61. During the extraction of gold the following reactions take place -

$$Au + CN^{-} + H_{2}O \xrightarrow{O_{2}} [X]$$
$$[X] + Zn \xrightarrow{} [Y] + Au$$

C. A.

X and Y are respectively -

1)
$$\left[Au\left(CN\right)_{2}\right]^{-}$$
 and $\left[Zn\left(CN\right)_{4}\right]^{2-}$ 2) $\left[Au\left(CN\right)_{4}\right]^{3-}$ and $\left[Zn\left(CN\right)_{4}\right]^{2-}$

3)
$$\left[Au\left(CN\right)_{4}\right]^{2-}$$
 and $\left[Zn\left(CN\right)_{4}\right]^{2-}$ 4) $\left[Au\left(CN\right)_{2}\right]^{-}$ and $\left[Zn\left(CN\right)_{6}\right]^{4-}$

- 62. The number of gram molecules of chlorine in 6.02×10^{25} hydrogen chloride molecules is
 - 1) 5

2) 50

3) 100

- 4) 10
- **63.** Graphite is a soft solid lubricant extremely difficult to melt. The reason for this anomalous behaviour is that graphite
 - 1) has molecules of variable molecular masses like polymers.
 - 2) has carbon atoms arranged in large plates of rings of strongly bound carbon atoms with weak interplate bonds.
 - 3) is a non-crystalline substance.
 - 4) is an allotropic form of carbon.
- 64. Paracetamol is a / an
 - 1) antimalarial

2) antipyretic

3) analgesic

- 4) both 2 and 3
- 65. Which one of the following has maximum number of atoms of oxygen?
 - 1) 2 g of water

- 2) 2 g of sulphur dioxide
- 3) 2 g of carbon dioxide
- 4) 2 g of carbon monoxide.

66.	Which o	ne of the following show	ws functional is	somerism ?		
	1)	CH_2Cl_2	2)	C_2H_5OH		
	3)	C_3H_6	4)	C_2H_4		•
			2	**		
67.	In the ic	onic equation $-BiO_3^- + C$	$6H^+ + Xe^-$	$\Rightarrow Bi^{3+} + 3H_2O$,		,
1.00	the valu	es of X is $-$			* * *	
	1)	3	2)	4		
	3)	2	4)	6	w.	•
68.	Molarity	of a given orthophosph	oric acid soluti	on is 3M. It's n	ormality is –	
	•	1 N		3 N	,	
ē	3)	0.3 N	4)	9 N		
69.	Acidified colourati	l sodium fusion extract on which confirms the	on addition o	f ferric chloride	solution gives blood	red
	1)	\boldsymbol{S}	_	N	æ.	œ.
	3)	N and S	4)	S and ${\it Cl}$		
70.		f mass 10 mg is moving sociated with it would b		of 100 ms^{-1} . The	e wavelength of de-Brog	glie
	(Note: h	$=6.63\times10^{-34}$ Js)			T .	
	1)	6.63×10^{-37} m	2)	6.63×10^{-31} m		
	3)	$6.63 \times 10^{-34} \text{m}$	4)	6.63×10^{-35} m	· · · · · · · · · · · · · · · · · · ·	
		a.				

71. Mg^{2+} is isoelectronic	with
--------------------------------	------

1) Ca^{2+}

2) Na^{+}

3) Zn^{2+}

4) Cu^{2+}

72. Gram molecular volume of oxygen at STP is -

1) 11200 cm³

2) 22400 cm³

3) 5600 cm^3

4) 3200 cm³

73. Presence of halogen in organic compounds can be detected using -

1) Beilstien's test

2) kjeldahl test

3) Duma's test

4) Leibig's test

74. The electronic configuration of Cr^{3+} is

1) $[Ar]3d^54s^1$

 $2) \quad [Ar] 3d^2 4s^1$

3) $[Ar]3d^34s^0$

4) $[Ar]3d^44s^2$

75. The mass of a metal, with equivalent mass 31.75, which would combine with 8 g of oxygen is

1) 31.75

2) 3.175

3) 8

4) 1

76.	Benzene reacts with chlorine in sunlight to give a final product -					
	1)	C_6H_5Cl	2)	C_6Cl_6		
	3)	$C_6H_6Cl_6$	4)	CCl ₄		
77.	In the p	periodic table metals usually used	as c	catalysts belong to		
	1)	s - block	2)	p - block		
	3)	d - block	4)	f - block		
78.	Dalton's	law of partial pressures is applic	able	e to which one of the following systems		
	1)	$CO + H_2$	2)	$H_2 + Cl_2$		
	3)	$NO + O_2$	4)	$NH_3 + HCl$		
79.	The gen	eral formula of a cycloalkane is	ia.			
	1)	C_nH_{2n+2}	2)	C_nH_{2n-2}		
	3)	C_nH_{2n}	4)	C_nH_{2n-2} C_nH_n		
80.	In acety	lene molecule, between the carbon	n ato	oms there are –		
	1)	three sigma bonds	2)	two sigma and one pi bonds		
	3)	one sigma and two pi bonds	4)	three pi bonds		
			-			
K-1,818		(Space for Re	ough	n Work)		
		· · · · · · · · · · · · · · · · · · ·				

			-	-	
81.	Dono	itured	2	coh	חו ופ
oı.	Dena	uureu	aı	COIL	טו ונ

- 1) Rectified spirit
- 2) Undistilled ethanol
- 3) Rectified spirit + methanol + naphtha
- 4) Ethanol + methanol
- 82. During the formation of a chemical bond
 - 1) energy decreases
 - 2) energy increases
 - 3) energy of the system does not change
 - 4) electron-electron repulsion becomes more than the nucleus-electron attraction
- 83. One mole of oxygen at 273 k and one mole of sulphur dioxide at 546 k are taken in two separate containers, then,
 - 1) kinetic energy of O_2 > kinetic energy of SO_2 .
 - 2) kinetic energy of O_2 < kinetic energy of SO_2 .
 - 3) kinetic energy of both are equal.
 - 4) None of these
- 84. +I effect is shown by
 - $1) -NO_2$

2) *-Cl*

-Br

- 4) *-CH*₃
- 85. Formation of coloured solution is possible when metal ion in the compound contains
 - 1) paired electrons

- 2) unpaired electrons
- 3) lone pair of electrons
- 4) none of these

86.	Which of the following is an intensive property?					
	1)	temperature	2)	surface tension		
	3)	viscosity	4)	all of these		
87.	Hofman	n's bromamide reaction is to conv	ert		*	
	1)	amine to amide	2)	amide to amine		
9	3)	alcohol to acid	4)	acid to alcohol		
88.	IUPAC 1	name of $Na_3igl[{\it Co(NO_2)}_6igr]$ is				
	1)	sodium cobaltinitrite	2)	sodium hexanitrito cobaltate (III)		
	3)	sodium hexanitro cobalt (III)	4)	sodium hexanitrito cobaltate (II)		
89.	Thermod	dynamic standard conditions of te	empe	rature and pressure are		
	1)	$0^0\mathrm{C}$ and 1 atm	2)	273 k and 101.3 k Pa		
	3)	298 k and 1 atm	4)	$0^0\mathrm{C}$ and $101.3~\mathrm{k}$ Pa		
90.	How ma	ny chiral carbon atoms are preser	nt in	2, 3, 4 - trichloropentane?		
24	1)	3	2)	2		
	3)	1	4)	4		
	,				. ,	
		/C 0 5	a 5	TTT 1 \		

- 91. The number of unidentate ligands in the complex ion is called
 - 1) EAN

2) Coordination number

3) primary valency

- 4) oxidation number
- **92.** $2SO_{2(g)} + O_{2(g)} \xrightarrow{V_2O_5}$ is an example for
 - 1) irreversible reaction
- 2) heterogenous catalysis
- 3) homogenous catalysis
- 4) neutralisation reaction
- 93. The amino acid which is not optically active is
 - 1) glycine

2) alanine

3) serine

- 4) lactic acid
- 94. For a stable molecule the value of bond order must be
 - 1) negative
 - 2) positive
 - 3) zero
 - 4) there is no relationship between stability and bond order.
- 95. Which one of the following is a second order reaction?
 - 1) $CH_3COOCH_3 + NaOH \longrightarrow CH_3COONa + H_2O$
 - 2) $H_2 + Cl_2 \xrightarrow{\text{sunlight}} 2HCl$
 - 3) $NH_4NO_3 \longrightarrow N_2 + 3H_2O$
 - 4) $H_2 + Br_2 \longrightarrow 2HBr$

96. According to Bayer's strain theory which is highly stable?					
	1)	cyclohexane	2)	cycloheptane	
	3)	cyclopentane	4)	cyclobutane	
97.			lectron pairs in O	2– molecular ion or	the basis of molecula
		heory is	. 10]	365 E	· v
	[Note - A	Atomic number of O :	2)	3 ,	i
	3)	4	4)	5	D2
98.	Hydroxy	l ion concentration o	of $1M\ HCl$ is	,	
	.1)	$1\times10^{-14}\mathrm{mol}\mathrm{dm}^{-3}$	2)	1×10^{-1} mol dm $^{-3}$	
	. 3)	$1{\times}10^{-13}\mathrm{mol}\mathrm{dm}^{-3}$	4)	$1{\times}10^1{\rm mol~dm}^{-3}$	1 .
99.	Geometr	rical isomerism is sh	own by	,	
	1)	-C-C-	2)	$-C \equiv C$ –	
•	3)	-C - C - C $C = C$	4)	None of these	
100.	The oxid	lation state of iron ir	$K_4[Fe(CN)_6]$	i S ı	
	1)	2	. 2)	3	
	3)	4	4)	1 ,	ы з 3
			(Space for Rough	Work)	

- 101. In which of the following process, a maximum increase in entropy is observed?
 - 1) dissolution of salt in water
- 2) condensation of water
- 3) sublimation of naphthalene
- 4) melting of ice
- 102. Decomposition of benzene diozonium chloride by using Cu_2Cl_2/HCl to form chlorobenzene is
 - 1) Cannizarro's reaction
- 2) Kolbe's reaction
- 3) Sandmeyer's reaction
- 4) Raschig's reaction
- 103. Which complex can not ionise in solution?
 - 1) $[pt(NH_3)_6]Cl_4$

2) $K_2[pt(F_6)]$

3) $K_4[Fe(CN)_6]$

- 4) $\left[CoCl_3 \left(NH_3 \right)_3 \right]$
- 104. Considering the reaction $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)} + 393.5 \text{ kJ}$ the signs of ΔH , ΔS and ΔG respectively are
 - 1) -,+,-

2) -,-,-

3) - + + +

- 4) +, -, -
- 105. The product formed when hydroxylamine condenses with a carbonyl compound is called
 - 1) hydrazone

2) hydrazine

3) oxime

4) hydrazide

106.	106. Which of the following forms a colourless solution in aqueous medium?						
	1)	Ti ³⁺	2)				
	3)	v ³⁺	4)	Cr^{3+}			
107.		sulphur sol is evaporated sulpred. The sol is	phur is ob	tained. On mixing with water sulphur sol			
	1)	hydrophilic	2)	hydrophobic			
	3)	reversible	4)	lyophilic			
108.	An alkyl will be	halide reacts with alcoholic	ammonia	in a sealed tube, the product formed			
	1)	a primary amine	2)	a secondary amine			
	3)	a tertiary amine	4)	a mixture of all the three			
109.	When co	onc. H_2SO_4 is heated with P_2	O_5 , the i	acid is converted into			
· ·	1)	sulphur					
	2)	sulphur dioxide					
	3)	sulphur trioxide					
54°C	4)	a mixture of sulphur dioxid	e and sul	phur trioxide			
110.	Entropy.	of the universe is	*				
	1)	continuously increasing	2)	continuously decreasing			
	3)	zero	4)	constant			
		(Space f	for Rough	Work)			
	E						

111.	Which o	f the following salts on l	peing dissolved	in water giv	$es pH > 7 at 25^{0}C$?	
	1)	NH_4CN	2)	NH_4Cl		
	3)	KNO ₃	4)	KCN		
112.	The rea	gent used in Clemmenso	on's reduction i	is		٠
	1)	alc. KOH	2)	aq. KOH		7
	3)	Zn-Hg / con. HCl	4)	Conc. H_2SO	4 .	
113.	When K	Br is dissolved in water,	K^+ ions are	a.		`
	1)	oxidised	2)	reduced	,	
¥	3)	hydrolysed	4)	hydrated		
114.	The nob	le gas mixture is cooled :	in a coconut bu	ılb at 173 K.	The gases that are n	ot
	1)	He and Ne	. 2)	Ar and Kr		
	3)	He and Xe	4)	Ne and Xe		ie.
115.	The volu	me of 10N and 4N HCl	required to ma	ke 1 litre of 7	7N HCl are	
	1)	0.75 litre of $10N$ HCl and	nd 0.25 litre of	4N~HCl		
	2)	0.80 litre of 10N HCl ar	nd 0.20 litre of	4N~HCl		
	3)	0.60 litre of 10N HCl ar	nd 0.40 litre of	4N HCl	91 0 9	-3
	4)	0.50 litre of $10N$ HCl and	nd 0.50 litre of	4N HCl		
		(Sr	age for Rough	Work)	Anna April A	

116.	A metal	present in insulin is	i t	er the stage of th	
i.	1)	copper	2)	iron	
	3)	zinc	4)	aluminium	1
117.		forms two oxides which have differmains constant?	erei	nt compositions. The	equivalent mass of
	1)	carbon	2)	oxygen	e e
	3)	neither carbon nor oxygen	4)	both carbon and oxyg	gen
118.	Maximu	m number of molecules of CH_3I that	at c	an react with a molec	ule of CH_3NH_2 are
	1)	1	2)	2	f.
	3)	4	4)	3 4	4
119.	Ellingha	m diagram represents a graph of		-	4
	1)	$\Delta G \operatorname{Vs} T$	2)	$\Delta G^0 \mathrm{Vs} T$	
	3)	$\Delta S \text{ Vs } P$	4)	$\Delta G \operatorname{Vs} P$	
120.	Identify	the ore not containing iron		÷.	
	1)	chalcopyrites	2)	carnallite	
	3)	siderite	4)	limonite	