

Note : Before answering the questions, read carefully the instructions given on the OMR sheet ప్రశ్నంకు జనాబులు భాయులకు ముందు OMR జనాబు పర్రముతో ఇవ్వలడిన మాదనందు జాగరగా చదనంది.

SECTION-I : MATHEMATICS

SPACE FOR ROUGH WORK / බහුනටම මින්තාවෙනස්ට දින්නා

6. If two roots of $x^3 - 3x - 2$ are equal, the third root is $x^3 - 3x - 2$ and x^3

7. If 2x + 3y = 1 and (30300) $x + \frac{y}{x} = \frac{3}{x}$, then (2003) $x = \frac{3}{x}$

(1) $-2, \frac{4}{3}$ (2) $2, \frac{4}{3}$ (3) $2, -\frac{4}{3}$ (4) $-2, -\frac{4}{3}$

8. If $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ where $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are two linear equations, then the equations are

(4) -2 -

 $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ అయ్యేట్లుగా $a_1x + b_1y + c_1 = 0$ మరియు $a_2x + b_2y + c_2 = 0$ అనవి రెండు ఏకమాత సమీకరణాలు అయితే ఆ సమీకరణాలు

- consistent and have a unique solution సంగతాలు ఏకైక సాధన కర్తి ఉంటాయి
- (2) consistent and have infinite solutions సంగరాలు మరియు అసంత సాధనలు కర్తి ఉంటాయి
- (3) consistent and have finite solutions సంగరాలు పురియు పరిపుత సాధనలు కర్తి ఉంటాయి
- (4) inconsistent සෙරාගලා

3. 2

9. If $2^x + 3^y = 17$ and (208020) $3(2^x) - 2(3^y) = 6$, then (2002)

(1) x = 2, y = 3 (2) x = -2, y = 3 (3) x = -2, y = -3 (4) x = 3, y = 2

SPACE FOR ROUGH WORK / බහුබටම මින්තාංජනයක් මූත්බා

- 10. A fraction in the form $\frac{a}{b}$ becomes equal to $\frac{6}{5}$ if 2 is added to both numerator and denominator. If 1 is subtracted from both numerator and denominator, fraction becomes $\frac{3}{2}$.
 - Then $\frac{a}{b} =$ $\frac{a}{b}$ దూపెంలోని భిన్నం యొక్క లవ, హాయులు రెండించికే 2 కలిపితే అది $\frac{6}{5}$ కి సమానం. అదే లవ, హాయులు రెంటినుంచి 1 తీసివేస్తే ఆ భిన్నం $\frac{3}{2}$ అవుతుంది. అవుందు $\frac{a}{b} =$ (1) $\frac{4}{3}$ (2) $\frac{7}{5}$ (3) $\frac{10}{8}$ (4) None (ఏదీ కాదు)

11. In an arithmetic progression the first term is 3 and the last term is 27. The fifth-term from the first and fifth term from the last are the same, then the common difference is ఒక అంకశ్రీఫర్ ని ముదలి వరం 3, ఆఖరి వదం 27. ముదలి నుంచి, చివరి మంచి గల 5వ వదాలు నమానలయితే ఆ శ్రీఫి యొక్క సామాన్య భదము (వదాంతరం)
(1) 2 (2) -2 (3) 3 (4) -3

12. Under usual notations in an AP if 2a = d, then the ratio of the sum to first 11 terms and the sum to first 5 terms =

ఒక AP లో 2a = d అయిన మొదటి 11 వదాల మొత్తము మరియు మొదటి 5 వదాల మొత్తముల నివృత్తి =

(1) $\left(\frac{11}{5}\right)^2$ (2) $\left(\frac{10}{4}\right)^2$ (3) $\left(\frac{12}{6}\right)^2$ (4) None (26 mW)

13. If the first term of a GP is 256 and the common ratio is $\left(-\frac{1}{2}\right)$, the tenth term is

ఒక గుణత్రేఢిలో మొదటి వదం 256. దాని పదాసుపోతం $\left(-\frac{1}{2}\right)$ అయిన ఆ త్రేఢిలోని 10ప పదము

(1) -1	(2) $-\frac{1}{2}$	(3) $-\frac{1}{4}$	(4) 1/8
--------	--------------------	--------------------	---------

 14. In a GP, the fourth term is 24 and the ninth term is 768, the first term is

 15 గుణత్రేధిలోని నాలన వదము 24 మరియు తొచ్చినవ వదము 768 అయిన దాని మొదటి పదము

 (1) *2°
 (2) 3
 (3) 4
 (4) 6

15. If the centroid of the triangle two of whose vertices are (2, 1) and (1, 2) is (0, 0), then the third vertex is

ఒక ప్రధుజం మొక్క రెండు శీర్తాలు (2, 1) మరియు (1, 2), దాని కేంద్రాభానం (0, 0) అయిన మూడవ శీర్తం

(1) (1, 1) (2) (-1, -1) (3) (-2, -2) (4) (-3, -3)

SPACE FOR ROUGH WORK / చిత్తువనికి కేటాయిందబడిన స్థలము

16. If the slope of the line joining the points (3, -6), (-6, 3) is equal to the slope of the line joining (3, x) and $(x^2, -3)$, then x = (3, -6), (-6, 3) හරිත්රික් සහ $(3, x), (x^2, -3)$ හරිත්රික් සහ $(3, x), (x^2, -3)$ හරිත්රික් සහ $(3, x), (x^2, -3)$ x = (3) 2 only (1) -2 or 3 (2) -3 or 2 (4) 3 only -3 80 2 2 పూఠమే -2 20 3 3 మాతమే 17. The area of the quadrilateral formed by (-a, -b), (a, -b), (a, b) and (-a, b) is (-a, - b), (a, - b), (a, b) మరియు (-a, b) బిందుపులతో ఏర్పడే చతుర్పుజ పైశాల్యము (4) 4ab (2) 2ab (3) 3ab (1) ab 18. A(1, 2), B(1, 4), C(3, 2) are the vertices of a triangle. The slope of the line joining the mid-points of BA and BC is A(1, 2), B(1, 4), C(3, 2) ట్రభుజ శీర్షాలు. అయిన BA మరియు BC మధ్యచిందువుని కరిపీ రేఖ వాలు (2) 60° (1) 30° (4) parallel to x-axis (3) 45° రీఖ x-ఆక్రానికి సమాంతిరం 19. ABCD is a trapezium with AB||DC and AD, BC are non-parallel. E and F are points on AD and BC respectively so that EF ||AB| if $\frac{AE}{BE} = 2$, then $\frac{ED}{EC} = ?$ ABCD సములంబ చెరుద్దుజంలో AB||DC, AD, BCబు సమాంతరాలు కాపు. AD, BC ల మీద EF||AB అయ్యేటట్లూ E, F లు రెండు బిందువులు. $\frac{AE}{BE} = 2 అయిలే \frac{ED}{EC} = ?$ (4) None (20 50) (2) 2 (3) 3 (1) 1 20. In ΔABC, AD is perpendicular to BC. If BD : DC = 3: 2, then area of ΔABC: area of ΔADC = ΔABC 5 BC3 AD 00000. BD : DC = 3 : 2 0000 ΔABC 2000 : ADC @000 2 000 = (4) 3:2 (2) 1:2 (3) 5:2 (1) 2:3 21. The angles of elevation of two buildings on either side of a point of observation between them are 45° and 30°. If the heights of them are 20 m and 25 13 m respectively, then the distance between the two buildings is రెండు భవనాల ఊర్పడోణాలు ఆ భవనాల మధ్యలో మన్న ఒక విందువు నుండి 45° మరియు 30° గా కొలవబడ్డాయి. ఆ భవనముల ఎతులు 20 మీ. మరియు 25√3 మీ.గా ఆదే పరునలో అనుకుంటే ఆ భవమముల మధ్య దూరం (4) 95 m (3) 55 m

SPACE FOR ROUGH WORK / ఎత్తువరికి కేటాయించబడిన ప్రలము

(2) 35 m

(1) 45 m

- 22. $\triangle ABC$ is isosceles with right angle at vertex B. If AC = 10 cm, then AB = B కిర్ణం పర్థ లంజరోణంతో $\triangle ABC$ ఒక నమర్పిలాహం త్రభుజం. AC = 10 cm ఆయితే AB =
- 23. For a man of height 6 ft, the angle of elevation of the top of a tree is 45°. If the distance between the man and the tree is 20 ft, find the height of the tree.

6 అదుగుల ఎత్తైన వృక్తి దృష్ట్యా ఒక చెట్న యొక్క ఊర్ర్యకోణము 45°. మనిషికి, చెట్టుకి మధ్య దూరము 20 అదుగులైలే, చెట్ల ఎక్కు ఎంస?

(1) 45 ft (2) 32 ft (3) 14 ft (4) 26 ft

- 24. The areas of two similar triangles are 100 sq cm and 64 sq cm. If the altitude of smaller triangle is 4 cm, then altitude of the bigger one is రెండు సమాక ప్రభుణాల పైళాల్యము 100 ప.సెం.మీ., 64 ప.సెం.మీ. వాటిలో విష్ణదాని ఎత్తు 4 సెం.మీ. అయితే పెద్ద ప్రభుణం ఎళ్ళు
 - (1) 16 cm (2) 5 cm (3) 10 cm (4) 8 cm
- 25. In the given figure, AB, CD, PQ are all perpendicular to BQ and AB = 5, PQ = 4, then CD = పటంలో చూపిన విధంగా AB, CD, PQ లు BQ కి లంజాలు. AB = 5, PQ = 4 లయిలే CD =

SPACE FOR ROUGH WORK / చిత్తువనికి కేటాయించబడిన స్థలము

26. If AD = 2, AC = x - 1, BE = 5, BC = x + 2 and (about) AB || DE, then (would) x =

- 27. If O is any point inside a rectangle ABCD, then ABCD దీర్త పెరురణంలో O ఏరైన అంతర బిందువు అయిన
 - (1) OA + OC = OB + OD (2) $OA \cdot OC = OB \cdot OD$
 - (3) $OA^2 + OC^2 = OB^2 + OD^2$ (4) $OA^2 + OD^2 = OB^2 + OC^2$

28. Area of the triangle whose sides are 5 cm, 12 cm, 13 cm is
5 ັນວ.ມື້ນ., 12 ັນວ.ມື້ນ., 13 ັນວ.ມື້ນ. ຊຸມສາຍມາ ກໍຊື່ລ ອົດຊາຍ ອັດາອະດ
(1) 25 cm²
(2) 30 cm²
(3) 32.5 cm²
(4) 78 cm²

29. A square of side 3 cm is circumscribed by a circle. Then the area of the circle is 3 సెం.మీ. భుజం గర్గిన ఒక చతురణం ఒక పుత్రంపే పరివేష్టితమైనది. ఆ పరివృత్త పైళాల్యము

- (1) $9\pi \text{ cm}^2$ (2) $4 \cdot 5\pi \text{ cm}^2$ (3) $6\pi \text{ cm}^2$ (4) 9 cm^2
- 30. There are two concentric circles of radii 5 cm and 3 cm respectively. If a chord of larger circle is a tangent to the smaller circle, find its length. බංසා විතිවරිනා කාණුව නැටතලාවා කරාකන 5 බාං.ඩා. සාවනා 3 බාං.ඩා. පෙසාවේ ඔහු කාලාබම් ශිබා 25 ලැබ කාලාබම් බාහ 25 ලැබ කාලාබම් කාලාබම් ශිබා 25 ලැබ කාලාබම් කාලාබම් ශිබා 25 ලැබ කාලාබම් ශිබා 25 ලැබ කාලාබම් ශිබා 25 ලැබ කාලාබම් කාලාබම් ශිබා 25 ලැබ කාලාබම් කාලාබම්
- 42 సం.మీ. వ్యాసం గల్లిన వృత్తములోని 60° కోణం చేసే సెక్టారు పైళాల్యం (1) 200 cm² (2) 231 cm² (3) 197 cm² (4) 462 cm²

SPACE FOR ROUGH WORK / Deuts 3 Junio Douts gow

- s 425

- 32. If a circle touches inside all the four sides of quadrilateral ABCD, then the following is true : ఒక చెడుపుడింగిన నాలుగు ధుణాలను తాకుడూ ఒక పుడ్డం అంతరంగా గీయబడితే, ఈ క్రింది వాటిలో ఏది పత్యం?
 - (1) AB + BC = AC + AD (2) AC = BD
 - (3) AB + CD = BC + DA (4) All (252)
- 33. If a sphere, a cylinder and a cone are of same radius and height, then their curved surface areas are in the ratio

ఒకే ఎక్కు న్యాపార్తాలు గర్గన గోళం, మావం మరియు శంకువుల పథితల పైశాల్యాల నిష్మత్తి (అదే పరువలే)

(1) 4:4:√5 (2) 4:√5:4 (3) √5:4:4 (4) None (ఏద్ కాదు)

34. Three metallic spheres of radii 3 cm, 4 cm and 5 cm are melted to form a single sphere. Then the radius of the resulting sphere is

3 సెం.మీ., 4 సెం.మీ., 5 సెం.మీ. వ్యాసార్థాలు గల్లిన మూడు పేర్చేరు లోపో గోళాలను కరిగించి ఒక గోళంగా పోతపోశారు. ఆ తయ్యారైన గోళ వ్యాసార్థము

(1) 12 cm (2) 6 cm (3) 7 cm (4) 9 cm

35. A hemispherical bowl of internal diameter 36 cm contains a liquid. How many cylindrical bottles of radius 3 cm and height 6 cm are required to empty the bowl?

36 సెం.మీ. అంతర వ్యాసంగా గర్గిస ఒక అర్ధగోళాకార పాత్రలో ద్రపం కలదు. ఆ పాత్రలో ద్రపం భాళీ చేయులకు 3 సెం.మీ. వ్యాసార్లము, 6 సెం.మీ. ఎత్తు గర్గిస మూపాకారపు సీపాలు ఎన్ని కాపరెను?

(1) 1000 (2) 1078 (3) 1152 (4) None (ධර් නාධා)

36. The value of tan24° tan42° tan48° tan 66° =

tan 24° tan 42° tan 48° tan 66° බාාතු බසාව =

(1) $\sqrt{3}$ (2) $\frac{1}{\sqrt{3}}$ (3) 0 (4) 1

37. If $\sin\theta = \frac{7}{25}$, then (wows) $\frac{\csc\theta - \cot\theta}{\csc\theta + \cot\theta} =$ (1) $\frac{24}{7}$ (2) $\frac{7}{24}$ (3) 49 (4) $\frac{1}{49}$

38. The value of sin25° cos65°+cos25° sin65° is

sin 25° cos 65°+cos 25° sin 65° యొక్క విలువ

(1) sin40° (2) cos40° (3) 1 (4) 0

SPACE FOR ROUGH WORK / ఎత్తువనికి కేటాయించబడిన స్థలము

39. If $\csc\theta - \cot\theta = p$, then $(\sec\theta) \csc\theta + \cot\theta =$

(1) 1+p (2) 1-p (3) $\frac{1}{p}$ (4) p

40. If $\cos(A + B) = \frac{1}{2}$ and (Subclus) $\sin(A - B) = \frac{1}{\sqrt{2}}$, $0 < B < A < 90^{\circ}$, then (would) A = B =(1) 60°, 45° (2) 52.5°, 7.5° (3) 30°, 45* (4) 60°, 15°

41. A ball is drawn from a bag containing 3 red, 4 blue and 3 green balls. What is the probability that a ball that is drawn at random is not blue?

3 ఎర్రని, 4 సీలపు మరియు 3 వచ్చని బంతులున్న వంపి నుండి ఒక బంతి తీయబడింది. ఆ బంతి సీలపుది కాకుండులను గల సంధాష్యత

(1) $\frac{2}{5}$ (2) $\frac{3}{5}$ (3) $\frac{4}{5}$ (4) None (26 FG)

42. If a dice is thrown, what is the probability that the number appeared is a multiple of 3? ఒక పారిశమ తొర్తించిన దానిపై అగుపించిన సంఖ్య 3 యొక్క గుణిజం అగుటకు గం సంభావ్యత

(1) $\frac{1}{6}$ (2) $\frac{2}{5}$ (3) $\frac{1}{2}$ (4) $\frac{1}{3}$

43. If 20 defective bulbs are mixed with X number of good bulbs. If the probability of drawing a defective bulb is $\frac{1}{4}$, then the number of good bulbs in the box, X =

పాదయిపోయిన 20 బబ్బలను X మంచి బబ్బలలో కలిపారు. అందులో నుండి ఒక పాదయిపోయిన బబ్బను తీయదానికి గల సంభావ్యత $rac{1}{a}$ అయితే మొత్తం మంచి బబ్బల సంఖ్య

(1) 60 (2) 80 (2) 100 (4) 20

44. From the following table, determine the median of the data :

		Weight සරාපු	30	32	34	35	40
		Number of Students విద్యాప్తుల నంభ్య	4	6	7	12	2
1)	34	(2) 35		(3)	12		14 3

ఈ జీంది వట్టిక నుంచి దత్రాంశవు మధ్యగత నిలువను కమక్కోండి :

SPACE FOR ROUGH WORK / ఎత్తువనికి కేటాయించబడిన స్థలము

45. The mean of first n natural numbers is

మొదటి n వహజ వర్యాల సగటు

(1) n (2) n+1 (3) $\frac{n+1}{2}$ (4) $\frac{n}{2}$

46. For the data 2, 4, 6, 7, 4, 2, 8, 11, 4, 8, 12, 4 : Mean - Mode = ఇచ్చిన దర్రాంశం 2, 4, 6, 7, 4, 2, 8, 11, 4, 8, 12, 4 కు అంకమధ్యమము - బాహుళకము = (1) 4
(2) 2
(3) 2.5
(4) 8

47. Find the Mode of the following data :

ఈ క్రించి దర్శాంశవు పోహుళకమును కనుగొనండి :

	Family Size కుటుంబ వరిపాణం	2-4	4-6	6-8	8-10
	Number of Families	5	7	3	2
1 4.66	(2) 7	(3) 5		(4) 4-

48. The Median of the data 8, 14, 16, 21, x, y, 28, 30, 33, 38 is 25 and if y - x = 2, then x = and y =

8, 14, 16, 21, x, y, 28, 30, 33, 38 లసే దిత్రాంశపు బాహురాము 25 మరియు y - x = 2 అయితే x = మరియు <math>y = x = 2

- (1) 23, 25 (2) 24, 26 (3) 18, 20 (4) 25, 27
- 49. From which of the following curves we can find the median of a data? దత్రాంశవు మధ్యగతాన్ని కమగొవడానికి ఈ శ్రీంది పక్రరేఖంలో ఏది ఉపయుక్తం?

(1)	Bar graphs	(2)	Histogram
	బార్ పటం		ජන්ත ටලප
(3)	Frequency polygon	(4)	Ogive curves
1	ಶಿನವುನ್ನ ಬರುಭುಣೆ		ఓగిప్ పక్రము

50. The sum of the observation of a data is 576 and its arithmetic mean is 18. The number of observations of the data is

ఒక దర్రాంశపు పరీశీలనల మొత్తం	576	పురియు	దాని	ఆంకమధ్యమము	18.	ఆ దత్రాంశమందలి	పరిశీలనం	ు సంఖ్య	
(1) 24	(2)	32		(3)	48		(4)	36	

SPACE FOR ROUGH WORK / చిత్తువనికి కేటాయించబడిన ప్రలము

51. If x is any ratio	nal number in the for	$m \frac{p}{q}$, where q is in the	form $2^m 5^n$ where m, n are
	tegers, then x will have	-	
x అసేది $rac{p}{q}$ దూపంలో	ఉన్న ఆకరణీయ సంఖ్య. ఇందు	లో q అనది 2 ^m 5 ⁿ అనే విధం	ంగా ఉంది. <i>m</i> , n లు ఋణార్మకం కాని
పూర్తాంకాలు, అయితే .	x యొక్క దశాంశ విస్తరణ		
(1) terminating	i -	(2) non-termina	ting
లంరమయ్యేది		అంతము కానిది	
(3) non-termin	ating, recurring	(4) None (36 50	(0
లంతము కాని, :	ప్రవరావృత		
52. p is any prime	number and it divides	a^2 . Then p also divide	3
p ఒక ప్రధాన సంఖ్య స	ురియు p, a ² న లాగిపుంరి. అం	ుతే pన కూడా భాగిస్తుంది	۵.
(1) $\alpha + 1$	(2) a - 1	(3) a	(4) None (ఏదీ కాదు)
53. 3 ^{log3 243} =			
(1) 07	(0) 91	(3) 243	(4) 9
(1) 27	(2) 81	(3) 243	(*) 7
54. If 2log ₁₀ 4 + 2lo	$g_{10} 3 - 2\log_{10} 12 = \log_{10} 12$	x, then (wawd) $x =$	
(1) 10	(2) 4	(3) 2	(4) 1
55. If cube of 5 ca integers) =	n be written in the for	m 9m or 9m + 1 or 9m	1+8, then m (m is a positive
5 యొక్క ఘనాన్ని 9n	n đơ 9m + 1 đơ 9m + 8 c	రావంలో భాయగళ్లితే m = (m :	ఒక ధస పూర్తాంకము)
(1) 9	(2) 12	(3) 13	(4) 15
	SPACE FOR POUCH W		the second

SPACE FOR ROUGH WORK / చెత్తువనికి కేటాయించబడిన స్థాము

1

56. From the diagram estimate sum of elements in $(A \cup B) \cap C$. This protection of the state of the state

SPACE FOR ROUGH WORK / విత్తవనికి కేటాయించబడిన సైలము

SECTION-II : PHYSICS

61.	The	reverse process	of eva	poration is					
	(rig	ధవనంకు విలోమ ప్రశ్రీయ	× .						
	(1)	melting			(2)	freezing			
		డవీభవనం				పునిభవసం			
	(3)	condensation			(4)	oxidation			
		సాందీకరణము				ఆక్సిదేషన్ (ఆక్సికరణం)			
62.	Ah	ouse has one bull	o of 10	0 W used for 10 h	ioure	a day. The cost o	f eice	ctric energ	y used by
		bulb in 30 days				W ^{an} teres ^a (C.C.A.			5 (1963 -
	100) W సామర్థ్యం గల ఒక బ	ుల్చును ఒ	ය කොට්රේ නිසක් 10 බර	5.00 Å	పయోగిస్తారు. ఒక kWhi	@ (3 (వకారం, ల	బల్చుని 30
	5 ^f arr	బ ఉపయోగ్యా, వినియోగం	0 అయిన	విద్యుత్ శక్తి విలువ					- 1
	(1)	790	(2)	7100	(3)	f 30	(4)	7 10	
63.	Fou	ir wires each of i	resista	nce 8 Ω are arra	nged	in the form of a	squ	are. The r	esistance
		ween the ends of			- -				
	S	ajul 8 Ω Jeux 90Az .	4 S Net	బ ఒక చతురసాకారంలో ఆ	కమర్శిన	ారు. ఏపేని రెండు కర్షాల ప	ಎಲ್ಮ ನ	రోధము	
		32 Ω				8Ω			
64.	2 v	olt × 3 coulomb	-	~					
		లు × 3 కూలూండ్ = _		-					
		•	(2)	6Ω	(3)	6 A	(4)	6 W	
65.	Wh	ich among the fol	llowing	g materials has re	sisti	vity of 10×10^{10} G	-m a	at 20 °C?	
		C 35 10×10 ¹⁰ Ω							
		Air		Lead		Copper	(4)	Glass	
		π®	40.04	500		కావర్	1.1	Tree .	
						a part a super de la			
66.					the	correct answer :			
		రెండు నాక్యాలను చదివి :		1011111 • 000 Set 011508 (* 1970					
	(a)					than the organs i	nsid	e the body	6 -
			1 1 1 1 1 T	చర్మము ఎక్కువ విద్యుల్ .		A Contract of the second secon			
	(b)	2 2				tance of 10000 Ω	alwa	ys.	
		పువిష్ శరీరం సాధారణం	100	00 Ω ఒకే విద్యుత్ నిరోధ	న్న చ	గాపుతుంది.			
	(1)	Both (a) and (b)	are tr	rue	(2)	Both (a) and (b)	are	false	K. 1.
		(a) పురియు (b) రెండ	ය බන්			(a) పురియు (b) రెండు	830	ð	
	(3)	Only (a) is true			(4)	Only (b) is true			
		(a) పూత్రిమీ నిజిము				(b) మాత్రమే నిజము			

SPACE FOR ROUGH WORK / విత్తువనికి కేటాయించబడిన స్థలము

12

resistance is 100 cm సాదాపు, $1 \, {
m mm}^2$ పుర్యాచ్చేద సైకాల్యం కరిగిన ఒక తీగ నిరోధం $1 \, \Omega$ అయితే విశిష్ట నిరోధము 10⁻⁸ Ω-m (2) $10^{-3} \Omega m$ (3) 1 Ω-m (4) 10⁻⁶ Q-m 68. Which among the following does not involve the principle of total internal reflection? కింది వాటిలో సంపూరాంతర పరాపరనముపి ఆధారపడనిది (1) Working of an optical fiber ఆఫ్టికర్ ఫైబర్ వనిచేయుడం (2) Shining of diamonds పణాం పఠాశం (3) Appearance of mirage on distant road దూరపు రోడుపై ఎండమాపులు కన్నించడం (4) Working of a solar cooker సోరార్ కుక్కర్ పని చేయుడం 69. A rectangular tank of depth 6 m is full of water of refractive index $\frac{4}{3}$. When viewed from the top, the bottom of the tank is seen at a depth of 6 m లోతు గల దీర్త పతుర్కసౌకారవు సీటి తొబ్బి, $\frac{4}{3}$ పెక్రీభవన గుణకం కలిగిన సీటితో నిండి ఉన్నది. పైనుండి చూపినవుడు తొబ్బి లదుగు భాగము కనిపించు లోతు (2) 2·5 m (3) 1·3 m (4) 3 m (1) 4·5 m 70. The speed of light in a medium is same as that in vacuum. The refractive index of the medium is ఒక యాపకంలో కాంతి పేగము శూప్యంలో కాంతి పేగానికి సమాపం. ఆ యాపకం పక్రీభవన గుణకము (3) 1.33 (1) 0 (2) 1 (4) 3 71. If u and v are the object and image distances respectively due to a convex lens, then which among the following statements is false? μ మరియు μ లు ఒక కుంభారిక కటకం పలస పన్న మరియు (పరిభింబ దూరాలు పరుసగా అయితే తింది ఏ నాక్రము తప్పం? (1) As u increases, v also increases u పరిగేకొద్ది, v పెరుగుతుంది As u increases, v decreases u 1075°C, v 670600C (3) As u increases, v remains constant u పెరిగివా, y మారదు (4) None of the above

67. The resistance of a wire of length 100 cm and area of cross-section 1 mm² is 1 Ω . The specific

ఇవేవీ కాపు

- 72. Read the following two statements and pick the right answer : క్రింది రెండు వాక్యాల నుండి సరియైన వాక్యము సెంపుకోండి :
 - (a) A concavo-convex lens has two curved surfaces.
 ప్రజాకార-కుండాకార కటకానికి రెండు పథికరాలు ఉండాయి.
 - (b) A bi-concave lens has two curved surfaces. ద్వ-పుటాకార కటకానికి రెండు పడ్రటికాలు ఉంటాయి.
 - Only (a) is true
 (a) කැතිබ් බස්බා

- (2) Only (b) is true (b) పూత్రమే నిజము
- (3) Both (a) and (b) are true
 (a) ධාර්ගාා (b) රිංකා බසම්
- (4) Both (a) and (b) are false
 (a) කාරීකා (b) ඊංකා මන්‍රාම්
- 73. A convex lens forms an image at infinity when the object is placed పస్తుపున ఏ స్థానం పద్ద ఉంచినపుడు, ఒక కుంభాకార కటుకము అనంతదూరంలో ప్రతిపించాన్ని ఏర్పడునుంది?
 - (1) at focal point නංච පර
 - (2) at centre of curvature පළාත්රාන පසු
 - (3) between focus and centre of curvature నాళి మరియు పథితాకేంద్రం మధ్య
 - (4) beyond centre of curvature කළුණාර්තය යනප
- 74. The magnetic field lines near a long straight wire are of හතුය, එසනස් මහ සැහ සහානිංම සහ රිසසා

 - (2) straight lines perpendicular to the wire ູ້ ອ້າໝ ວອກອກ ພອລ້ ສະເດີຊາຍ
 - (3) concentric circles centred on the wire పీగ కేంద్రంగా ఏర్పడు సంపృత్త రేఖలు
 - (4) radial lines originating from the wire పైర్ మండి ఉద్యవించే రేడియల్ వంక్తులు

SPACE FOR ROUGH WORK / ఎర్నువనికి కేటాయించబడిన స్థలము

- 75. Which one among the following pair of 'physical quantity unit' is wrong? క్రింది 'భౌంకరాశి - ప్రమాణం' జంటలర్' ఏది తమ్ది?
 - Induced current Ampere (බාහ බසාද්‍රි - පාර්තාර්
 - (2) Magnetic flux Weber යොබැංහ පරින - විසර්
 - (3) Magnetic flux density Weber/metre² ගොබාංහ පද්‍රතක බංහුතු - වසර්/ක²
 - (4) Induced EMF Tesla (බරිම බසාලු විදින් විදින් සිටින් සිටුන් සිටුන් සිටුන් සිටුන් සිටින් සිටින් සිටුන් සිටන් සිටුන් සිටුන් සිටන් සිට
- 76. Regarding AC generator, which among the following statements is wrong? AC జెనరేటరీకు సంబంధించి త్రింది ఏ వాక్యము తప్పు?
 - It has two slip rings దారికి రెండు స్టేఫ్ రింగులు ఉంటాయి
 - (2) As the coil rotates, the magnetic flux remains constant పిగమ్ము తిరుగుతున్నప్పుడు, అయస్కాంత ఆఫివాహం స్థిరంగా ఉంటుంది
 - (3) It can be converted into DC generator దానిని DC జినరేటర్గా మార్చవచ్చును
 - (4) None of the above ఇమే కాపు

2.7

.77. The device used to convert mechanical energy into electrical energy is యాంభిక శక్తిని వద్దుత్ శక్తిగా మార్పు సాధనము

(1)	ammeter అప్పుటరు	(2)	galvanometer గాల్యవోమిందు
(3)	motor	(4)	generator
	పూటారు		జ నరేటర్

78. The magnetic flux through each turn of the coil increases by 0.01 Wb in 0.1 s. The maximum induced EMF in a coil of 100 turns is

ఒక తీగామెట్టలోని ప్రతి చుట్టనందూ 0·1s కు జరుగు అభివాహం పెరుగుదల 0·01 Wb అయితే 100 చుట్ల కలిగిన తీగామ్యులో ఏర్పడు గరిష్ఠ (ప్రేత విద్యుచ్చాలక బలము

(1) 10 V (2) 1 V (3) 0·1 V (4) 0·01 V

SPACE FOR ROUGH WORK / చిత్తువనికి కేటాయించబడిన నైలము

[P.T.O.

- 79. The magnetic force acting on a straight wire of length L carrying a current I kept perpendicular to the magnetic field of induction B is B (పరణ కరిగిన అయస్కాంత శ్రీభింకు లంబంగా ఉంచిన తిగపాడ్ను L మరియు దాని గుండా భవహించు ఎద్యుత్ I అయితే, దానిపై పనిషేయు అయస్కాంత బంపు
 - (1) 0 (2) $\frac{B}{L}$ (3) BL (4) $\frac{BI}{L}$

80. To correct one's myopia, the selected lens should form an image at ప్రాష్ట్ర దృష్టదోవ నివారణకు వాడు కటకం ఏర్పరచపలను ప్రతిచింబ స్థానము

- near point
 కనిష్ణదూర బిందుపు పద్ద
- (2) far point గరిప్రదూర బిందుపు పద్ద
- (3) both near and far points కనిష్ పరియు గరిప్రదూర బిందుపుం పద్ద
- (4) None of the above ඉබ්ඩ පතු
- 81. Pick the false statement from the following : జీంది వాటిలో తప్పు వాక్రము ఏది?

 - (2) Image is formed on retina ටිස්ත්‍රි ප්‍රවිතා බර්ධානයක්
 - (3) Cornea contains rods and cones కార్పియాల్ దండాలు మరియు శంఖుపులు ఉంటాయి
 - (4) Distance between lens and retina is about 2.5 cm ຮວນ ຮຸມຮາລິຮໍ ພວດແມ ວິເລີ້ລາ ພວດແມ່ງດີ.
- 82. Arrange the following colour of light in decreasing order of their wavelength : క్రింది కాంతి రంగులను వాటి తరంగపైర్హ్యాల ఆధారంగా అవరోహణ జ్రిమంలో అమర్యండి :

Blue (200), Red (2002), Violet (40)

(1) Red > Blue > Violet බහුනු > බිසන > සංසං

(3) Violet > Blue > Red සංස > විත > බර්ධන

SPACE FOR ROUGH WORK / ລືອງລລີ ອີ້ຍາດເມດລັສດໍລິ ລູດລັມ

- 83. The example of dispersion is FOU LÉDROS ACTION
 - red colour of sun during sunset మార్కాప్రమయం నమయంలో సూర్కుడు ఎరువుగా కన్నించడం
 - (2) rainbow ఇందరామమ్ర
 - (3) blue colour of the sky use alus, her doils
 - (4) droplets on plants
 పెుర్కంపై సీటి బిందుపులు
- 84. When we enter a cinema hall, we cannot see properly for a short time. This is because of మనం సినిమా థియేటర్లోనికి పెళ్ళిన కాసీపు కంటికి సరిగా కనిపించదు. దానికి కారణం
 - cyc-lens becomes opaque
 302 3050 8000 2005500 200500
 - (2) pupil does not open కనుపాప తెరుపుకోశపోవడం

 $r \rightarrow$

- (3) ciliary muscles do not react సిలియారీ కండరాలు వృందించక పోవడం
- 85. The negative sign in magnification indicates that the image is ఆపర్తనం రుణాత్మక విలువను కరిగి ఉంటే దాని ప్రతిచింటము

	నిట్టనిలువు		తలడిందులు		ລືພ		మిథ్యా
(1)	erected	(2)	inverted	(3)	real	(4)	virtual

SPACE FOR ROUGH WORK / ລືອງລວງ ຊົມຈາດມາວລະເລີລ ລາຍລາມ

- 86. An object 4 cm in size is placed at a distance of 20 cm in front of a concave mirror of radius of curvature 30 cm. The position of the image is at 4 cm పరిషాణం గల ఒక పన్నవు 30 cm పక్రతా, వ్యాసార్థం కరిగిన ఒక పుటాకార దర్శణం ముందు 20 cm దూరంలో ఉంది. ప్రతిచింబ స్థానము
 - (1) -25 cm (2) -60 cm (3) -20 cm (4) -37.5 cm

87. The angle of incidence of a light ray on a plane mirror is 45°. The angle between the incident ray and reflected ray is ఒక సమతల దర్శణంపై కాంతికిరణం యొక్క పతనకోణం 45°. అవుదు వతన కిరణానికి మరియు పరావర్తన కిరణానికి మధ్య కోణం

(1) 22·5° (2) 45° (3) 90° (4) 135°

88. The specific heat of water is 1 cal/gm-°C. Its value in J/kg-K is సిటి విళిషోషం 1 cal/gm-°C. ఈ నిలువ J/kg-K లో

(1) 273 (2) 1000 (3) 2100 (4) 4180

89. An object P is at 100 K and another object Q is at 25 °C are kept in contact. The flow of heat is from 100 K ఉచ్చోగత కరిగిన P అను సమృవు మరియు 25°C ఉచ్చోగత కరిగిన Q అను పెన్నపుతో వృర్కలో ఉంచే, ఉప్ప భవాహము పేటె

100 K జన్మత కలను P తమ దుస్తతి మరియు 25 C ఉన్నత కలను Q అను వస్తుత్తాంద్రం, ఉంది, ఉన్న భవాపాము వచ మధ్య ఉండుగు

- (1) P to Q
 (2) Q to P

 P 5002 Q 50
 Q 5002 P 50

 (3) No flow of heat
 (4) None of the above
- ఉష్ణ భవాహం ఉండదు (4) None of the abov
- 90. Which among the following has lower specific heat? පෙනු බබද්දුසුනා වේසාය

(1)	Mercury	(2)	Iron	(3)	Ice	(4)	Water
	సాదరనం		ຊາເນັ້ນ		మందు		దిలు

SPACE FOR ROUGH WORK / ఎత్తువనికి కేటాయించబడిన స్థలము

SECTION-III : CHEMISTRY

91. The pH of blood is in between

రశ్రము యొక్క pH విలువ ఏ రెండు విలువల మధ్య ఉండును?

				100	6.7		(3) 4	1.5	(4)	13-14	
(1) 7	-8		(2)	6-7		(3)		(9		
									<i>A</i>		
2. M	latcl	h the	following	g:							
4	• (\$o	ది వాటిని	జరవర్సుప	:00							
		a.	Causti පැදුම් එර			(i)	NaHCO	03	·*.		
		b.	Baking ນີຣິດຈິ ອີ	g soda		(ii)	CaSO,	·2H20			
		c.	Gypsu జిప్రమ్	m		(iii)	CaSO	$-\frac{1}{2}H_{2}O$			
		d.		rofpan Şənəs	is	(iv)	NaOH				
(1	1)	a	Ъ	C	đ						
		(i)	(ii)	(iii)	(iv)						
C	2)	a	ъ	с	d						
		(i)	(iv)	(iii)	(ii)						
6	3)	a	ъ	c	d						
		(iv)	(i)	(iii)	(ii)						
ŀ	(4)	a	ъ	c	d						
,		(iv)	(i)	(ii)	(iii)					,	
93. 1	NaC	1+H2	0+C02	+NH3 -	$\rightarrow X + Na$	HCO ₃ .	The X n	nay be			
1	NaC	1+H2	0+002	+NH3	$\rightarrow X + Na$	HCO3 4	4 35,5")	గ ఏ పరార్థప	ుు అవ్యవచ్చును?		
								NH4C1	(*		
	(1)	NH ₄ H	003	(2)	mido		()				

SPACE FOR ROUGH WORK / చిత్తువవికి కేటాయించబడిన స్థలము

94. The maximum number of momentum quantum numb	er lis			sub-she	ll wi	th the	angular-
కోణీయ ద్రవ్యవేగ క్రాంటమ్ సంఖ్య 1 గా గ	సం ఉపస్యాయిలో ఉండగల ఆ	0,674	00 30\$ ²				
(1) l+1 (2) 4	41+2 (3	3) 2	21+1	(4) 1	(1 + 1)	
95. As per Moeller chart, the con మాయిలర్ పటం దైకారము ఈ క్రింది ప	rect ascending orde రమాలు జరిచాళు శకిరో ఇ	r of ටැන	energy in ఘన ఆరోహణ	the follow శ్రమము (పె	ring a cfi ess	atomic o: ددهنا)	rbitals is
20000 200 (23.000 01 500 0							
(1) $3p < 3d < 4s < 4p$			3p < 4s < 3				
(3) $3d < 3p < 4s < 4p$	((4)	3p < 3d <	4 <i>p</i> < 4s			
96. The wavelength of visible li	ight is in between						
దృగ్ధోచిన కాంతి యొక్క తరంగ పైర్యాము		27					
dhim an mul con Sti							
(1) 100 nm-300 nm		(2)	400 nm-7	'00 nm			
(3) 700 nm-900 nm		(4)	800 nm-1	000 nm			
97. Which of the following eler ఈ క్రింది మూలకాలరో ఏపి దాటరీసర్ (Dol	bereiner's	triad?			
(1) Li, Na, K (2)	Na, K, Al	(3)	C, O, F		(4)	He, H,	С
98. The formula of compound Y of VIIA group is X అపే IIA గ్రూప్ మూలకము పురియ							
	XY ₃		X ₂ Y			XY_2	
99. Which group elements ha ఏ గ్రూప్ మూలకాలకు లాహ్యస్తాయి ఎం	ive the outer electr లక్షామ విన్యానము ns ² np	ronic 377	configura	ation as	ns ² n	p ³ ?	-
	IVA		IIA		(4)	IIIA	
	R ROUGH WORK /	25	సైపనికి కేటాయి	ంచబడిన స్థా	యు		

20

100. Which of the following element has largest atomic size?						
ఈ క్రించి మూలకాలలో చేనికి ఆధిక పరమాణు పైజా ఉంటుంది?						
(1) Be (2) Mg (3)	Ca	(4)	Ba			
101. The correct order of ionization energy in the following element is ఈ క్రింది మూలకాలకు ఖచ్చితమైన ఆయనీకరణ శక్తుల క్రమము						
(1) $F > C > O$ (2) $F > O > C$ (3)	0 > F > C	(4)	C > F > O			
102. The ionic bond is formed easily between which ions? ఎలాంటి అయాపుల మధ్య ఆయానిక బంధం వేలికూ ఏర్పడుతుంది?						
 Larger size cation and smaller size anion అధిక సైజా కర్గన కాటయాన్ మరియు తక్కువ సైజా ఉన్న యానయాన్ 						
(2) Larger size cation and larger size anion అధిక పైజా ఉన్న కాటయాన్ పురియు అధిక పైజా ఉన్న యానయాన్						
(3) Smaller size cation and smaller size anion తమ్మన పైజా ఉన్న కాలయాన్ మరియు తమ్మన పైజా ఉన్న యానయాన్						
(4) Smaller size cation and larger size anion రక్కువ సైజా ఉన్న కాలయాన్ మరియు ఎక్కువ సైజా ఉన్న యాసయాన్						
103. The number of lone pair of electrons in CH4 molecule is CH4 ఆణుపులో ఉందే ఒంటరి జంబ ఎలక్రాను నంభ						
(1) zero (2) 1 (3)	2	(4)	4			
104. The bond angle in H_2O molecule is ර්ඩ් (H_2O) සොරාන් ఉංසී සංදන්තාන						
(1) 107°48′ (2) 180° (3)	109°28′	(4)	104°31'			
105. The molecule that contains only sigma bonds in the following is ఈ క్రింది అణువుల్ ఏది సిగ్మా బంధములల్ పూడ్రమే కళ్లి ఉంటుంది?						
(1) C_2H_4 (2) O_2 (3)	N ₂	(4)	NH3			
SPACE FOR ROUGH WORK / ఏర్పుపనికి కేటాయించబడిన స్థలము						

2018-S1/1-D

106. The type of hybridization in C ₂ H ₄ molecule is C ₂ H ₄ ອານລັງອ ⁶ ສວກ້ ກວະວັສລັມ ໂດຍ								
(1) s	ip .	(2)	sp ²	(3)	sp ³	(4)	sp ³ d	
107. The low reactivity metal in the following is ఈ క్రింది వాటిలో ఏది తక్కువ పర్యాశీలత కల్లివ లోపాము								
(1) A	lu l	(2)	Mg	(3)	Zn	(4)	Cu	
108. $CaCO_3 \rightarrow CaO + CO_2$. This reaction is an example for $CaCO_3 \rightarrow CaO + CO_2$ అను పర్మ దేనికి ఉదాహరణ?								
	melting			(2)	calcination ¢ື່ລູງອັດຕາລັນນ			
	eduction			(4)	•			
+ · · · ·	యకరణము			1.1	¢ ర్జానము			
109. Ag_2S is dissolved in KCN solution to get Ag_2S ని KCN భావణములో కరించగా ఏ వదార్థములు ఏర్పడును?								
(1) A	gCN	(2)	Ag(CN)2	(3)	Ag ₃ SCN	(4)	KNC	
110. Which of the following is an unsaturated hydrocarbon? ఈ డ్రింది వాటిలో ఏది అనంతృన్త హైడ్రోకార్మన్?								
(1) C	H ₄	(2)	C_2H_2	(3)	C ₃ H ₈	(4)	C ₂ H ₆	
111. Successive compounds in a homologous series possess a difference of నమజార శ్రీణిల్ రెండు వరువ నమ్మేళనాం మధ్య ఉండి భేదము								
C 17 1	-CH) unit			(2)	(-CH ₂) unit			
	–CH) యూనిట్				(—CH2) యూనిట్		-	
	–CH ₃) unit –CH ₃) యూనిట్			(4)	(—C ₂ H ₂) unit (—C ₂ H ₂) యూనిట్			
,								

SPACE FOR ROUGH WORK / ఎక్తువనికి కేటాయించబడిన స్థలము

112. The IUPAC name of the compound CH2=CH-C=CH is CH2=CH-C=CH ఆను వష్మీలానము యొక్క IUPAC నాడుము

- but-3-ene-1-yne
 but-3-ene-3,4-yne
 but-3-ene-3,4-yne
 but-3,4-ene-3,4-yne
 but-4-yne-1-ene
 but-4-yne-1-ene
 but-3,4-ene-1,2-yne
- బ్యాల్-4-జన్-1-ఈన్ బ్యూల్-3, 4-ఈన్-1,2 జన్

113. Ethanol on heating with acidified KMnO₄ to form ethanal and acetic acid. This reaction is an example of

ఇథనోల్ ఆమ్తీకృత KMnO4లో పర్య జరిపి ఇథనోల్సి మరియు ఎసిటిక్ ఆప్యముసు ఏర్పరుచును. ఈ పర్య దేనికి ఉదాపారణ?

(1)	addition reaction	(2)	substitution reaction		
	సంకలప చర్య		ద్రతిక్షేషణ చర్య		
(3)	reduction reaction	(4)	oxidation reaction ಆತ್ಪೆತರಣ ವಶ್ಯ		
	క్రయుకరణ చర్మ				

114. 5–8% solution of acetic acid in water is called as సటర్ 5–8% ఎపెటిక్ ఆమై భారణము ఉన్నదో దావిని ఏమంటారు?

 (1) vinegar
 (2) formalin

 කාත්
 විතැවර්

 (3) gasohol
 (4) cough syrup

 කැට්ක්රි
 සහ කරා

115. The general formula of ketones is න්න්තාව ඔහුද, එඳාවන එහැල (1) R-O-R (2) R-CO-R (3) R-COOR (4) R-CHO
116. The chemical formula of bleaching powder is බ්යාබ් එස්ට් ඔහුද, සමාසන මහාල

(1) $CaOCl_2$ (2) $Ca(OH_2)$ (3) CaO (4) $Ca(HCO_3)_2$

SPACE FOR ROUGH WORK / ມ້ອັງລັກອີ ອີ້ຍາດມາດວັນເດີກ ຈູ້ຫລັມ

- 117. NaCl + AgNO₃ → AgCl↓ + NaNO₃ is an example for NaCl + AgNO₃ → AgCl↓ + NaNO₃ ఆమ పర్మ దేవికి ఉదాపారణ?
 - chemical combination වට්ගෝය බංඛ්‍රාත්‍රියා

(2) chemical decomposition దసాయన వియోగము

- (4) double displacement reaction
 రసాయన ద్రంద్య వియోగము
- 118. The spoilage of food can be prevented by adding preservatives like පෝරා ධාරධානයේ අපරෝ සංකානයේ සාධා කොලාපාරා?
 - (1) vitamin C only
 (2) vitamin E only

 విటమిన్ C మాత్రమే
 విటమిన్ E మాత్రమే
 - (3) vitamin C and vitamin E
 (4) vitamin D only

 ມພລະລົ C ລະອັດແນ ມພລະລົ E
 ມພລະລົ D ລະຫຼອລໍ

119. C₆H₁₂O₆ $\rightarrow x$ C₂H₅OH+ yCO₂. In this balanced equation the x, y values respectively are C₆H₁₂O₆ $\rightarrow x$ C₂H₅OH+ yCO₂ ఆను తుల్య వమీకరణముర్ x, y విలుదలు వరునగా

(1) 1, 1 (2), 2, 1 (3) 1, 2 (4) 2, 2

120. Which of the following solutions converts blue litmus paper to red? ఈ క్రింది వాటిలో ఏ డ్రాపణము వీలి రంగు రిట్మను ఎర్రగా పూర్చును?

(1) HCl (2) KOH (3) NaOH (4) Na₂CO₃

* * *

SPACE FOR ROUGH WORK / చిత్తువనికి కేటాయించబడిన పైలము