MATHEMATICS

1. If
$$A = \{a,b,c\}$$
, $B = \{b,c,d\}$ and $C = \{a,d,c\}$, then $(A-B) \times (B \cap C) =$

1)
$$\{(a,c),(a,d),(b,d)\}$$

2)
$$\{(c,a),(d,a)\}$$

3)
$$\{(a,b),(c,d)\}$$

4)
$$\{(a,c),(a,d)\}$$

2. The function
$$f: X \to Y$$
 defined by $f(x) = \sin x$ is one-one but not onto if X and Y are respectively equal to

1)
$$\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$
 and $[-1, 1]$

2)
$$\left[0, \frac{\pi}{2}\right]$$
 and $\left[-1, 1\right]$

3)
$$[0, \pi]$$
 and $[0, 1]$

3. If
$$Log_4^2 + Log_4^4 + Log_4^{16} + Log_4^x = 6$$
, then $x =$

4. If
$$S_n = \frac{1}{6.11} + \frac{1}{11.16} + \frac{1}{16.21} + \dots$$
 to n terms, then $6S_n =$

$$1) \quad \frac{1}{(5n+6)}$$

$$2) \quad \frac{(2n-1)}{5n+6}$$

3)
$$\frac{n}{(5n+6)}$$

$$4) \quad \frac{5n-4}{5n+6}$$

5. The remainder obtained when
$$(|\underline{1}|^2 + (|\underline{2}|^2 + (|\underline{3}|^2 + \dots + (|\underline{100}|^2)^2)^2)$$
 is divided by 10^2 is

1) 14

2) 17

3) 28

4) 27

- **6.** If $(p \land \sim r) \rightarrow (\sim p \lor q)$ is false, then the truth values of p, q and r are respectively
 - 1) T, F and T

2) F, T and T

3) F, F and T

- 4) T, F and F
- 7. If α , β and γ are the roots of the equation $x^3 8x + 8 = 0$, then $\sum \alpha^2$ and $\sum \frac{1}{\alpha \beta}$ are respectively =
 - 1) 16 and 0

2) -16 and 0

3) 16 and 8

- 4) 0 and -16
- 8. The g.c.d. of 1080 and 675 is
 - 1) 125

2) 22

3) 135

- 4) 145
- **9.** If $a \mid (b+c)$ and $a \mid (b-c)$ where $a, b, c \in N$ then,
 - $1) \quad c^2 \equiv a^2 \pmod{b^2}$

 $2) \quad a^2 \equiv b^2 \pmod{c^2}$

3) $a^2 + c^2 = b^2$

- $4) \quad b^2 \equiv c^2 \pmod{a^2}$
- 10. If a, b and $c \in N$ which one of the following is not true?
 - 1) $a \mid b \text{ and } a \mid c \Rightarrow a \mid b + c$
- 2) $a \mid b+c \Rightarrow a \mid b \text{ and } a \mid c$
- 3) $a \mid b \text{ and } b \mid c \Rightarrow a \mid c$
- 4) $a \mid b \text{ and } a \mid c \Rightarrow a \mid 3b + 2c$

11. If
$$2A + 3B = \begin{bmatrix} 2 & -1 & 4 \\ 3 & 2 & 5 \end{bmatrix}$$
 and $A + 2B = \begin{bmatrix} 5 & 0 & 3 \\ 1 & 6 & 2 \end{bmatrix}$, then $B = \begin{bmatrix} 5 & 0 & 3 \\ 1 & 6 & 2 \end{bmatrix}$

$$1) \quad \begin{bmatrix} 8 & 1 & 2 \\ 1 & 10 & 1 \end{bmatrix}$$

1)
$$\begin{bmatrix} 8 & 1 & 2 \\ 1 & 10 & 1 \end{bmatrix}$$
 2) $\begin{bmatrix} 8 & 1 & -2 \\ -1 & 10 & -1 \end{bmatrix}$

$$3) \begin{bmatrix} 8 & 1 & 2 \\ -1 & 10 & -1 \end{bmatrix}$$

12. If
$$O(A) = 2 \times 3$$
, $O(B) = 3 \times 2$, and $O(C) = 3 \times 3$, which one of the following is not defined?

1)
$$C(A+B')$$

$$2) \quad C\left(A+B'\right)'$$

4)
$$CB+A'$$

13. If
$$A = \begin{bmatrix} 1 & -3 \\ 2 & K \end{bmatrix}$$
 and $A^2 - 4A + 10I = A$, then $K = A$

2) 4 and not 1

$$3) - 4$$

14. The value of
$$\begin{vmatrix} x+y & y+z & z+x \\ x & y & z \\ x-y & y-z & z-x \end{vmatrix} =$$

$$2) \quad \left(x+y+z\right)^3$$

3)
$$2(x+y+z)^3$$

$$4) \quad 2(x+y+z)^2$$

15. On the set
$$Q$$
 of all rational numbers the operation * which is both associative and commutative is given by $a * b =$

1)
$$2a + 3b$$

2)
$$ab + 1$$

3)
$$a^2 + b^2$$

4)
$$a+b+ab$$

- . **16.** In the group $G = \{1,5,7,11\}$ under multiplication modulo 12, the solution of $7^{-1} \times (x \times 11) = 5$ is x =
 - 1) 11

2)

3)

- 4) 5
- 17. A subset of the additive group of real numbers which is not a sub group is
 - 1) (Q, +)

(N, +)

3) (Z, +)

- 4) $(\{0\}, +)$
- 18. If $\overrightarrow{p} = \overrightarrow{i} + \overrightarrow{j}$, $\overrightarrow{q} = 4\overrightarrow{k} \overrightarrow{j}$ and $\overrightarrow{r} = \overrightarrow{i} + \overrightarrow{k}$, then the unit vector in the direction of $\overrightarrow{3} \overrightarrow{p} + \overrightarrow{q} 2 \overrightarrow{r}$ is
 - 1) $\hat{i} + 2\hat{j} + 2\hat{k}$

2) $\frac{1}{3} \left(\hat{i} - 2\hat{j} + 2\hat{k} \right)$

3) $\frac{1}{3} \begin{pmatrix} \hat{i} - 2\hat{j} - 2\hat{k} \end{pmatrix}$

- 4) $\frac{1}{3} \left(\stackrel{\wedge}{i} + 2 \stackrel{\wedge}{j} + 2 \stackrel{\wedge}{k} \right)$
- 19. If \overrightarrow{a} and \overrightarrow{b} are the two vectors such that $|\overrightarrow{a}| = 3\sqrt{3}$, $|\overrightarrow{b}| = 4$ and $|\overrightarrow{a} + \overrightarrow{b}| = \sqrt{7}$, then the angle between \overrightarrow{a} and \overrightarrow{b} is
 - 1) 150^{0}

 $2) 30^{0}$

3) 60°

- 4) 120^{0}
- **20.** If \overrightarrow{a} is vector perpendicular to both \overrightarrow{b} and \overrightarrow{c} , then
 - 1) $\overrightarrow{a} \left(\overrightarrow{b} \times \overrightarrow{c} \right) = 0$
- 2) $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) = \overrightarrow{0}$
- 3) $\overrightarrow{a} \times \left(\overrightarrow{b} + \overrightarrow{c}\right) = \overrightarrow{0}$
- 4) $\overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{0}$

- 21. If the area of the parallelogram with \overrightarrow{a} and \overrightarrow{b} as two adjacent sides is 15 sq. units, then the area of the parallelogram having $3\overrightarrow{a} + 2\overrightarrow{b}$ and $\overrightarrow{a} + 3\overrightarrow{b}$ as two adjacent sides in sq. units is
 - 1) 45

2) 75

3) 105

- 4) 120
- **22.** The locus of the point which moves such that the ratio of its distances from two fixed points in the plane is always a constant K(<1) is
 - 1) circle

2) straight line

3) ellipse '

- 4) hyperbola
- 23. If the lines x+3y-9=0, 4x+by-2=0 and 2x-y-4=0 are concurrent, then b=0
 - 1) 0

2)

3) 5

- 4) 8
- **24.** The lines represented by $ax^2 + 2hxy + by^2 = 0$ are perpendicular to each other if
 - 1) h = 0

2) $h^2 = ab$

3) a + b = 0

- $4) \quad h^2 = a + b$
- **25.** The equation of the circle having x y 2 = 0 and x y + 2 = 0 as two tangents and x + y = 0 as a diameter is
 - 1) $x^2 + y^2 = 1$

- $2) \quad x^2 + y^2 = 2$
- 3) $x^2 + y^2 2x + 2y 1 = 0$
- 4) $x^2 + y^2 + 2x 2y + 1 = 0$

- **26.** If the length of the tangent from any point on the circle $(x-3)^2 + (y+2)^2 = 5r^2$ to the circle $(x-3)^2 + (y+2)^2 = r^2$ is 16 units, then the area between the two circles in sq. units is
 - 1) 16π

2) 8π

3) 4 π

- 4) 32π
- 27. The circles $ax^2 + ay^2 + 2g_1x + 2f_1y + c_1 = 0$ and $bx^2 + by^2 + 2g_2x + 2f_2y + c_2 = 0$ $(a \neq 0 \text{ and } b \neq 0)$ cut orthogonally if
 - 1) $g_1g_2 + f_1\dot{f_2} = c_1 + c_2$
- 2) $bg_1g_2 + af_1f_2 = bc_1 + ac_2$
- 3) $g_1g_2 + f_1f_2 = bc_1 + ac_2$
- 4) $g_1g_2 + f_1f_2 = ac_1 + bc_2$
- 28. The equation of the common tangent of the two touching circles, $y^2 + x^2 6x 12y + 37 = 0$ and $x^2 + y^2 - 6y + 7 = 0$ is
 - 1) x + y + 5 = 0

2) x + y - 5 = 0

3) $\dot{x} - y + 5 = 0$

- 4) x-y-5=0
- 29. The equation of the parabola with vertex at (-1, 1) and focus (2, 1) is
 - 1) $y^2 2y 12x + 13 = 0$
- $2) \quad y^2 2y + 12x + 11 = 0$
- 3) $x^2 + 2x 12y + 13 = 0$
- 4) $y^2 2y 12x 11 = 0$
- **30.** The equation of the line which is tangent to both the circle $x^2 + y^2 = 5$ and the parabola $y^2 = 40x$ is
 - 1) 2x + y + 5 = 0

 $2) \quad 2x - y - 5 = 0$

3) 2x - y + 5 = 0

 $4) \quad 2x - y \pm 5 = 0$

31.
$$x = 4(1 + \cos \theta)$$
 and $y = 3(1 + \sin \theta)$ are the parametric equations of

1)
$$\frac{(x-4)^2}{16} + \frac{(y-3)^2}{9} = 1$$

1)
$$\frac{(x-4)^2}{16} + \frac{(y-3)^2}{9} = 1$$
 2) $\frac{(x-4)^2}{16} - \frac{(y-3)^2}{9} = 1$

3)
$$\frac{(x+4)^2}{16} + \frac{(y+3)^2}{9} = 1$$

4)
$$\frac{(x-3)^2}{9} + \frac{(y-4)^2}{16} = 1$$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 are in the ratio $3:2$, then $a:b$ is $=$

3)
$$\sqrt{3}:\sqrt{2}$$

4)
$$\sqrt{2}:1$$

33. The ellipse
$$\frac{x^2}{25} + \frac{y^2}{16} = 1$$
 and the hyperbola $\frac{x^2}{25} - \frac{y^2}{16} = 1$ have in common

- 1) centre and vertices only
- 2) centre, foci and vertices
- 3) centre, foci and directrices
- 4) centre only

34. If
$$\operatorname{Sec} \theta = m$$
 and $\operatorname{Tan} \theta = n$, then $\frac{1}{m} \left[(m+n) + \frac{1}{(m+n)} \right] =$

1) mn

3) 2 m

35. The value of
$$\frac{Sin 85^{\circ} - Sin 15^{\circ}}{Cos 65^{\circ}} =$$

- 36. From an aeroplane flying, vertically above a horizontal road, the angles of depression of two consecutive stones on the same side of the aeroplane are observed to be 30° and 60° respectively. The height at which the aeroplane is flying in km is
 - 1) 2

 $2) \quad \frac{2}{\sqrt{3}}$

3) $\frac{\sqrt{3}}{2}$

- 4) $\frac{4}{\sqrt{3}}$
- 37. If the angles of a triangle are in the ratio 3:4:5, then the sides are in the ratio
 - 1) 3:4:5.

2) $2:\sqrt{3}:\sqrt{3}+1$

- 3) $\sqrt{2}:\sqrt{6}:\sqrt{3}+1$
- 4) $2:\sqrt{6}:\sqrt{3}+1$
- **38.** If $Cos^{-1}x = \alpha$, (0 < x < 1) and $Sin^{-1}\left(2x\sqrt{1-x^2}\right) + Sec^{-1}\left(\frac{1}{2x^2-1}\right) = \frac{2\pi}{3}$,

then $Tan^{-1}(2x) =$

1) $\frac{\pi}{2}$

 $(2) \frac{\pi}{3}$

3) $\frac{\pi}{4}$

- 4) $\frac{\pi}{6}$
- **39.** If a > b > 0, then the value of $Tan^{-1}\left(\frac{a}{b}\right) + Tan^{-1}\left(\frac{a+b}{a-b}\right)$ depends on
 - 1) neither a nor b

2) a and not b

3) b and not a

- 4) both a and b
- 40. Which one of the following equations has no solution?
 - 1) $\sqrt{3} \sin \theta \cos \theta = 2$
- 2) $\cos \theta + \sin \theta = \sqrt{2}$

3) Cosec θ Sec $\theta = 1$

4) $Cosec \theta - Sec \theta = Cosec \theta \cdot Sec \theta$

 $\left(-\sqrt{3}+3i\right)\left(1-i\right)$

The complex number $\frac{(3+\sqrt{3}i)(i)(\sqrt{3}+\sqrt{3}i)}{(3+\sqrt{3}i)(i)(\sqrt{3}+\sqrt{3}i)}$ when represented in the Argand diagram lies

- 1) on the X-axis (Real axis)
- 2) on the Y-axis (Imaginary axis)
- 3) in the first quadrant
- 4) in the second quadrant

42. If $2x = -1 + \sqrt{3}i$, then the value of $(1 - x^2 + x)^6 - (1 - x + x^2)^6 =$

1) 0

2) . 64

3) - 64

4) 32

43. The modulus and amplitude of $(1+i\sqrt{3})^8$ are respectively

1) 256 and $8\frac{\pi}{3}$

2) 2 and $2 \frac{\pi}{3}$

(3) 256 and $\frac{2\pi}{3}$

4) 256 and $\frac{\pi}{3}$

44. The value of $\frac{Limit}{x \to 0} = \frac{5^x - 5^{-x}}{2x} =$

, 1) 2 Log 5

2)

3) (

4) Log 5

.45. Which one of the following is not true always?

- 1) If a function f(x) is continuous at x = a, then $\begin{cases} Limit \\ x \to a \end{cases}$ f(x) exists.
- 2) If f(x) and g(x) are differentiable at x = a, then f(x) + g(x) is also differentiable at x = a
- 3) If f(x) is continuous at x = a, then it is differentiable at x = a
- 4) If f(x) is not continuous at x = a, then it is not differentiable at x = a.

46. If $y = 1 + \frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3} + \dots$ to ∞ with |x| > 1 then $\frac{dy}{dx} = \frac{1}{x^3} + \frac{1}{x^3} + \dots$

1)
$$\frac{-y^2}{x^2}$$
 2) $\frac{y^2}{x^2}$.

$$2) \quad \frac{y^2}{x^2}$$

$$x^2y^2$$

4)
$$\frac{x^2}{v^2}$$

47. If f(x) and g(x) are two functions with $g(x) = x - \frac{1}{x}$ and $f(x) = x^3 - \frac{1}{x^3}$, then $f'(x) = x^3 - \frac{1}{x^3}$

1)
$$3x^2 + \frac{3}{x^4}$$

(2)
$$1 + \frac{1}{x^2}$$

3)
$$x^2 - \frac{1}{x^2}$$

4)
$$3x^2 - 3$$

The derivative of $a^{Sec x}$ w.r.t. $a^{Tan x}$ (a > 0) is

1)
$$a^{Sec x - Tan x}$$

2)
$$Sin x \ a^{Sec x - Tan x}$$

3)
$$Sin x a^{Tan x - Sec x}$$

4)
$$Sec x a^{Sec x - Tan x}$$

49. If Sin(x+y)+Cos(x+y)=Log(x+y), then $\frac{d^2y}{dx^2}=$

$$(2)_{1} - 1$$

4)
$$\frac{-y}{x}$$

If f(x) is a function such that f''(x) + f(x) = 0 and $g(x) = [f(x)]^2 + [f'(x)]^2$ and g(3) = 8, then g(8) =

3) 0

- If the curve $y = 2x^3 + ax^2 + bx + c$ passes through the origin and the tangents drawn to it at x = -1 and x = 2 are parallel to the X-axis, then the values of a, b and c are respectively.
 - i) 3, -12 and 0

 $(2)^{-}-3$, 12 and 0

- 3) -3, -12 and 0
- 4) 12, 3 and 0
- A circular sector of perimeter 60 metre with maximum area is to be constructed. The radius of the circular arc in metre must be
 - 1) 10

2) 15

3)

- 4) 20
- The tangent and the normal drawn to the curve $y = x^2 x + 4$ at P(1, 4) cut the X-axis at **53.** A and B respectively. If the length of the subtangent drawn to the curve at P is equal to the length of the subnormal, then the area of the triangle PAB in sq. units is
 - 1) 16

2). 8

3) 32

- **54.** $\int \frac{\left(x^3 + 3x^2 + 3x + 1\right)}{\left(x + 1\right)^5} dx =$
 - 1) $Tan^{-1}x + c$

3) $\frac{1}{5}Log(x+1)+c$

- $55. \quad \int \frac{Co \sec x}{Cos^2 \left(1 + Log \ Tan \frac{x}{2}\right)} dx =$
 - 1) $-Tan\left[1 + Log \ Tan \frac{x}{2}\right] + c$ 2) $Sec^2\left[1 + Log \ Tan \frac{x}{2}\right] + c$

 - 3) $Tan \left[1 + Log \ Tan \frac{x}{2} \right] + c$ 4) $Sin^2 \left[1 + Log \ Tan \frac{x}{2} \right] + c$

$$56. \quad \int \frac{dx}{x\sqrt{x^6 - 16}} =$$

1)
$$Sec^{-1}\left(\frac{x^3}{4}\right) + c$$

2)
$$\frac{1}{12} Sec^{-1} \left(\frac{x^3}{4} \right) + c$$

3)
$$Cosh^{-1}\left(\frac{x^3}{4}\right) + c$$

4)
$$\frac{1}{3} Sec^{-1} \left(\frac{x^3}{4} \right) + c$$

57. If $I_1 = \int_0^{\pi/2} x \sin x \, dx$ and $I_2 = \int_0^{\pi/2} x \cos x \, dx$, then which one of the following is true?

1)
$$I_1 = I_2$$

2)
$$I_1 + I_2 = 0$$

3)
$$I_1 = \frac{\pi}{2}I_2$$

4)
$$I_1 + I_2 = \frac{\pi}{2}$$

58. If f(x) is defined in [-2, 2] by $f(x) = 4x^2 - 3x + 1$ and $g(x) = \frac{f(-x) - f(x)}{(x^2 + 3)}$, then

$$\int_{-2}^{2} g(x) dx =$$

1) 24

2) 0

3) -48

4) 64

59. The area enclosed between the parabola $y = x^2 - x + 2$ and the line y = x + 2 in sq. units =

1)
$$\frac{4}{3}$$
 .

2) $\frac{2}{3}$

(3) $\frac{1}{3}$

4) $\frac{8}{3}$

60. The solution of the differential equation $e^{-x}(y+1) dy + (\cos^2 x - \sin 2x)y(dx) = 0$ subjected to the condition that y = 1 when x = 0 is

1) $(y+1)+e^x \cos^2 x = 2$

 $2) \quad y + Log \ y = e^x \cos^2 x$

3) $Log(y+1)+e^x Cos^2 x = 1$

 $4) \quad y + Log \ y + e^x \ Cos^2 x = 2$