MATHEMATICS

1. A variable line $\frac{x}{a} + \frac{y}{b} = 1$ is such that a + b = 4. The locus of the midpoint of the portion of the line intercepted between the axes is

- 1) x + y = 43) x + y = 12) x + y = 84) x + y = 2
- 2. The point (5, -7) lies outside the circle
 - 1) $x^{2} + y^{2} 8x = 0$ 3) $x^{2} + y^{2} - 5x + 7y = 0$ 4) $x^{2} + y^{2} - 8x + 7y - 2 = 0$
- 3. If the circles $x^2 + y^2 = 9$ and $x^2 + y^2 + 2\alpha x + 2y + 1 = 0$ touch each other internally, then $\alpha =$

1)	$\pm \frac{4}{3}$	2) 1
3)	$\frac{4}{3}$	4) $\frac{-4}{3}$

4. The locus of the midpoints of the line joining the focus and any point on the parabola $y^2 = 4ax$ is a parabola with the equation of directrix as

1) x + a = 02) 2x + a = 03) x = 0. 4) $x = \frac{a}{2}$

5. The tangents drawn at the extremeties of a focal chord of the parabola $y^2 = 16x$

- 1) intersect on x = 0
- 2) intersect on the line x + 4 = 0
- 3) intersect at an angle of 60^0 4) intersect at an angle of 45^0

(Space for Rough Work)

SR - 17

Turn Over

6. On the set Z, of all integers * is defined by a * b = a + b - 5. If 2 * (x * 3) = 5 then x = b + b - 5.

- 1) 0 3) 5
- 2) 3
 4) 10
- 7. Which of the following is false ?
 - 1) Addition is commutative in N.
 - 2) Multiplication is associative in N.
 - 3) If $a * b = a^b$ for all $a, b \in N$ then * is commutative in N.
 - 4) Addition is associative in N.

8. If
$$\vec{a} \cdot \hat{i} = \vec{a} \cdot (\hat{i} + \hat{j}) = \vec{a} \cdot (\hat{i} + \hat{j} + \hat{k}) = 1$$
 then $\vec{a} =$
1) $\hat{i} + \hat{j}$
2) $\hat{i} - \hat{k}$
3) \hat{i}
4) $\hat{i} + \hat{j} - \hat{k}$

9. If \vec{a} and \vec{b} are unit vectors and $\left|\vec{a}+\vec{b}\right|=1$ then $\left|\vec{a}-\vec{b}\right|$ is equal to

1) $\sqrt{2}$ 2) 1 3) $\sqrt{5}$ 4) $\sqrt{3}$

10. The projection of $\vec{a} = 3\hat{i} - \hat{j} + 5\hat{k}$ on $\vec{b} = 2\hat{i} + 3\hat{j} + \hat{k}$ is

1)
$$\frac{8}{\sqrt{35}}$$
 2) $\frac{8}{\sqrt{39}}$
3) $\frac{8}{\sqrt{14}}$ 4) $\sqrt{14}$

11. If $f: R \to R$ is defined by $f(x) = x^3$ then $f^{-1}(8) =$

1)	{2}	8			2)	{2,	2w,	$2w^2$
3)	$\{2, -2\}$				4)	{2,	2}	

12. R is a relation on N given by $R = \{(x, y) | 4x + 3y = 20\}$. Which of the following belongs to R?

1)	(-4, 12)		2)	(5, 0)	
3)	(3, 4)		4)	(2, 4)	

13. If $Log_{10}7=0.8451$ then the position of the first significant figure of 7^{-20} is 1) 16 2) 17

14. $\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \dots$ upto *n* terms =

1)	$\frac{n}{4n+6}$	2)	$\frac{1}{6n+4}$
3)	$\frac{n}{6n+4}$	4)	$\frac{n}{3n+7}$

15. The ten's digit in 1!+4!+7!+10!+12!+13!+15!+16!+17! is divisible by

1)	4	2)	3!
3)	5	4)	7

16.	The	equation	$\frac{x^2}{2-\lambda}$	$\frac{y^2}{\lambda - 5} - 1 = 0$	represents	an	ellipse if
		2					

 1) $\lambda > 5$ 2) $\lambda < 2$

 3) $2 < \lambda < 5$ 4) $2 > \lambda > 5$

17. The equation to the normal to the hyperbola $\frac{x^2}{16} - \frac{y^2}{9} = 1$ at (-4, 0) is

1)	2x - 3y = 1		2)	x = 0
3)	$x = 1^{\circ}$		4)	y = 0

18. The converse of the contrapositive of the conditional $p \rightarrow \neg q$ is

1)	p ightarrow q	1.5	2)	$\sim p \rightarrow \sim q$	
3)	$\sim q \rightarrow p$		4)	$\sim p \rightarrow q$	

19. The perimeter of a certain sector of a circle is equal to the length of the arc of the semicircle. Then the angle at the centre of the sector in radians is

1) $\pi - 2$	(2) $\pi + 2$
3) $\frac{\pi}{3}$	4) $\frac{2\pi}{3}$

20. The value of $Tan \ 67\frac{1}{2}^{0} + Cot \ 67\frac{1}{2}^{0}$ is

1)	$\sqrt{2}$	and a state of	2)	$3\sqrt{2}$
3)	$2\sqrt{2}$		4)	$2-\sqrt{2}$

21. If e_1 and e_2 are the eccentricities of a hyperbola $3x^2 - 3y^2 = 25$ and its conjugate, then

1) $e_1^2 + e_2^2 = 2$ 3) $e_1 + e_2 = 4$ 4) $e_1 + e_2 = \sqrt{2}$

22. If p and q are prime numbers satisfying the condition $p^2 - 2q^2 = 1$, then the value of

$p^2 + 2q^2$	is				
1)	5			2)	15
3)	16		A.	4)	17

23. If A(adj A) = 5I where I is the identity matrix of order 3, then |adj A| is equal to

1)	125		2)	25	
3)	5		4)	10	

24. The number of solutions for the equation Sin 2x + Cos 4x = 2 is

1) 0	2)	1
3) 2	4)	Infinite

25. $\int e^x \cdot x^5 dx$ is

1) $e^{x} \left[x^{5} + 5x^{4} + 20x^{3} + 60x^{2} + 120x + 120 \right] + C$ 2) $e^{x} \left[x^{5} - 5x^{4} - 20x^{3} - 60x^{2} - 120x - 120 \right] + C$ 3) $e^{x} \left[x^{5} - 5x^{4} + 20x^{3} - 60x^{2} + 120x - 120 \right] + C$ 4) $e^{x} \left[x^{5} + 5x^{4} + 20x^{3} - 60x^{2} - 120x + 120 \right] + C$

(Space for Rough Work)

SR - 17

Turn Over

https://exams.freshersnow.com/category/entrance-exam-question-papers/

26. If f(x) is an even function and f'(x) exists, then f'(e) + f'(-e) is

 1) > 0
 2) 0

 3) ≥ 0 4) < 0</td>

27. If α is a complex number satisfying the equation $\alpha^2 + \alpha + 1 = 0$ then α^{31} is equal to

1) α 3) 1 2) α^2 4) *i*

28. The derivative of $Sin(x^3)$ w.r.t. $Cos(x^3)$ is

 1) $-Tan(x^3)$ 2) $Tan(x^3)$

 3) $-Cot(x^3)$ 4) $Cot(x^3)$

29. A unit vector perpendicular to both the vectors $\hat{i} + \hat{j}$ and $\hat{j} + \hat{k}$ is

1)	$\frac{-\hat{i}-\hat{j}+\hat{k}}{\sqrt{3}}$	2)	$\frac{\hat{i}+\hat{j}-\hat{k}}{3}$
3)	$\frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$.4)	$\frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}}$

30. If
$$A = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
 and $B = \begin{vmatrix} c_1 & c_2 & c_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$ then
1) $A = -B$
3) $B = 0$
2) $A = B$
4) $B = A^3$

(Space for Rough Work)

SR - 17

https://exams.freshersnow.com/category/entrance-exam-question-papers/

31.	The locus of a point which moves such that is a constant is	the	sum of its distances from two fixed points
	1) a circle	2)	a parabola
	3) an ellipse	4)	a hyperbola
32.	The centroid of the triangle ABC where A	≡(2	, 3), $B \equiv (8, 10)$ and $C \equiv (5, 5)$ is
	1) (5, 6)	2)	(6, 5)
	3) (6, 6)	4)	(15, 18)
33.	If $3x^2 + xy - y^2 - 3x + 6y + K = 0$ represented	nts a	pair of lines, then $K =$
	1) 0	2)	9
	3) 1	4)	- 9
34.	The equation of the smallest circle passing	g thr	ough the points $(2, 2)$ and $(3, 3)$ is
	$1)_{t} x^{2} + y^{2} + 5x + 5y + 12 = 0$	2)	$x^2 + y^2 - 5x - 5y + 12 = 0$
	3) $x^2 + y^2 + 5x - 5y + 12 = 0$	4)	$x^2 + y^2 - 5x + 5y - 12 = 0$
	[1	Ó	0 0 are
35.	The characteristic roots of the matrix 2	3	0 are
		5	
	1) 1, 3, 6	2)	1, 2, 4
	3) 4, 5, 6	4).	2, 4, 6

1					" and the state of the state of the
36.	If $A = \begin{bmatrix} \\ \\ \end{bmatrix}$	$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, then A^{-1}	-1 =		
	1)	$\frac{-1}{2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$		2)	$\frac{1}{2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$
	3)	$\left[\begin{array}{rrr} -2 & 4\\ 1 & 3\end{array}\right]$		4)	$\left[\begin{array}{cc}2&4\\1&3\end{array}\right]$
37.	The set	$\{-1, 0, 1\}$ is no	ot a multiplicative g	rou	p because of the failure of
	1)	Closure law		2)	Associative law
	3)	Identity law		4)	Inverse law
38					
	1)	a Tan α		2)	a Sin α
	3)	a Sin 2a		4)	a Sin 3α
39.	A is		of a triangle ABC a	re i	n A.P. If $b: c = \sqrt{3}: \sqrt{2}$, then the angle
	1)	30 ⁰		2)	15 ⁰
	3)	75 ⁰		4)	45 ⁰
40.	$Sin \left(2Si \right)$	$n^{-1}\sqrt{\frac{63}{65}} =$	The second		
	1)	$\frac{2\sqrt{126}}{65}$		2)	$\frac{4\sqrt{65}}{65}$
	3)	$\frac{8\sqrt{63}}{65}$		4)	$\frac{\sqrt{63}}{65}$
(Space for Rough Work)					
				3	
SR -	17				and the second

10

A - 1

https://exams.freshersnow.com/category/entrance-exam-question-papers/

41. The general solution of |Sin x| = Cos x is (when $n \in Z$) given by

1) $n \pi \pm \frac{\pi}{4}$ 3) $n \pi \pm \frac{\pi}{4}$ 4) $n \pi - \frac{\pi}{4}$

42. The real root of the equation $x^3 - 6x + 9 = 0$ is 1) -6 2) -9

3) 6 4) -3

43. The digit in the unit's place of 5^{834} is

1)	0	2)	1
3)	3	4)	5

44. The remainder when $3^{100} \times 2^{50}$ is divided by 5 is

1)	1	2)	2
3)	3	4)	4

 $45. \quad \int \frac{\sin x \, \cos x}{\sqrt{1 - \sin^4 x}} \, dx =$

1) $\frac{1}{2} Sin^{-1} (Sin^2 x) + C$ 2) $\frac{1}{2} Cos^{-1} (Sin^2 x) + C$ 3) $Tan^{-1} (Sin^2 x) + C$ 4) $Tan^{-1} (2 Sin x) + C$

46. The value of $\int_{a}^{2} (ax^{3} + bx + c) dx$ depends on the

value of b
 value of a
 values of a and b

47. The area of the region bounded by $y = 2x - x^2$ and the x-axis is

1) $\frac{8}{3}$ sq. units2) $\frac{4}{3}$ sq. units3) $\frac{7}{3}$ sq. units4) $\frac{2}{3}$ sq. units

48. The differential equation $y \frac{dy}{dx} + x = c$ represents

- 1) a family of hyperbolas
- 2) a family of circles whose centres are on the y-axis
- 3) a family of parabolas

4) a family of circles whose centres are on the x-axis

49. If
$$f(x^5) = 5x^3$$
, then $f'(x) =$

1) $\frac{3}{\sqrt[5]{x^2}}$ 2) $\frac{3}{\sqrt[5]{x}}$ 3) $\frac{3}{x}$ 4) $\sqrt[5]{x}$

50. f(x) = 2a - x in -a < x < a= 3x - 2a in $a \le x$. Then which of the following is true?

1) f(x) is discontinuous at x = a 2) f(x) is not differentiable at x

3) f(x) is differentiable at all $x \ge a$ 4) f(x) is continuous at all x < a

51. The maximum area of a rectangle that can be inscribed in a circle of radius 2 units is (in square units)

1) 4 2) 8π 3) 8 4) 5

52. If Z is a complex number such that $Z = -\overline{Z}$, then

- 1) Z is purely real
- 2) Z is purely imaginary
- 3) Z is any complex number
- 4) Real part of Z is the same as its imaginary part

53. The value of
$$\sum_{K=1}^{6} \left[Sin \frac{2K \Pi}{7} - i Cos \frac{2K \Pi}{7} \right]$$
 is
1) i
3) -i
54.
$$\sum_{K=1}^{1} \left[Sin \frac{2K \Pi}{7} - i Cos \frac{2K \Pi}{7} \right]$$
 is equal to
1) -1
54.
$$\sum_{K \to \infty} x Sin \left(\frac{2}{x} \right)$$
 is equal to
1) ∞
2) 0
3) 2
4) $\frac{1}{2}$

55. A stone is thrown vertically upwards and the height x ft. reached by the stone in t seconds is given by $x = 80t - 16t^2$. The stone reaches the maximum height in

1) 2 seconds	2) 2.5 seconds
3) 3 seconds	4) 1.5 seconds

56. The maximum value of $\frac{Log x}{x}$ in $(2, \infty)$ is

1) 1
2)
$$\frac{2}{e}$$

3) e
4) $\frac{1}{e}$

57. If $f(x) = be^{ax} + ae^{bx}$, then f''(0) =1) 0 2) 2ab 3) ab(a+b) 4) ab

58. If $\sqrt{\frac{1+\cos A}{1-\cos A}} = \frac{x}{y}$, then the value of Tan A =

1) $\frac{x^2 + y^2}{x^2 - y^2}$ 2) $\frac{2xy}{x^2 + y^2}$ 3) $\frac{2xy}{x^2 - y^2}$ 4) $\frac{2xy}{y^2 - x^2}$

59. $\int \frac{\sec x}{\sec x + \tan x} \, dx =$ 1) $Tan x - \sec x + C$ 2) $Log (1 + \sin x) + C$ 3) Sec x + Tan x + C4) Log Sin x + Log Cos x + C

60. If $\int f(x) dx = g(x)$, then $\int f(x) g(x) dx =$

1) $\frac{1}{2}f^{2}(x)$ 2) $\frac{1}{2}g^{2}(x)$ 3) $\frac{1}{2}[g'(x)]^{2}$ 4) f'(x)g(x)

(Space for Rough, Work)

SR - 17