		V	
WARNING		Ipractice or any attempt to com Examination will DISQUALIFY	
	PA	PER-II MATHEMATI	CS-2016
Version Code	B2	Question Booklet Serial Number :	6237916
Time : 150 N	linutes	Number of Questions : 120	Maximum Marks : 480
Name of Car	ndidate		
Roll Number			
Signature of Candidate			
	1.00	INSTRUCTIONS TO THE CANDI	DATE
received a Question B the Invigila 2. Please fill t above. Plea against item	Question E ooklet wit tor. THIS the items use also w 1 3 in the (shown in the OMR Answer Sho Booklet with a different Version Co h the same Version Code as that o IS VERY IMPORTANT. such as Name, Roll Number and S write Question Booklet Serial No. OMR Answer Sheet.	de, please get it replaced with a f the OMR Answer Sheet from Signature in the columns given given at the top of this page
suggested a Most Appr	nd given opriate A opriate A	let contains 120 questions. For ea against (A), (B), (C), (D) and (E) inswer . Mark the bubble containing nswer' in the OMR Answer Sheet,	of which only one will be the g the letter corresponding to the
penalization number of ONE mark	o formula wrong ans will be do	n order to discourage wild guessing based on the number of right any wers marked. Each correct answer educted for each incorrect answer. I be deemed as incorrect answer and	swers actually marked and the will be awarded FOUR marks. More than one answer marked
5. Please read	the instr	uctions given in the OMR Answe	er Sheet for marking answers.

SEAL

Sheet.

IMMEDIATELY AFTER OPENING THIS QUESTION BOOKLET, THE CANDIDATE SHOULD VERIFY WHETHER THE QUESTION BOOKLET ISSUED CONTAINS ALL THE 120 QUESTIONS IN SERIAL ORDER. IF NOT, REQUEST FOR REPLACEMENT.

DO NOT OPEN THE SEAL UNTIL THE INVIGILATOR ASKS YOU TO DO SO.

PLEASE ENSURE THAT THIS QUESTION BOOKLET CONTAINS 120 QUESTIONS SERIALLY NUMBERED FROM 1 TO 120. PRINTED PAGES : 32

1 3 2 1 If $\begin{bmatrix} 1 & x & 1 \end{bmatrix} \begin{bmatrix} 0 & 5 & 1 \\ 0 & 5 & 1 \end{bmatrix} = 0$, then the values of x are 1. 0 2 0 (A) 1,5 (B) -1,-5 (C) 1,6 (D) -1,-6 (E) 3,3 8 27 125 If $A = \begin{bmatrix} 2 & 3 & 5 \end{bmatrix}$, then the value of A^2 is equal to 2. 1 1 1 (A) 0 (B) 36 (C) 64 (D) 2400 (E) 3600 $\begin{bmatrix} x & 1 & -x \end{bmatrix}$ 3 0 1 If $A = \begin{bmatrix} 0 & 1 & -1 \end{bmatrix}$ and det $(A) = \begin{bmatrix} 2 & -1 & 2 \end{bmatrix}$, then the value of x is 3. x 0 7 0 0 3 (A) -3 (B) 3 (C) 2 (D) -8 (E) -2 The coefficient of x^2 in the expansion of the determinant 4. x^{2} $x^{3}+1$ $x^{5}+2$ $x^3 + 3$ $x^2 + x$ $x^3 + x^4$ is x+4 x^3+x^5 2^3 (A) -10 (B) -8 (C) -2 (D) -6 (E) 8

Space for rough work

Maths-II-B2/2016

5. Let
$$A = \begin{bmatrix} 1 & \frac{-1-i\sqrt{3}}{2} \\ \frac{-1+i\sqrt{3}}{2} & 1 \end{bmatrix}$$
. Then $A^{100} =$
(A) $2^{100}A$ (B) $2^{99}A$ (C) $2^{98}A$ (D) A (E) A^2
6. The least integer satisfying $\frac{396}{10} - \frac{19-x}{10} < \frac{376}{10} - \frac{19-9x}{10}$ is
(A) 1 (B) 2 (C) 3 (D) 4 (E) 5
7. If $|x-1|+|x-3| \le 8$, then the values of x lie in the interval
(A) $(-\infty, -2]$ (B) $[-2, 6]$ (C) $(-3, 7)$
(D) $(-2, \infty)$ (E) $[6, \infty)$
8. Let $p: 57$ is an odd prime number,
 $q: 4$ is a divisor of 12,
 $r: 15$ is the LCM of 3 and 5

be three simple logical statements. Which one of the following is true?

(A) $p \lor (\sim q \land r)$ (B) $\sim p \lor (q \land r)$ (C) $(p \land q) \lor \sim r$ (D) $(p \lor q) \land \sim r$ (E) $\sim p \land (\sim q \land r)$

Space for rough work

4

Let p, q, r be three simple statements. Then $\sim (p \lor q) \lor \sim (p \lor r) \equiv$ 9. (A) $(\neg p) \land (\neg q \lor \neg r)$ (B) $(\neg p) \land (q \lor r)$ (C) $p \land (q \lor r)$ (D) $p \lor (q \land r)$ (E) $(p \lor q) \land r$ 10. If p:3 is a prime number and q: one plus one is three, then the compound statement "It is not that 3 is a prime number or it is not that one plus one is three" is (B) $\sim (p \lor q)$ (C) p~~q (A) $\sim p \vee q$ (E) $p \vee \sim q$ (D) ~ p∨ ~ q The value of $\sin^2\frac{\pi}{8} + \sin^2\frac{3\pi}{8} + \sin^2\frac{5\pi}{8} + \sin^2\frac{7\pi}{8}$ is equal to 11. (A) $\frac{1}{8}$ (B) $\frac{1}{4}$ (C) $\frac{1}{2}$ (D) 1 (E) 2 The value of $\frac{\sqrt{3}}{\sin 15^\circ} - \frac{1}{\cos 15^\circ}$ is equal to 12. (A) $4\sqrt{2}$ (B) $2\sqrt{2}$ (C) $\sqrt{2}$ (D) $\frac{1}{\sqrt{2}}$ (E) $\frac{\sqrt{3}}{2}$ Space for rough work

5

Maths-II-B2/2016

13.	If sin x+co	os $x = \sqrt{2}$, the	$n \sin x \cos x =$		
	(A) 1	(B) $\frac{1}{2}$	(C) 2	(D) √2	(E) $\frac{1}{\sqrt{2}}$
14.	If $\tan \theta = \frac{1}{2}$	and $\tan \phi = \frac{1}{3}$, then $\tan(2\theta + \phi)$	=	
	(A) $\frac{3}{4}$	(B) $\frac{4}{3}$	(C) $\frac{1}{3}$	(D) 3	(E) $\frac{1}{2}$
15.	The value o	f x satisfying t	he equation tan ⁻¹	$x + \tan^{-1}\left(\frac{2}{3}\right) =$	$\tan^{-1}\left(\frac{7}{4}\right)$ is equal to
	(A) $\frac{1}{2}$	(B) $-\frac{1}{2}$	(C) $\frac{3}{2}$	(D) $-\frac{1}{3}$	(E) $\frac{1}{3}$
16.	If $\tan A - \tan A$	n B = x and c	$\cot B - \cot A = y,$	then $\cot(A-B)$	is
	(A) $\frac{1}{x-y}$	(B) $\frac{1}{x+y}$	(C) $\frac{1}{x} + y$	(D) $\frac{1}{x} - \frac{1}{y}$	(E) $\frac{1}{x} + \frac{1}{y}$
17.	If $\tan^{-1}x +$	$\tan^{-1} y = \frac{2\pi}{3},$	then $\cot^{-1}x + \cot^{-1}$	¹ y is equal to	
	(A) $\frac{\pi}{2}$	(B) $\frac{1}{2}$	(C) $\frac{\pi}{3}$	(D) $\frac{\sqrt{3}}{2}$	(E) π
.			Space for rough wo	rk	

Maths-II-B2/2016

6

If the orthocenter, centroid, incentre and circumcentre coincide in a triangle 18. ABC, and if the length of side AB is $\sqrt{75}$ units, then the length of the altitude of the triangle through the vertex A is

(A)
$$\sqrt{3}$$
 units
(B) 3 units
(C) $\frac{\sqrt{15}}{2}$ units
(D) $\frac{15}{2}$ units
(E) $\frac{\sqrt{5}}{2}$ units

If A(2,4) and B(6,10) are two fixed points and if a point P moves so that 19. $\angle APB$ is always a right angle, then the locus of P is

(A)
$$x^{2} + y^{2} + 8x + 14y + 52 = 0$$
 (B) $x^{2} + y^{2} - 8x + 14y - 52 = 0$
(C) $x^{2} + y^{2} + 8x - 14y + 52 = 0$ (D) $x^{2} + y^{2} - 8x - 14y - 52 = 0$
(E) $x^{2} + y^{2} - 8x - 14y + 52 = 0$

The points (-1, 0) and (-2, 1) are the two extremities of a diagonal of a 20. parallelogram. If (-6, 5) is the third vertex, then the fourth vertex of the parallelogram is

(A)	(2, -6)	(B)	(2, -5)	(C)	(3, -4)
(D)	(-3, 4)	(E)	(3, -5)		

The slope of the straight line $\frac{x}{10} - \frac{y}{4} = 3$ is 21.

(A) $\frac{5}{2}$ (B) $\frac{-5}{2}$ (C) $\frac{2}{5}$ (D) $\frac{-2}{5}$ (E) $\frac{3}{4}$

Space for rough work

7

Maths-II-B2/2016

al to

22. If y-intercept of the line 4x - ay = 8 is thrice its x-intercept, then the value of a is equal to

(A) $\frac{3}{4}$ (B) $\frac{4}{3}$ (C) $-\frac{3}{4}$ (D) $-\frac{4}{3}$ (E) $-\frac{2}{3}$

23. The equation of one of the straight lines passing through the point (0, 1) and is at a distance of $\frac{3}{5}$ units from the origin is

(A) 4x+3y=3(B) -x+y=1(C) x+y=1(D) 5x+4y=4(E) -5x+4y=4

24. The nearest point on the line x + y - 3 = 0 from the point (3, -2) is

(A) (3,5)	(B) (4,1)	(C) $(3, -5)$
(D) $(4, -1)$	(E) (5, -1)	

- 25. The image of the origin with respect to the line 4x+3y=25, is (A) (4,3) (B) (3,4) (C) (6,8) (D) (4,6) (E) (8,6)
- 26. If the area of the circle $4x^2 + 4y^2 + 8x 16y + \lambda = 0$ is 9π sq. units, then the value of λ is
 - (A) 4 (B) -4 (C) 16 (D) -16 (E) -8

Space for rough work

8

			5				a II III
	(A) 5	(B) 4	(C) $\frac{3}{2}$	(D)	2	(E) √5	
28.		ter of the circl				rd of anot	her circle
	C having c	entre (2, 1), th					
	(A) 2	(B) √3	(C) 3	(D)	√5	(E) 5	
29.		nily of conce rough (1, 1) is	ntric circles	$2(x^2+y^2)=k$; the ra	adius of t	he circle
		(B) 4	(C) 2	√2 (D)	1	(E) 3√	12
30.		a point on an y is $\frac{4}{5}$, then the the second					
30.	eccentricit	54	he distance o	of the point P	from the	directrix	is
30. 31.	eccentricit (A) $\frac{5}{8}$ If (-3, 0)	y is $\frac{4}{5}$, then the (B) $\frac{8}{5}$ is the vertex a	he distance o (C) 5	of the point P (D)	from the 8	directrix (E) 10	is
	eccentricit (A) $\frac{5}{8}$	y is $\frac{4}{5}$, then the (B) $\frac{8}{5}$ is the vertex and	he distance o (C) 5	of the point <i>P</i> (D) the directrix o	from the 8 f a parabo	directrix (E) 10	is

32. The foci of the ellipse $4x^2 + 9y^2 = 1$ are

(A)
$$\left(\pm \frac{\sqrt{3}}{2}, 0\right)$$
 (B) $\left(\pm \frac{\sqrt{5}}{2}, 0\right)$ (C) $\left(\pm \frac{\sqrt{5}}{3}, 0\right)$
(D) $\left(\pm \frac{\sqrt{5}}{6}, 0\right)$ (E) $\left(\pm \frac{\sqrt{5}}{4}, 0\right)$

33. The directrix of a parabola is x+8=0 and its focus is at (4,3). Then the length of the latus-rectum of the parabola is
(A) 5 (B) 9 (C) 10 (D) 12 (E) 24

34. If the eccentricity of the ellipse $ax^2 + 4y^2 = 4a$, (a < 4) is $\frac{1}{\sqrt{2}}$, then its semiminor axis is equal to (A) 2 (B) $\sqrt{2}$ (C) 1 (D) $\sqrt{3}$ (E) 3

35. The hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ passes through the point $(\sqrt{6}, 3)$ and the length of the latus rectum is $\frac{18}{5}$. Then the length of the transverse axis is equal to (A) 5 (B) 4 (C) 3 (D) 2 (E) 1

Space for rough work

36.	The angle	between \tilde{a} a	nd \vec{b} is $\frac{5\pi}{6}$ and	d the projecti	ion of \vec{a} on \vec{b} is
	$\frac{-9}{\sqrt{3}}$, then $ \dot{a} $	i is equal to			
	(A) 12	(B) 8	(C) 10	(D) 4	(E) 6
37.	The direction are	on cosines of th	ne straight line g	iven by the pla	anes $x=0$ and $z=0$
	(A) 1, 0, 0	(B) 0, 0, 1	(C) 1, 1, 0	(D) 0, 1, 0	(E) 0, 1, 1
38.	equal to				en the value of m is
	(A) -7	(B) –1	(C) 2	(D) 7	(E) –2
39.	Let $\vec{a} = 2\hat{i} + \hat{i}$	$-5\hat{j}-7\hat{k}, \ \vec{b}=\hat{l}$	$(+3\hat{j}+5\hat{k})$. Then	$(3\vec{a}-5\vec{b})\cdot(4\vec{a}$	$\times 5\vec{b}$ =
	(A) -7	(B) 0	(C) -13	(D) 1	(F) -8

40.	If $\vec{a} + 2\vec{b} - \vec{a}$	$\vec{c} = \vec{0}$ and $\vec{a} \times \vec{b}$	$+\vec{b}\times\vec{c}+\vec{c}\times\vec{a}=)$	$\bar{a} \times \bar{b}$, then the v	value of λ is equal to
-10.	(A) 5	(B) 4	(C) 2	(D) – 2	(E) – 4
41.	If $\vec{a} \cdot \vec{b} = 0$	and $\vec{a} + \vec{b}$ make	s an angle of 60	° with \vec{b} , then $ \vec{b} $	\vec{a} is equal to
	(A) 0	1 ((D) $\left \vec{b} \right $	(E) $\sqrt{3}\left \vec{b}\right $
42.		nd $\vec{a} - \vec{b}$ are pe	rpendicular and	$\vec{b} = 3\hat{i} - 4\hat{j} + 2$	\hat{k} , then $ \vec{a} $ is equal
	to (A) $\sqrt{41}$	1.50.50	(C) √19	(D) √29	(E) √31
43.	The straigh	that line $\vec{r} = (\hat{i} + \hat{j})$	$(\hat{j}+\hat{k})+\alpha(2\hat{i}-\hat{j})$	$+4\hat{k}$ meets the	xy plane at the point
	(A) (2,		(B) (3, 4,		C) $\left(\frac{1}{2}, \frac{3}{4}, 0\right)$
	(D) $\left(\frac{1}{2},\right.$	$\left(\frac{7}{4}, 0\right)$	(E) $\left(\frac{1}{2}, \frac{5}{4}\right)$, 0)	6 (A) - 1 (A)
			Space for rough	work	

.

44.	The equation of the plane passing through $(-1, 5, -7)$ and parallel to the plane
	2x-5y+7z+11=0, is
	(A) $\vec{r} \cdot (2\hat{i} - 5\hat{j} - 7\hat{k}) + 76 = 0$ (B) $\vec{r} \cdot (2\hat{i} - 5\hat{j} + 7\hat{k}) + 76 = 0$
	(C) $\vec{r} \cdot (2\hat{i} - 5\hat{j} + 7\hat{k}) + 75 = 0$ (D) $\vec{r} \cdot (2\hat{i} - 5\hat{j} + 7\hat{k}) + 65 = 0$
	(E) $\vec{r} \cdot (2\hat{i} - 5\hat{j} - 7\hat{k}) + 55 = 0$
45.	The angle subtended at the point $(1, 2, 3)$ by the points $P(2, 4, 5)$ and $Q(3, 3, 1)$, is
	(A) 90° (B) 60° (C) 30° (D) 0° (E) 45°
46.	If the two lines $\frac{x-1}{2} = \frac{1-y}{-a} = \frac{z}{4}$ and $\frac{x-3}{1} = \frac{2y-3}{4} = \frac{z-2}{2}$ are perpendicular,
	then the value of a is equal to (A) -4 (B) 5 (C) -5 (D) 4 (E) -2
	(A) -4 (B) 5 (C) -5 (D) 4 (E) -2
47.	If the line $\frac{x+1}{2} = \frac{y+1}{3} = \frac{z+1}{4}$ meets the plane $x + 2y + 3z = 14$ at P, then the
	distance between P and the origin is
	(A) $\sqrt{14}$ (B) $\sqrt{15}$ (C) $\sqrt{13}$ (D) $\sqrt{12}$ (E) $\sqrt{17}$
1	Space for rough work

Maths-II-B2/2016

The point of intersection of the straight lines

$\vec{r} = (3\hat{i} - 4\hat{j} + 5\hat{k}) + \lambda(-$	$-\hat{i} - 2\hat{j} + 2\hat{k}$ and $\frac{3-x}{-1} = \frac{y}{2}$	$\frac{+4}{2} = \frac{z-5}{7}$ is
(A) (-3, -4, -5)	(B) (-3, 4, 5)	(C) (-3, 4, -5)
(D) (-3, -4, 5)	(E) (3, -4, 5)	

49. The vector equation of the straight line $\frac{x-2}{1} = \frac{y}{-3} = \frac{1-z}{2}$ is (A) $\vec{r} = 2\hat{i} + \hat{k} + t(\hat{i} + 3\hat{j} + 2\hat{k})$ (B) $\vec{r} = 2\hat{i} - \hat{k} + t(\hat{i} - 3\hat{j} - 2\hat{k})$ (C) $\vec{r} = 2\hat{i} + \hat{k} + t(\hat{i} - 3\hat{j} + 2\hat{k})$ (D) $\vec{r} = 2\hat{i} - \hat{j} + t(\hat{i} - 3\hat{j} - 2\hat{k})$ (E) $\vec{r} = 2\hat{i} + \hat{k} + t(\hat{i} - 3\hat{j} - 2\hat{k})$

50. The straight line $\vec{r} = (\hat{i} + \hat{j} + 2\hat{k}) + t(2\hat{i} + 5\hat{j} + 3\hat{k})$ is parallel to the plane $\vec{r} \cdot (2\hat{i} + \hat{j} - 3\hat{k}) = 5$. Then the distance between the straight line and the plane is

(A)
$$\frac{9}{\sqrt{14}}$$
 (B) $\frac{8}{\sqrt{14}}$ (C) $\frac{7}{\sqrt{14}}$ (D) $\frac{6}{\sqrt{14}}$ (E) $\frac{5}{\sqrt{14}}$

 Two fair dice are rolled. Then the probability of getting a composite number as the sum of face values is equal to

(A)
$$\frac{7}{12}$$
 (B) $\frac{5}{12}$ (C) $\frac{1}{12}$ (D) $\frac{3}{4}$ (E) $\frac{2}{3}$

Space for rough work

equal to (A) 6	(B)	7	(C)	12	(D)	14	(E)	25
each, 2	ass, in an students s If the class	cored	zero and	the ave	erage of t	he ren	naining s	students
(A) 44	4 (B)	40	(C)	38	(D)	34	(E)	32
100 - 10 - 10 - 10 - 10 - 10 - 10 - 10	contains and the provident of the contains of the contained of the contained of the contained of the contains and the contains of the contains							are drav
(A) $\frac{4}{6}$	$\frac{7}{6}$ (B)	$\frac{23}{33}$	(C)	$\frac{47}{132}$	(D)	$\frac{47}{33}$	(E)	$\frac{70}{33}$
	are 5 posi at randor				52			
	e number i	is						
negativ	re number i $\frac{1}{4}$ (B)	22	(C)	$\frac{16}{35}$	(D)	$\frac{15}{34}$	(E)	$\frac{16}{33}$
(A) $\frac{1}{3}$	1 <u>4</u> (B)	$\frac{17}{33}$	100	16 35 or rough v		- China		
(A) $\frac{1}{3}$		$\frac{17}{33}$	Space fo	10.00	vork	- tinu	- 1 - 1	16 33
(A) $\frac{1}{3}$	1 <u>4</u> (B)	$\frac{17}{33}$	Space fo	r rough v	vork	- tinu	- 1 - 1	10 14
(A) $\frac{1}{3}$	1 <u>4</u> (B)	$\frac{17}{33}$	Space fo	or rough v	vork	- tinu	- 1 - 1	10 14
(A) $\frac{1}{3}$	1 <u>4</u> (B)	$\frac{17}{33}$	Space fo	or rough v	vork	- tinu	- 1 - 1	10 14
(A) $\frac{1}{3}$	1 <u>4</u> (B)	$\frac{17}{33}$	Space fo	or rough v	vork	- tinu	- 1 - 1	10 14
(A) $\frac{1}{3}$	1 <u>4</u> (B)	$\frac{17}{33}$	Space fo	or rough v	vork	- tinu	- 1 - 1	10 14
(A) $\frac{1}{3}$	1 <u>4</u> (B)	$\frac{17}{33}$	Space fo	or rough v	vork	- tinu	- 1 - 1	10 14

Maths-II-B2/2016

56. The value of
$$\lim_{x \to 0} \frac{\cot 4x}{\csc 3x}$$
 is equal to
(A) $\frac{4}{3}$ (B) $\frac{3}{4}$ (C) $\frac{2}{3}$ (D) $\frac{3}{2}$ (E) 0
57. Let $f(x) = \begin{cases} \cos x & \text{if } x \ge 0 \\ -\cos x & \text{if } x < 0 \end{cases}$
Which one of the following statements is **not true**?
(A) $f(x)$ is continuous at $x = 1$ (B) $f(x)$ is continuous at $x = -1$
(C) $f(x)$ is continuous at $x = 2$ (D) $f(x)$ is continuous at $x = -2$
(E) $f(x)$ is continuous at $x = 0$
58. The value of $\lim_{n \to \infty} \frac{{}^{n}C_{3} - {}^{n}P_{3}}{n^{3}}$ is equal to
(A) $\frac{-5}{6}$ (B) $\frac{5}{6}$ (C) $\frac{1}{6}$ (D) $-\frac{1}{6}$ (E) $\frac{2}{3}$
59. If $f(x) = 3x + 5$ and $g(x) = x^{2} - 1$, then $(f \circ g)(x^{2} - 1)$ is equal to
(A) $\frac{3x^{4} - 3x + 5}{(D) 6x^{4} - 6x + 5}$ (E) $3x^{2} + 6x + 4$

Maths-II-B2/2016

16

60. The period of the function $f(x) = \tan(4x-1)$ is (A) π (B) $\frac{\pi}{2}$ (C) 2π (D) $\frac{\pi}{4}$ (E) $\frac{3\pi}{4}$ 61. If $2^x + 2^y = 2^{x+y}$, then the value of $\frac{dy}{dx}$ at (1, 1) is equal to (A) -2 (B) -1 (C) 0 (D) 1 (E) 2 62. If $f(x) = \frac{\sin^{-1}x}{\sqrt{1-x^2}}$, then the value of $(1-x^2)f'(x) - xf(x)$ is (A) 0 (B) 1 (C) 2 (D) 3 (E) 4 63. If $f(x) = \left(\frac{x}{2}\right)^{10}$, then $f(1) + \frac{f'(1)}{12} + \frac{f''(1)}{12} + \frac{f'''(1)}{12} + \dots + \frac{f^{(10)}(1)}{10}$ is equal to (A) 1 (B) 10 (C) 11 (D) 512 (E) 1024 Space for rough work

64. If
$$f'(4) = 5$$
, $g'(4) = 12$, $f(4) g(4) = 2$ and $g(4) = 6$, then $\left(\frac{f}{g}\right)'(4) =$
(A) $\frac{5}{36}$ (B) $\frac{11}{18}$ (C) $\frac{23}{36}$ (D) $\frac{13}{18}$ (E) $\frac{19}{36}$
65. If the derivative of $(ax-5)e^{3x}$ at $x = 0$ is -13, then the value of a is equal to
(A) 8 (B) -5 (C) 5 (D) -2 (E) 2
66. Let $y = \tan^{-1}(\sec x + \tan x)$. Then $\frac{dy}{dx} =$
(A) $\frac{1}{4}$ (B) $\frac{1}{2}$ (C) $\frac{1}{\sec x + \tan x}$
(D) $\frac{1}{\sec^2 x}$ (E) $\frac{1}{\tan x}$
67. If $s = \sec^{-1}\left(\frac{1}{2x^2-1}\right)$ and $t = \sqrt{1-x^2}$, then $\frac{ds}{dt}$ at $x = \frac{1}{2}$ is
(A) 1 (B) 2 (C) -2 (D) 4 (E) -4

deleted The minimum value of $2x^3 - 9x^2 + 12x + 4$ is 68 (E) 8 (D) 7 (C) 6 (B) 5 (A) 4 The slope of the curve $y = e^x \cos x$, $x \in (-\pi, \pi)$ is maximum at 69. (A) $x = \frac{\pi}{2}$ (B) $x = -\frac{\pi}{2}$ (C) $x = \frac{\pi}{4}$ (D) x = 0 (E) $x = \frac{\pi}{3}$ If y = f(x) is continuous on [0,6], differentiable on (0, 6), f(0) = -2 and 70. f(6) = 16, then at some point between x = 0 and x = 6, f'(x) must be equal to (E) 18 (D) 14 (C) 3 (B) -3 (A) -18 The equation of the tangent to the curve $y = x^3 - 6x + 5$ at (2, 1) is 71. (C) 6x + y + 11 = 0(B) 6x - y - 13 = 0(A) 6x - y - 11 = 0101 (E) x - 6y - 11 = 0(D) 6x - y + 11 = 0Space for rough work [P.T.O. 19 Maths-II-B2/2016

- 72. Let $f(x) = 2x^3 5x^2 4x + 3$, $\frac{1}{2} \le x \le 3$. The point at which the tangent to the curve is parallel to the x-axis, is
 - (A) (1, -4) (B) (2, -9) (C) (2, -4)(D) (2, -1) (E) (2, -5)

73. Two sides of a triangle are 8 m and 5 m in length. The angle between them is increasing at the rate 0.08 rad/sec. When the angle between the sides of fixed length is π/3, the rate at which the area of the triangle is increasing is,
(A) 0.4 m²/sec
(B) 0.8 m²/sec
(C) 0.6 m²/sec

(D) $0.04 \text{ m}^2/\text{sec}$ (E) $0.08 \text{ m}^2/\text{sec}$

74. If $y = 8x^3 - 60x^2 + 144x + 27$ is a strictly decreasing function in the interval (A) (-5, 6) (B) $(-\infty, 2)$ (C) (5, 6) (D) $(3, \infty)$ (E) (2, 3)

- 75. $\int (\sec x)^m (\tan^3 x + \tan x) dx$ is equal to
 - (A) $\sec^{m+2} x + C$ (B) $\tan^{m+2} x + C$ (C) $\frac{\sec^{m+2} x}{m+2} + C$ (D) $\frac{\tan^{m+2} x}{m+2} + C$ (E) $\frac{\sec^{m+1} x}{m+1} + C$

Space for rough work

Maths-II-B2/2016

20

76.
$$\int \frac{1}{7} \sin\left(\frac{x}{7} + 10\right) dx \text{ is equal to}$$
(A) $\frac{1}{7} \cos\left(\frac{x}{7} + 10\right) + C$ (B) $-\frac{1}{7} \cos\left(\frac{x}{7} + 10\right) + C$ (C) $-\cos\left(\frac{x}{7} + 10\right) + C$
(D) $-7 \cos\left(\frac{x}{7} + 10\right) + C$ (E) $\cos(x + 70) + C$
77. $\int \left(\frac{x - a}{x} - \frac{x}{x + a}\right) dx$ is equal to
(A) $\log\left|\frac{x + a}{x}\right| + C$ (B) $a \log\left|\frac{x + a}{x}\right| + C$ (C) $a \log\left|\frac{x}{x + a}\right| + C$
(D) $\log\left|\frac{x}{x + a}\right| + C$ (E) $a \log\left|\frac{x - a}{x + a}\right| + C$
(D) $\log\left|\frac{x}{x + a}\right| + C$ (E) $a \log\left|\frac{x - a}{x + a}\right| + C$
(D) $\log\left|\frac{x}{x + a}\right| + C$ (E) $a \log\left|\frac{x - a}{x + a}\right| + C$
78. $\int x^4 e^{x^5} \cos\left(e^{x^5}\right) dx$ is equal to
(A) $\frac{1}{3} \sin\left(e^{x^5}\right) + C$ (B) $\frac{1}{4} \sin\left(e^{x^5}\right) + C$ (C) $\frac{1}{5} \sin\left(e^{x^5}\right) + C$
(D) $\sin\left(e^{x^5}\right) + C$ (E) $2 \sin\left(e^{x^5}\right) + C$

Maths-II-B2/2016

79.
$$\int \frac{2x + \sin 2x}{1 + \cos 2x} dx \text{ is equal to}$$
(A) $x + \log|\tan x| + C$ (B) $x \log|\tan x| + C$ (C) $x \tan x + C$
(D) $x + \tan x + C$ (E) $x \sec x + C$
80.
$$\int \frac{1}{\sin x \cos x} dx \text{ is equal to}$$
(A) $\log|\tan x| + C$ (B) $\log|\sin 2x| + C$ (C) $\log|\sec x| + C$
(D) $\log|\cos x| + C$ (E) $\log|\sin x| + C$
81.
$$\int \frac{1}{8\sin^2 x + 1} dx \text{ is equal to}$$
(A) $\sin^{-1}(\tan x) + C$ (B) $\frac{1}{3}\sin^{-1}(\tan x) + C$ (C) $\frac{1}{3}\tan^{-1}(3\tan x) + C$
(D) $\tan^{-1}(3\tan x) + C$ (E) $\sin^{-1}(3\tan x) + C$
82.
$$\int \frac{\pi/2}{0} \log\left(\frac{\cos x}{\sin x}\right) dx \text{ is equal to}$$
(A) $\frac{\pi}{2}$ (B) $\frac{\pi}{4}$ (C) π (D) 2π (E) 0

Maths-II-B2/2016

22

83.	The value of $\int_{1}^{2} 4x^{2} x dx$ is equal to
113	(A) 17 (B) 16 (C) 15 (D) 14 (E) 13
84.	The area of the region bounded by $y^2 = 16 - x^2$, $y = 0$, $x = 0$ in the first quadrant is (in square units)
	(A) 8π (B) 6π (C) 2π (D) 4π (E) $\frac{\pi}{2}$
85.	The value of $\int_{2}^{4} (x-2)(x-3)(x-4) dx$ is equal to
	(A) $\frac{1}{2}$ (B) 2 (C) 3 (D) $\frac{1}{3}$ (E) 0
86.	The area bounded by the lines $y-2x=2$, $y=4$ and the y-axis is equal to
	(in square units) (A) 1 (B) 4 (C) 0 (D) 3 (E) 2
87.	The general solution of the differential equation $(x + y + 3)\frac{dy}{dx} = 1$ is
	(A) $x+y+3=Ce^{y}$ (B) $x+y+4=Ce^{y}$ (C) $x+y+3=Ce^{-y}$

(E) $x+y+4e^y=C$

Maths-II-B2/2016

(D) $x + y + 4 = Ce^{-y}$

23

88. The differential equation representing the family of curves $y^2 = a(ax+b)$ where a and b are arbitrary constants, is of

- (A) order 1, degree 1
- (B) order 1, degree 3(E) order 2, degree 1

(C) order 2, degree 3

(D) order 1, degree 4

89. The solution of the differential equation $\frac{x\frac{dy}{dx} - y}{\sqrt{x^2 - y^2}} = 10x^2$ is

(A)
$$\sin^{-1}\left(\frac{y}{x}\right) - 5x^2 = C$$
 (B) $\sin^{-1}\left(\frac{y}{x}\right) = 10x^2 + C$ (C) $\frac{y}{x} = 5x^2 + C$
(D) $\sin^{-1}\left(\frac{y}{x}\right) = 10x^2 + Cx$ (E) $\sin^{-1}\left(\frac{y}{x}\right) + 5x^2 = C$

90. The general solution of the differential equation $x dy - y dx = y^2 dx$ is

(A) $y = \frac{x}{C-x}$ (B) $x = \frac{2y}{C+x}$ (C) y = (C+x)(2x)(D) $y = \frac{2x}{C+x}$ (E) $x = \frac{y}{C-x}$

Space for rough work

	(A) 1 (B) 4 (C) 3 (D) 2 (E) 5 Space for rough work
94.	If $f\left(\frac{x+1}{2x-1}\right) = 2x$, $x \in \mathbb{N}$, then the value of $f(2)$ is equal to (A) $1 = (\mathbb{R}) (\mathbb{A}) (\mathbb{C}) (\mathbb{C}) (\mathbb{A}) (\mathbb{C}) (\mathbb{C}$
	are (A) 0, 2 (B) 1, 3 (C) 0, ± 3 (D) 1, ± 2 (E) 0, $\pm \sqrt{3}$
93.	Let $f(x) = x^3$ and $g(x) = 3^x$. The values of a such that $g(f(a)) = f(g(a))$
	(A) (0,3) (B) $(-\infty,3)$ (C) $(-\infty,\infty)$ (D) $(3,\infty)$ (E) $(-3,3)$
92.	The domain of the function $f(x) = \begin{cases} (x^2 - 9)/(x - 3), & \text{if } x \neq 3 \\ 6, & \text{if } x = 3 \end{cases}$ is
	to (A) 81 (B) 512 (C) 216 (D) 64 (E) 243
91.	If * is the operation defined by $a * b = a^b$ for $a, b \in \mathbb{N}$, then $(2*3)*2$ is equal

95. If $A \setminus B = \{a, b\}$, $B \setminus A = \{c, d\}$ and $A \cap B = \{e, f\}$, then the set B is equal to (A) $\{a, b, c, d\}$ (B) $\{e, f, c, d\}$ (C) $\{a, b, e, f\}$ (D) $\{c, d, a, e\}$ (E) $\{d, e, a, b\}$

96. The function $f: A \to B$ given by $f(x) = x, x \in A$, is one to one but not onto. Then (A) $B \subset A$ (B) A = B (C) $A' \subset B'$ (D) $A \subset B$ (E) $A \cap B = \emptyset$ $=\frac{1+\sin\frac{\pi}{3}+i\cos\frac{\pi}{3}}{1+\sin\frac{\pi}{3}-i\cos\frac{\pi}{3}}$ is The principal argument of the complex number z = -97. (B) $\frac{\pi}{6}$ (C) $\frac{2\pi}{3}$ (A) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$ (E) $\frac{\pi}{4}$ If $\frac{(1+i)(2+3i)(3-4i)}{(2-3i)(1-i)(3+4i)} = a+ib$, then $a^2+b^2 =$ 98. (A) 132 (B) 25 (C) 144 (D) 128 (E) 1

Space for rough work

	then arg z =		-				#	
	(Α) π	(B) $\frac{\pi}{2}$	(C) $\frac{\pi}{4}$	(D)	$\frac{\pi}{6}$	(E)	$\frac{\pi}{8}$	
		-						
00.			$+ \ln(z^2)$ is equa					
	(A) 1	(B) –1	(C) 2	(D)	-2	(E)	3	
01.	If $ z+1 < z $	z-1, then z lie	es					
	(A) on the	x-axis	(B) on the y-a	axis	(C)	in the r	region	x < 0
	(D) in the	region $y > 0$	(E) in the reg	x > y	,			
	1 21		. nome of					
02.	If $\left z - \frac{s}{z}\right = 2$	2, then the grea	atest value of $ z $	is				
	(A) 1		(C) 3	III. 1. TAMES IN COMMUNICATION OF COMMUNICATIONO OF COMUNICATIONO OF COMUNICATI	4	(E)	5	
1	100		Space for rough w	ork	11) 11		0	

103. If the roots of the quadratic equation $mx^2 - nx + k = 0$ are $\tan 33^\circ$ and $\tan 12^\circ$, then the value of $\frac{2m+n+k}{m}$ is equal to (A) 0 (B) 1 (C) 2 (D) 3 (E) 4

104. If α and β are the roots of $4x^2 + 2x - 1 = 0$, then $\beta =$ (A) $-\frac{1}{4\alpha}$ (B) $-\frac{1}{2\alpha}$ (C) $-\frac{1}{\alpha}$ (D) $-\frac{1}{3\alpha}$ (E) $\frac{1}{\alpha}$

105. If α and α^2 are the roots of the equation $x^2 - 6x + c = 0$, then the positive value of c is (A) 2 (B) 3 (C) 4 (D) 9 (E) 8

106. If one of the roots of the quadratic equation $ax^2 - bx + a = 0$ is 6, then value of $\frac{b}{a}$ is equal to (A) $\frac{1}{6}$ (B) $\frac{11}{6}$ (C) $\frac{37}{6}$ (D) $\frac{6}{11}$ (E) $\frac{6}{37}$

Space for rough work

If the equation $2x^2 + (a+3)x + 8 = 0$ has equal roots, then one of the values of 107. ais (A) -9 (B) -5 (C) -11 (D) 11 (E) 9 If 6th term of a G.P. is 2, then the product of first 11 terms of the G.P. is equal 108. to (A) 512 (C) 2048 (D) 256 (E) 32 (B) 1024 109. If the produce of five consecutive terms of a G.P. is $\frac{243}{32}$, then the middle term is (A) $\frac{2}{3}$ (B) $\frac{3}{2}$ (C) $\frac{4}{3}$ (D) $\frac{3}{4}$ (E) 1 110. If a_1, a_2, a_3, a_4 are in A.P., then $\frac{1}{\sqrt{a_1} + \sqrt{a_2}} + \frac{1}{\sqrt{a_2} + \sqrt{a_3}} + \frac{1}{\sqrt{a_3} + \sqrt{a_4}} =$ (A) $\frac{\sqrt{a_4} - \sqrt{a_1}}{a_3 - a_2}$ (B) $\frac{a_4 - a_1}{a_3 - a_2}$ (C) $\frac{a_3 - a_2}{\sqrt{a_4} - \sqrt{a_1}}$ (D) $\frac{a_1 - a_4}{a_3 - a_1}$ (E) $\frac{a_5 - a_0}{a_1 - a_4}$

Space for rough work

Maths-II-B2/2016

- 111. If $a_1, a_2, a_3, \dots, a_{20}$ are in A.P. and $a_1 + a_{20} = 45$, then $a_1 + a_2 + a_3 + \dots + a_{20}$ is equal to (A) 90 (B) 900 (C) 350 (D) 450 (E) 730
- 112. Sum of the series

 1(1)+2(1+3)+3(1+3+5)+4(1+3+5+7)+...+10(1+3+5+7+...+19) is equal to
 (A) 385 (B) 1025 (C) 1125 (D) 2025 (E) 3025
- 113. In an A.P., the 6th term is 52 and the 11th term is 112. Then the common difference is equal to
 (A) 4 (B) 20 (C) 12 (D) 8 (E) 6
- 114. If the coefficients of x^3 and x^4 in the expansion of $(3+kx)^9$ are equal, then the value of k is
 - (A) 3 (B) $\frac{1}{3}$ (C) 2 (D) $\frac{1}{2}$ (E) 1
- 115. The total number of 7 digit positive integral numbers with distinct digits that can be formed using the digits 4, 3, 7, 2, 1, 0, 5 is

(A) 4320 (B) 4340 (C) 4310 (D) 4230	(E) 4220
-------------------------------------	----------

Maths-II-B2/2016

30

116. If " $P_4 = 5("P_3)$, then the value of *n* is equal to (A) 5 (B) 6 (C) 7 (D) 8 (E) 9 117. The remainder when 2^{2016} is divided by 63, is (A) 1 (C) 17 (B) 8 (D) 32 (E) 61 118. If ${}^{n}C_{2} + {}^{n}C_{3} = {}^{6}C_{3}$ and ${}^{n}C_{x} = {}^{n}C_{3}$, $x \neq 3$, then the value of x is equal to (A) 5 (B) 4 (C) 2 (D) 6 (E) 1 119. If $\sum_{k=0}^{18} \frac{k}{{}^{18}C_k} = a \sum_{k=0}^{18} \frac{1}{{}^{18}C_k}$, then the value of *a* is equal to (A) 3 (B) 9 (C) 6 (D) 18 (E) 36 120. If the square of the matrix $\begin{pmatrix} a & b \\ a & -a \end{pmatrix}$ is the unit matrix, then b is equal to (A) $\frac{a}{1+a^2}$ (B) $\frac{1-a^2}{a}$ (C) $\frac{1+a^2}{a}$ (D) $\frac{a}{1-a^2}$ (E) $1+a^2$

Space for rough work

Maths-II-B2/2016