}{2}$$
 is
(A) 0 (B) 1

77. If (3!)! = k(n!) then (n + k) equals (A) 123

78. Order of the differential equation whose solution $y = ae^{x} + be^{2x} + ce^{-x}$ (where *a*, *b*, *c* are arbitrary constants) is

79. If
$$3 \sin \alpha = 5 \sin \beta$$
, then $\frac{\tan\left(\frac{\alpha+\beta}{2}\right)}{\tan\left(\frac{\alpha-\beta}{2}\right)}$ is equal to
(A) 14 (B) 2
(C) 4 (D) 1
80. If $f(x) = e^{\sqrt{x^2-1}} \log_e(x-1)$, then dom f is equal to
(A) $(-\infty, 1]$ (B) $[-1, \infty)$

(C)
$$(1, \infty)$$
 (D) $(-\infty, -1] \cup (1, \infty)$

Mathematics (SET – A) [13]

81. The slope of normal to the curve $y = 2x^2 + 3 \sin x$ at x = 0 is

(A) 3
(B)
$$\frac{1}{3}$$

(C) -3
(D) $-\frac{1}{3}$

82. The locus of a point such that the difference of its distances from (4, 0) and (-4, 0) is always equal to 2 is the curve

(A)
$$15x^2 - y^2 = 15$$

(B) $y^2 - 15x^2 = 15$
(C) $15x^2 + y^2 = 15$
(D) $16y^2 = -4x + 2$
83. If $\omega = \frac{-1 + \sqrt{3}i}{2}$, then $(3 + \omega + \omega^2)^4$ is equal to
(A) 16
(B) -16
(C) 16ω
(D) $16 \omega^2$

84. Two cards are drawn from a well shuffled deck of 52 cards one after the other without replacement. The probability of first card being a spade and the second a black king is

(A)
$$\frac{1}{104}$$
 (B) $\frac{25}{2652}$
(C) $\frac{3}{104}$ (D) $\frac{26}{2652}$

85. The total number of terms in the expansion of $(x+y)^{100} + (x-y)^{100}$ after simplification is

86. Let $f(x) = \sin x$, $g(x) = x^2$ and $h(x) = \log x$. If u(x) = h(f(g(x))) then $\frac{d^2u}{dx^2}$ is

(A) $2\cos^3 x$ (B) $2\cot x^2 - 4x^2 \csc^2 x^2$

[14]

(C) $2x \cot x^2$ (D) $-2\cos ec^2 x$

87. If
$$\int_{0}^{x^{2}(1+x)} f(t)dt = x$$
, then $f(2)$ is equal to
(A) 1/3 (B) 1/4
(C) 1 (D) 1/5

Mathematics (SET – A)

- 88. The number of ways in which a student can choose 5 courses out of 9 courses in which 2 courses are compulsory is
 - (A) 35 (B) 25
 - (C) 45 (D) 95
- 89. The maximum number of points of intersection of 8 straight lines is
 - (A) 8 (B) 16
 - (C) 28 (D) 56
- 90. There are two boxes. One box contains 3 white and 2 black balls. The other box contains 7 yellow balls and 3 black balls. If a box is selected at random and from it a ball is drawn, the probability that the ball drawn is black is

(A)
$$\frac{1}{3}$$
 (B) $\frac{1}{5}$
(C) $\frac{3}{20}$ (D) $\frac{7}{20}$

- 91. The function $f(x) = a^x$ is increasing on R if
 - (A) 0 < a < 1 (B) a > 1(C) a < 1 (D) a > 0

92. The integrating factor of $\frac{dy}{dx} + y \cot x = \cos x$ is

(A)
$$\cos x$$
 (B) $\tan x$

(C) $\cot x$ (D) $\sin x$

93. The greatest coefficient in the expansion of $(1 + x)^{2n+2}$, $n \in N$ is

(A)
$$\frac{(2n)!}{n!}$$
 (B) $\frac{(2n+2)!}{n!(n+1)!}$
(C) $\frac{(2n+2)!}{[(n+1)!]^2}$ (D) $\frac{(2n+2)!}{n(n+1)!}$

94. If for the matrix $A^3 = I$, then A^{-1} is equal to

- (A) A^2 (B) A^3
- (C) A (D) none of these

Mathematics (SET – A) [15]

95. The differential equation of all non-horizontal lines in a plane is

(A)
$$\frac{dy}{dx} = 0$$

(B) $\frac{d^2y}{dx^2} = 0$
(C) $\frac{d^3y}{dx^3} = 0$
(D) $\frac{dy}{dx} = 5$

96. An unbiased die is tossed twice. The probability of getting a 4, 5 or 6 on the first toss and a 1, 2, 3 or 4 on the second toss is

(A)
$$\frac{1}{3}$$
 (B) $\frac{2}{3}$
(C) $\frac{4}{3}$ (D) $\frac{5}{6}$

97. The equation $e^{x-1} + x - 2 = 0$ has

(A) one real root ((B)	two real roots
---------------------	-----	----------------

(C) three real roots (D) four real roots

98. One of the two events must occur. If the chance of one is $\frac{2}{3}$ of the other, then the odds in favour of the other is

(A)	1:3	(B)	1:2
(C)	3:1	(D)	3:2

99. The area in the first quadrant and bounded by the curve $x^2 + y^2 = 4$ and the lines x = 0 and x = 2 is

(A)	π	(B)	$\frac{\pi}{2}$
(C)	$\frac{\pi}{3}$	(D)	$\frac{\pi}{4}$

100. There are four letter boxes in a post office. The number of ways in which a man can post 8 distinct letters is

(A)
$$8^2$$
 (B) 8^4

(C) 4^8 (D) 8P_4

Mathematics (SET – A)