WARNING	Any m the Exa	alpractic	e or any attempt to commi n will DISQUALIFY THE	t any kind of malpractice
L. The ax		and the second	– II MATHEMATIC	CANDIDATE.
Version Code	B 1	Questio	on Booklet	6127980
Time: 150 M	inutes	Nui	mber of Questions : 120	
Name of the (Candida	te	Questions : 120	Maximum Marks : 480
Roll Number				
Signature of th	e Candio	date		
			UCTIONS TO CANDIDAT	
Answer Shee Please fill the above. Please against item 3 This Question suggested and 'Most Approp the 'Most App Black Ball Po Negative Mar to penalization number of wro ONE mark will against a questi Please read the Candidates are Answer Sheet. MMEDIATELY OULD VERIF QUESTIONS	t from the items s also write in the C Bookled given a priate A propriate print Pen king: In formula ng answ l be dedu ion will the advised AFTER Y WHET IN SER	te Invigila uch as Na ite Questio OMR Answer et contain gainst (A) nswer.' N e Answer' only. order to a based on er marked ucted for e be deemed etions in to d to stric HER THE IAL ORDI	wh in the OMR Answer S ooklet with a different Ve oklet with the same Versic ator. THIS IS VERY IMPO ame, Roll Number and Signa on Booklet Serial Number g wer Sheet. Is 120 questions. For each (), (B), (C), (D), and (E) of v Mark the bubble containing the in the OMR Answer Sheet discourage wild guessing the the number of right answers d. Each correct answer will be each incorrect answer and will the OMR Answer Sheet for the OMR Answer Sheet for thy follow the instruction G THE QUESTION BOOKLET CO ER. IF NOT, REQUEST FOR TIL THE INVIGILATOR ASK	A part of Code as that of OMR PRTANT. ature in the columns given iven at the top of this page question five answers are which only one will be the the letter corresponding to by using either Blue or the score will be subjected s actually marked and the be awarded FOUR marks. than one answer marked ll be negatively marked. or marking the answers. contained in the OMR ET, THE CANDIDATE INTAINS ALL THE 120

SEAL

PLEASE ENSURE THAT THIS QUESTION BOOKLET CONTAINS 120 QUESTIONS SERIALLY NUMBERED FROM 1 TO 120. PRINTED PAGES 32.

1.	The axis of the parabola x^2	+6x+4y+5=0 is	
	(A) $x = 0$	(B) $y = 1$	(C) $x + 3 = 0$
	(D) $y = 4$	(E) $y + 2 = 0$	
			1)2
2.	The distance between the fo	ci of the ellipse $\frac{(x+2)^2}{9} + \frac{(y)^2}{9}$	$\frac{(-1)^2}{4} = 1$ is
	(A) $\sqrt{5}$	(B) $2\sqrt{5}$	(C) $3\sqrt{5}$
	(D) $9\sqrt{5}$	(E) $7\sqrt{5}$	$\left(A \right) = \left\{ A \right\}$
3.	The value of k , if the circle	es $2x^2 + 2y^2 - 4x + 6y = 3$ ar	$d x^2 + y^2 + kx + y = 0$
· .	cut orthogonally is		
	(A) 2	(B) 3	(C) 4
	(D) 5	(E) 1	
4.	The circle passing through	(1, -2) and touching the x-ax	xis at (3, 0) also passes
	through the point		
	(A) (2, -5)	(B) (-5, -2)	(C) (-2, 5)
	(D) (-5, 2)	(E) (5, -2)	
5.	If α and β are the roots of th	e equation $x^2 + \alpha x + \beta = 0$, the	en
	(A) $\alpha = -1, \beta = -2$	(B) $\alpha = 0, \beta = 1$	(C) $\alpha = -2, \beta = 0$

(II) $\alpha = 1, \beta = 2$ (B) $\alpha = 0, \beta = 1$ (C) $\alpha = 2, \beta = 1$ (D) $\alpha = -2, \beta = 1$ (E) $\alpha = 1, \beta = -2$

Space for rough work

Maths-II-B1/2019

6. If
$$\vec{a} = (1, 1, -1), \vec{b} = (-1, 2, 1)$$
 and $\vec{c} = (-1, 2, -1)$, then $|(\vec{a} + \vec{b}) \times (\vec{b} + \vec{c})|$ is
(A) 2 (B) 4 (C) 6
(D) 8 (E) 10
7. A particle is displaced from the point (2, 1, -1) to the point (4, 3, -4) by the force $2i + 4j - 5k$. Then the work done by the force is
(A) 16 (B) 27 (C) 36
(D) 48 (E) 52
8. The value of *m* if the vectors $4i - 3j + 5k$ and $mi - 4j + k$ are perpendicular, is
(A) $\frac{-15}{4}$ (B) $\frac{-17}{4}$ (C) $\frac{-19}{4}$
(D) 0 (E) $\frac{11}{4}$
9. If A and B are two matrices such that $3A + B = \begin{pmatrix} 9 & 11 & 3 \\ 12 & 14 & 19 \end{pmatrix}$
and $2A - 3B = \begin{pmatrix} -16 & 11 & 2 \\ -3 & -22 & 9 \end{pmatrix}$. Then the matrix B is
(A) $\begin{pmatrix} 6 & -1 & 0 \\ 3 & 8 & 1 \end{pmatrix}$ (B) $\begin{pmatrix} 3 & -1 & 0 \\ 2 & 1 & 1 \end{pmatrix}$ (C) $\begin{pmatrix} 8 & 0 & -1 \\ 3 & 1 & 2 \end{pmatrix}$
(D) $\begin{pmatrix} 5 & 3 & -1 \\ 0 & 1 & 2 \end{pmatrix}$ (E) $\begin{pmatrix} 1 & -3 & 4 \\ 3 & 0 & 2 \end{pmatrix}$

a $|a^3+1 a^2|$ 10. If a, b and c are distinct reals and the determinant $|b^3+1|$ b^2 |b| = 0, then the $c^{3}+1$ c^2 C product abc is (A) -1 (B) 0 (C) 1 (D) 2 (E) 3 11. If (x, y, z) is the solution of the equations x - y - 2z = 32x + y + 4z = 54x - y - 2z = 11then the value of y equals (A) 0 (C) -1/3(B) -1/2 (D) -1/4 (E) -1 **12.** If $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is the inverse of the matrix $\begin{pmatrix} 1 & 5 \\ 7 & -3 \end{pmatrix}$, then d equals (A) -1/38 (B) -7/38 (C) 3/38 (D) 5/38 (E) 9/38 13. If $f: \mathbb{R} \to \mathbb{R}$ is a function defined by $f(x) = \sin x$, then which of the following is true? (A) f is 1-1 but not onto (B) f is onto but not 1-1 (C) f is both 1-1 and onto

(D) f is neither 1-1 nor onto

(E) f has finite number of zeros

Space for rough work

Maths-II-B1/2019

[P.T.O.

5

14. Consider the set $M = \{1, 2, 3\}$ along with the relation $R = \{(1, 2), (1, 1), (3$ (3, 4), (3, 3), (4, 3). Which of the following statements is true? (A) The relation is symmetric but not transitive (B) The relation is transitive but not symmetric (C) The relation is both symmetric and transitive (D) The relation is neither symmetric nor transitive (E) The relation is reflexive 15. Let $z_1 = 1 + i\sqrt{3}$ and $z_2 = 1 + i$, then $arg\left(\frac{z_1}{\overline{z_2}}\right)$ is (A) $\frac{5\pi}{12}$ (B) $\frac{7\pi}{12}$ (C) $\frac{11\pi}{12}$ (D) $\frac{3\pi}{12}$ Not defined (E) 16. The complex number $\sqrt{2} \left[\sin \frac{\pi}{8} + i \cos \frac{\pi}{8} \right]^6$ represents (A) -i(B) *i* (C) 1-(E) 1 + 2i(D) 1 + i17. If $z^2 + z + 1 = 0$, where z is a complex number, then the value of $\left(z+\frac{1}{z}\right)^2 + \left(z^2+\frac{1}{z^2}\right)^2 + \left(z^3+\frac{1}{z^3}\right)^2 + \dots + \left(z^6+\frac{1}{z^6}\right)^2$ is (A) 18 (B) 54 (C) 6

Space for rough work

(E) 12

Maths-II-B1/2019

(D) 19

18.	The value of $\tan\left[\sin^{-1}\frac{-1}{\sqrt{2}}\right]$	is		
	(A) -1(D) Infinity	(B) (E)		(C) 1 (A)
19.	If $\sin^{-1} x + \cos^{-1} 2x = \frac{\pi}{6}$, the	en th	e value of x is	
	(A) 1/2(D) 1		$\sqrt{3}/2$ $\sqrt{2}$	(C) √3
20.	If $x = 2\cos t - \cos 2t$ and y	= 2 si	$\ln t - \sin 2t$, then $\frac{dy}{dx}$ at the the transformation of transfo	$t = \frac{\pi}{2}$ is
	(A) -1 (O) (D) 1	(B) (E)		(C) 1/2
21.	The equation of the tanger point $(1, 2)$ is	nt to	the curve given by x^2	+2x-3y+3=0 at the
	(A) $4x-3y-2=0$ (D) $4x+3y-2=0$			(C) $4x + 3y + 2 = 0$
22.	The value of $\lim_{x\to\infty} \frac{x^3 \sin^2 \pi}{1}$	$\frac{1}{x}$	$\frac{-2x^2}{2}$ is (E)	oigen al faith ann an All All All (A) All (A)
	(A) 0	(B)	$\frac{1}{3}$	(C) –1
8	(D) $\frac{-2}{3}$	(E)	$\frac{-1}{3}$	

Maths-II-B1/2019

e.e.c. [P.T.O. /

23.	The maximum value	of $y = \left(\frac{1}{x}\right)^{2}$, $x > 0$ is	i Status u	
	 (A) e^{1/e} (D) Infinity 	(B) (E)	e ^e 0	(C)	1 (A) (Simic' (A)
24.	The value of the integ	$\int_0^{\pi} \frac{co}{1+si}$	$\frac{\mathrm{s}x}{\mathrm{n}^2 x} dx$ is		
	(A) 0	(B)	1 3. 13	(C)	$\frac{\pi}{2}$
	(D) π	(E)	2π		
25.	The area enclosed bet	ween the cu	irves $v = 2x^2 +$	1 and $v = r^2$	- 5 is
	(A) 4/3(D) 32/3	(B)	8/3 1/3	(C)	
26.	The solution of the di (1, 1) is	fferential ec	quation 5 <i>y dx</i> =	= 2 <i>x dy</i> passing	through the point
	$(A) 2 \ln x = 5 \ln y$	(B)	$5\ln x = 2\ln y$	(C)	$\ln\left(y+x\right)=2$
	(D) $\ln(1+xy) = 0$			-2=0 or	
27.	The area of the region	bounded by	the curves $y =$	= x-2 , x = 1, x	x = 3 and $y = 0$ is
	(A) 4	(B)	12	(C)	
	(D) 14	(E)	1	- ini	
		Space	for rough work		

Maths-II-B1/2019

ŗ

28.	If in a frequency distribution then its mode is	tion, the mean and	median are 21 and 22 respectively,
	(A) 22.0		(C) 25.5
29.	For two data sets, each o	given to be 2 and (B) 6	the first first the term of term
		(E) $\frac{11}{2}$	
30.	If the mean of the first n	odd numbers is $\frac{n^2}{81}$, then <i>n</i> equals
	(A) 9(D) 81	(B) 18(E) 52	(C) 27
31.	A bag contains 5 red ba blue ball is double that of (A) 10 (D) 25		oalls. If the probability of drawing a er of blue balls must be (C) 20
32.	A pair of fair dice are rol	led together. The p	robability of getting a total of 8 is
	(A) 1/9	(B) 5/36	(C) 7/36
	(D) 11/36	(E) 1/36	

33.	In a chess tournamer	it, assume that your proba	bility of winning a game is 0.3
	against level 1 player	s, 0.4 against level 2 players	s and 0.5 against level 3 players.
	It is further assumed t	that among the players 50 %	are at level 1, 25 % are at level
	2 and the remaining	are at level 3. Suppose that	at you win the game. Then the
	probability that you h	ad played with level 1 playe	er is
	(A) 0.3	(B) 0.4	(C) 0.5
	(D) 0.6	(E) 0.2	on survey gauge by the s
24	A		
34.	A sum of Rs. 280 is i	to be used to award four pr	izes. If each prize after the first
	prize is Rs. 20 less that	in its preceding prize, then t	he value of the fourth prize is
	(A) 20	(B) 40	(C) 60
	(D) 80	(E) 10	(9) 2
35.	The coefficient of x^3	in the expansion of $(1 + x + x)$	$(1-2x)^5$ is
	(A) –20	(B) –40	(C) –60
	(D) -80	(E) –100	
8.00	a Mili kostilidadora - ad	(
36.	The constant term in the	the expansion of $\left(x^2 - \frac{2}{x}\right)^6$ is	31. A Dag commune to o
	(A) 60	(B) 180	(C) 240
ar an s	(D) 360	(E) 420	(D) 25
	8.10 state on the lar	Space for rough work	
	i de la companya de La companya de la comp	annahisin seet to the SROT DEF	

37.	If the equation of the sphere through the circle
	$x^{2} + y^{2} + z^{2} = 9$; $2x + 3y + 4z = 5$ and through the point (1, 2, 3)
	is $3(x^2 + y^2 + z^2) - 2x - 3y - 4z = C$, then the value of C is
	(A) 11 (B) 22 (C) 36
	(D) 41 (E) 54
38.	The equation of the plane containing the line $\frac{x-\alpha}{l} = \frac{y-\beta}{m} = \frac{z-\gamma}{n}$ is
	$a(x-\alpha) + b(y-\beta) + c(z-\gamma) = 0$, where $al + bm + cn$ is equal to
	(A) 1 (B) -1 (C) 2 (D) 8 (E) 0
39.	Let $f(x)$ and $g(x)$ be two differentiable functions for $0 \le x \le 1$ such that
	f(0) = 2, g(0) = 0, f(1) = 6. If there exists a real number c in (0,1) such that
	f'(c) = 2g'(c), then $g(1)$ is equal to
	(A) 0 (B) -1 (C) 4
	(D) -2 (E) 2
40.	The equation of the tangent to the curve $y = x + \frac{4}{x^2}$ that is parallel to the x-axis is
	(A) $y=1$ (B) $y=2$ (C) $y=8$
	(D) $y = 0$ (E) $y = 3$

41.		cient of x^k in the	binomial expansion of
	$\left(x^2 + \frac{3}{x}\right)^4$, $x \neq 0$. Then the value	e of <i>k</i> equals	
		2 (8)	(C) -4
42.		ents starting with K of t 330 370	(C) 360
43.	A bag contains 3 black and 2 wh back in the bag along with one ba random. What is the probability th	all of the same colour.	vn at random and is put A ball is again drawn at
	(A) 1/5(B)(D) 1/12(E)	2/5 2/13	(C) 1/6
44.	If A and B are two events $P(A \cup B) = P(A \cap B)$, and $P(A) = P(A \cap B)$	associated with an $= 1/3$, then P(B) equals	experiment such that
	(A) 0 (B) (D) 1/2 (E)	1/3	(C) 2/3
45.	Three identical fair dice are rolled	. The probability that th	e same number appears
	on each of them is		() = y (()
		1/6	(C) 1/36
	(D) 1/216 (E)	1/9	
	Space	for rough work	

46. Let $\omega \neq 1$ be a cube root o	f unity and $(1+\omega)^7 = a + b^2$	ω. Then the value of <i>a</i> is
(A) ω^2	(B) ω	(C) 1/2
(D) 1	(E) 0	
1		
47. Let $w = \frac{1-iz}{z-i}$. If $ w = 1$,	which of the following m	ust be true?
(A) z lies inside the unit	circle	52 In a G.P. 4:4 4 N
(B) z lies on real axis		1013
(C) z lies on imaginary a	xis	1023 512 Thomatic value of
(D) z lies outside the unit		
(E) $Re z < 0$		
48. For $ z \ge 2$, if $ z + \frac{1}{2} \ge k$,	the minimum possible val	ue of k is
(A) 1/2	(B) 3/2	(C) 2
	(E) 3	
49. Let $\cot \theta = -5/12$ where $\frac{1}{2}$		
(A) 12	(B) $-\frac{5}{3}$	(C) $\frac{12}{12}$
$(A) = \frac{1}{13}$	(B) $-\frac{5}{13}$	(C) $\frac{12}{13}$
(A) $-\frac{12}{13}$ (D) $\frac{5}{13}$	(E) $\frac{7}{13}$	
13	13	
50. The value of $\tan \frac{\pi}{8}$ is		
(A) $\sqrt{2}$	(B) $-\sqrt{2}$	(C) $\sqrt{2} - 1$
(D) $1 - \sqrt{2}$	(E) $-1-\sqrt{2}$	
	Space for rough work	

Maths-II-B1/2019

O.T.9 [P.T.O.

51.	In an A.P., if 5^{th} term is $\frac{1}{7}$	and 7 th term is $\frac{1}{5}$, then the su	um of first 35 terms is
	(A) 9 (D) 72	(B) 18 (E) 83	(C) 36
52.		n the first <i>n</i> number of term	s are added, the sum is
	$\frac{1023}{512}$. Then the value of <i>n</i> (A) 10 (D) 16	is (B) 12 (E) 18	(C) 14
53.	If A.M. and G.M. of the r then the quadratic equation	oots of a quadratic equation a	are 8 and 5 respectively,
	(A) $x^2 + 8x + 5 = 0$ (D) $x^2 + 8x + 25 = 0$	(B) $x^2 - 16x + 10 = 0$ (E) $x^2 + 10x + 15 = 0$	(C) $x^2 - 16x + 25 = 0$
54.		$-(2a+b)x + \left(2a^2+b^2-b+\frac{1}{2}\right)$	-) = 0 has two real roots.
	The value of b is (A) 1 (D) -2	(B) 2	(C) -1
		(E) 0	<u>(1)</u>

55.	If ${}^{5}P_{r} = {}^{6}P_{r-1}$, then the value	of r is	S dama takihi Xil		
	(A) $r = 1$	(B)	r = 5	(C)	<i>r</i> = 3
	(D) $r = 2$	(E)	r = 4		
56.	If ${}^{n}C_{2017} = {}^{n}C_{2016}$, then n	C ₄₀₃₃	equals		
	(A) 1	(B)	2016	(C)	2017
	(D) 2033	(E)	2019		
57.	The image of the point P(2	,1) on	the straight line	2x - 3y + 1 =	0 is
	(A) $\left(\frac{1}{13}, \frac{25}{13}\right) \xrightarrow[3]{3}$	(B)	$\left(\frac{15}{13},\frac{25}{13}\right)$	(C)	$\left(\frac{18}{13}, \frac{25}{13}\right)$
	(D) $\left(\frac{21}{13}, \frac{25}{13}\right)$	(E)	$\left(\frac{11}{13},\frac{15}{13}\right)$		

58. If the centre of the circle inscribed in a square formed by the lines $x^2 - 8x + 12 = 0$ and $y^2 - 14y + 45 = 0$ is (a, b), then a + b is

(A)	11	(B) 9	(C) 7
(D)	5	(E) 4	

Space for rough work

59.	The equation of the direct	rix of the parabola $y^2 + 4y$	+4x+2=0 is
	(A) $x = -1$	(B) $x = 1$	(C) $x = 3/2$
	(D) $x = -3/2$	(E) $x = 2$ (B)	(D) $i = 2$
60.	The foci of the hyperbola	$\frac{x^2}{\cos^2 \alpha} - \frac{y^2}{\sin^2 \alpha} = 1 \text{ are}$	s. 16 "C ₃₀ " - 1 - 1 - 1 - 1 - 1
	(A) $(\pm 1, 0)$	(B) $(\pm \alpha, 0)$	(C) $(0, \pm 1)$
	(D) $(0, \pm \alpha)$	(E) $(1, \pm \alpha)$	
61.		of the function $f(x) = \frac{\log_3(x)}{x^2 - x}$	$\frac{(x+7)}{5x+6}$ is
		(B) $(-3,\infty)\setminus\{3,2\}$	(C) $(-7,\infty)\setminus\{3\}$
	(D) $(-3,\infty)\setminus\{3\}$	(E) $(-5,\infty)\setminus\{3\}$	
62.	Let $f(x) = 3x - 5$. The in	verse of f is given by	
	(A) $\frac{1}{3x-5}$	(B) $\frac{x+5}{3}$	(C) $\frac{x}{3} - \frac{1}{5}$
	(D) $\frac{x}{3} + \frac{1}{5}$	(E) $\frac{3}{x-5}$	

63.	Let $R = \{(a,b): a \le b^2\}$ be a relation on the set of all real numbers. Then R is
	(A) symmetric but not transitive
	(B) transitive but not symmetric
	(C) both symmetric and transitive
	(D) neither symmetric nor transitive
	(E) having finite range
64.	A unit vector \vec{b} is coplanar with $i + j + 2k$ and $i + 2j + k$ and is perpendicular to
	$i + j + k$. Then \vec{b} . <i>i</i> equals
	(A) 0 (B) 1 (C) 3/2
	(A) 0 (B) 1 (C) $3/2$ (D) 2 (E) 4
65.	Suppose $\alpha i + \alpha j + \gamma k$, $i + k$ and $\gamma i + \gamma j + \beta k$ are coplanar where α , β and γ are
	positive constants. Then the product $\alpha \beta$ is
	(A) γ (B) γ^2 (C) 2γ
	(D) $2\gamma^2$ (E) 3γ
66.	The area of the triangle whose vertices are $A(1, -1, 2)$, $B(2, 1, -1)$ and
	C(3, -1, 2) is
	(A) $\sqrt{7}$ (B) $\sqrt{11}$ (C) $\sqrt{13}$
	(D) $\sqrt{15}$ (E) $\sqrt{10}$ (C) $\sqrt{15}$

Maths-II-B1/2019

67.	Let $f(x) + 2f\left(\frac{1}{x}\right) = \frac{1}{x} - 5$.	Then $\left \int_{1}^{2} 3f(x) dx\right $ equals	$(\hat{\theta}, \hat{\theta}) = (\hat{\theta}, \hat{\theta})$
	(A) $2 + \ln 2$	(B) $2 - \ln 2$	(C) 2
	(D) $3 \ln 2$	(E) ln 2 pointerant bae	
68.	The value of $\lim_{n \to \infty} \left[\frac{1}{n+1} \right]$	$+\frac{1}{n+2}+\cdots+\frac{1}{6n}$ is	
	(A) ln 3	(B) ln 6	(C) e^{3}
	(D) e^{6}	(E) ln 2	a mod
69.	Let $f(x)$ be differentiable	and $\int_0^{t^2} x f(x) dx = \frac{1}{2}t^4$ for	all t. Then the value of
	f(17) is		Same same
	(A) 17	(B) 1	(C) 1/17
	(D) 17/2	(E) 19	constation
70.	The value of the definite into	egral $\int_0^{2\pi} \sqrt{1 + \sin \frac{x}{2}} dx$ is	(
		2001.1. De 012 - 1	
	(A) $\frac{1}{4}$	(B) $\frac{1}{2}$	(C) $\frac{3}{4}$ = (D)
		_ 5	
	(D) 1	(E) $\frac{5}{4}$	
71.	Let $f(x) = x-2 $ and $g(x)$	f(f(x)). Then derivative	of g at the point $x = 5$ is
	(A) 1	(B) 2	(C) 4
	(D) 5	(E) 0	

		1 1.2940 IV 62 9 D494 11	$f(x) - f\left(\frac{\pi}{2}\right)$
72.	Let $f(x) = \sin x - \cos x$. T	hen the value of $\log_{x\to\infty}$ -	$\frac{f(x) - f\left(\frac{\pi}{2}\right)}{\pi}$ is
			$x-\frac{\pi}{2}$
	(A) 0 (A)	(B) $\frac{1}{2}$	(C) $\frac{1}{\sqrt{2}}$
	(D) 1	(E) $\sqrt{2}$	
73.	$\begin{pmatrix} 1 & 1 \end{pmatrix}$		
			(C) $A^2 = -B$ for some α
74.	The values of k for which the	ie system	
	(k+1)x + 8y = 0		
	kx + (k+3)y = 0		
	has unique solution, are		
	(A) 3, 1	(B) -3, 1	(C) $3, -1$
	(D) −3, −1	(E) 1, -1	

Maths-II-B1/2019

75.	If M and N are square matrices of order 3 where $det(M) = 2$ and $det(N) = 3$,	
	then det(3MN) is	
	(A) 27 (B) 81 (C) 162	
	(D) 324 (E) 121	
76.	If the lines $\frac{x+3}{-3} = \frac{y-1}{k} = \frac{z-5}{5}$ and $\frac{x+1}{-1} = \frac{y-2}{2} = \frac{z-5}{5}$ are coplanar, then the	
	value of k is	
	(A) 1 (B) 2 (C) 3 (D) 4 (E) 5	
	(D) 4 (E) 5 (E) 5	
77.	A plane passes through the point $P(1, -2, 1)$ and is perpendicular to two planes	
	2x - 2y + z = 0 and $x - y + 2z = 4$. Then the equation of the plane is	
	(A) $x + y + 1 = 0$ (B) $x - y + 1 = 0$ (C) $x + 2y + 1 = 0$	
	(D) $x - 2y + 1 = 0$ (E) $x - y - 1 = 0$	
78.	The differential equation which represents the family of curves $y^2 = 2c(x + \sqrt{c})$	
	where $c > 0$, is of	
	(A) order 2 (B) degree 2 (C) order 3	
	(D) degree 3 (E) degree 1	
79.	The number of solutions of the differential equation $\frac{dy}{dr} = y^{1/3}$ which are passing	
	through the origin, is	
	(A) 0 (B) 1 (C) 2	
	(D) 3 (E) 5	
	Space for rough work	

80.	If $\frac{dy}{dx} = \frac{2}{x+y}$ and $y(1) = 0$	0, then $x + y + 2$ equals	
	(A) $3e^{\left(\frac{y}{2}\right)}$	(B) $2e^{\left(\frac{y}{2}\right)}$	(C) $e^{\left(\frac{y}{2}\right)}$
	(D) 0	(E) $5e^{\left(\frac{y}{2}\right)}$	86. The add vecur in
81.	The length of the latus rec	tum of the parabola $(x+2)^2$	= -14(y-5) is
	(A) 7(D) 28	(B) 14(E) 17	(C) 21
82.	One of the foci of the hyp	erbola $\frac{x^2}{9} - \frac{y^2}{16} = 1$ is	
	(A) (3, 0)(D) (9, 0)	$\begin{array}{c} (B) & (4,0) \\ (E) & (2,0) \end{array}$	(C) (5,0)
83.	If the circles $x^2 + y^2 - 8x$ then $c + d$ equals	$-6y + c = 0$ and $x^2 + y^2 - 2$	y + d = 0 cut orthogonally,
	(A) 6 (D) 0	(B) 4 (E) 1	(C) 2
84.	The points with position v	vector $60\hat{i} + 3\hat{j}, 40\hat{i} - 8\hat{j}$ and	$1 a\hat{i} - 52\hat{j}$ are collinear if
	(A) $a = -10$ (D) $a = 10$	(B) $a = 40$ (E) $a = -40$	(C) $a = 20$ (A) A (C)

21

85.	The area enclosed within the curve $ x + y = 1$ is							
	(A) 1	(B)	$\sqrt{2}$	(C)	$\frac{3}{2}$			
	(D) $2\sqrt{2}$	(E)	2					
86.	The unit vector in the	directi	on of the vector \overrightarrow{AB}	if A	A=(-2	, -1,	3)	and
	$\mathbf{B} = (1, 1, 0) \text{ is } \alpha i + \beta j + \gamma k,$	then α	$+\beta$ is					
	(A) $\frac{3}{\sqrt{22}}$		$\frac{5}{\sqrt{22}}$	(C)	$\frac{-3}{\sqrt{22}}$			
	(D) $\frac{-5}{\sqrt{22}}$	(E)	$\frac{2}{\sqrt{22}}$					
87.	$If \begin{pmatrix} 3x-y & x+3y \\ 2x-z & 2y+z \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \end{pmatrix}$	$\begin{pmatrix} 9\\5 \end{pmatrix}$, th	en $x + y + z$ equals					
	(A) 3	(B)	6	(C)	9			
	(D) 12	(E)	21 9 = 2 + 13 - 17					
				$ -a^2 $	ab	ac		
88.	If the product $abc = 1$, then	n the va	alue of the determinant	ba	$-b^{2}$	bc	is	
				ac	bc	$-c^{2}$		
	(A) 1	(B)	2	(C)	3			
	(D) 4	(E)	5		(6) =		3	
	Space for rough work							

89. If (x, y, z) is the solution of the equations 4x + y = 73y + 4z = 55x + 3z = 2Then the value of x + y + z equals (A) 8 (B) 6 (C) 3 (D) 0 (E) 1 90. If $\begin{pmatrix} e & f \\ g & h \end{pmatrix}$ is the inverse of the matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ where ad - bc = 1, then g equals (A) c (B) –*c* (C) b (D) −*b* (E) *d* 91. If $f: R \to R$ is a function defined by $f(x) = x^2$, then which of the following is true? (A) f is 1-1 but not onto

- (B) f is onto but not 1-1
- (C) f is neither 1-1 nor onto
- (D) f is both 1-1 and onto
- (E) $f^{-1}: \mathbb{R} \to \mathbb{R}$ exists

Space for rough work

Maths-II-B1/2019

92. Consider the set A = $\{1, 2, 3\}$ along with the relation R = $\{(1, 1), (2, 2), (1$ (2, 1), (3, 3). Which of the following statements is **true**? (A) The relation is symmetric but not transitive (B) The relation is transitive but not symmetric (C) The relation is neither symmetric nor transitive (D) The relation is both symmetric and transitive (E) The relation is a function **93.** If $(-\sqrt{3} - i)^{30} = -4^k$, then the value of *k* is (B) 20 (A) 15 (C) 25 (D) 30 (E) 60 94. If ω is an imaginary cube root of unity, then $(1 + \omega - \omega^2)^7$ is equal to (A) 128 ω (B) -128 ω (C) $128 \omega^2$ (D) $-128 \omega^3$ (E) $-128 \omega^2$ 95. The value of $\left[\cos\frac{\pi}{8} + i\sin\frac{\pi}{8}\right]^4$ is (A) $-i\pi$ (B) $i\pi$ (C) i a (C)(D) -i(E) π 96. If $arg(\overline{z}_1) = arg(z_2)$, then (A) $z_2 = k z_1^{-1}, (k > 0)$ (B) $z_2 = kz_1, (k > 0)$ (C) $|z_2| = |\overline{z_1}|$ (D) $z_1 = z_2$ (E) $|z_2| = |z_1|$

Space for rough work

		Space for rough work	(1.) $(14) = 0$
	(D) $-0 + x\xi - (O)$	(Ε) π	(A) = [+4y - 1] = 0
	(A) <i>n</i> π	(B) $n\frac{\pi}{2}$	(C) $n\pi + (-1)^n \frac{\pi}{6}$
99.	Which of the following is a $3\tan^2\theta - \sin\theta = 0$?	not a solution of the equation	$(A) = \emptyset$
	(A) $-\sqrt{3}$ (D) $\sqrt{3}$	(B) $-\sqrt{2}$ (E) $\sqrt{5}$	(C) √2
98.	If $\tan^{-1} x + 2\cot^{-1} x = \frac{\pi}{3}$, the derivative set of the se	hen the value of x is	
	(A) 26/11(D) 65/43	(B) 56/33(E) 32/13	(C) 63/41
97.	The value of $\tan\left[\sin^{-1}\frac{5}{13}\right]$	$+\cot^{-1}\frac{4}{3}$]is	

100. If $\sqrt{\frac{y}{x}} + \sqrt{\frac{x}{y}} = 1$, then $\frac{dy}{dx}$		
(A) $\sqrt{\frac{y}{x}}$	(B) $\sqrt{\frac{x}{y}}$	(C) $\frac{y}{x} = \frac{1}{2} \frac{1}{2$
(D) $\frac{x}{y}$	(E) <i>xy</i>	
101. If $x = \frac{3t}{1+t^3}$ and $y = \frac{3t^2}{1+t^3}$, then $\frac{dy}{dx}$ at $t = 1$ equals	
(A) -6 (D) 6	(B) -1 (E) 4	$(C) = 0$ sin $\theta = 0$
102. The equation of the normal	to the curve given by $x^2 + 2$	x - 3y + 3 = 0 at the point
(1, 2) is		
(A) $3x + 4y - 11 = 0$	(B) $3x - 4y + 11 = 0$	(C) $-3x + 4y - 11 = 0$
(D) $3x - 4y - 11 = 0$	(E) $-3x - 4y - 11 = 0$	
103. A point of inflection of the	curve given by $y = x^3 - 6x^2$	+12x+50 occurs when
(A) $r = 2/3$	(B) $x = 3/2$	(C) $x = 2$

(D) $x = 3$	(E) $x = 0$	
(A) $x = 2/3$	(B) $x = 3/2$	(C) $x = 2$

104. The value of the integral $\int_0^{\frac{\pi}{2}} \log \tan \theta \, d\theta$ is

	(A)	0	(B)	1	(C) $\frac{\pi}{2}$
					(e) 2
	(D)	log 2	(E)	2	
105.	The	area enclosed between t	he cu	$rve \ y = 11x - 24$	$-x^2$ and the line $y = x$ is
	(A)	1/3	(B)	3/4	(C) 1
	(D)	4/3	(E)	1/2	$ \begin{array}{c} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n$
					y in which she take to
106.	The	solution of the differe	ntial	equation $\frac{dy}{dx} =$	$\frac{y^2}{x}$ passing through the point
	(1, -	-1) is		en so al platit	
	(A)	$\frac{1}{y} + \log x = 0$ $y - \log x = 0$	(B)	$\frac{1}{y} - \log x = 0$	(C) $y + \log x = 0$
	(D)	$y - \log x = 0$	(E)	$y\log x = 0$	
107.		maxima and minim	a of	f the function	$2x^3 - 15x^2 + 36x + 10$ occur
	-		(B)	x = 2, x = 1	(C) $x = 3, x = 2$
-	(D)	x = 1, x = 2	(E)	x = 2, x = 3	

Space for rough work

108. In a class of 100 students, there are 70 boys whose average marks in a subject are 75. If the average marks of the complete class is 72, then what is the average of the girls?

(A) 73 (B) 85 (C) 68 (D) 74 (E) 65

109. Let $x_1, x_2, ..., x_n$ be *n* observations such that $\sum x_i^2 = 400$ and $\sum x_i = 80$. Then a possible value of *n* is

 (A) 15
 (B) 10
 (C) 9

 (D) 12
 (E) 18

110. If M and N are events such that $P(M \cup N) = \frac{3}{4}$, $P(M \cap N) = \frac{1}{4}$, $P(\overline{M}) = \frac{2}{3}$, then

		C	
, nijad	(D) $\frac{1}{4}$	(E) $\frac{5}{12}$	
	(A) $\frac{15}{12}$	(B) $\frac{3}{8}$	(C) $\frac{5}{8}$
	$P(\overline{M} \cap N)$ is		

Space for rough work

111. Cards marked with a chosen at random. T(A) 1/8(D) 8/9	numbers 2 to 105 are placed in the probability that the number (B) 1/9 (E) 2/7	n a box and mixed. One card is r on the card is less than 15 is (C) 7/8
The probability that	it is not black is	One ball is drawn at random.
(A) 4/15(D) 13/15	(B) 9/15(E) 14/15	(C) 11/15
It is further assumed 2 and the remaining randomly chosen play	rs, 0.4 against level 2 players a that among the players 50% a are at level 3. The probability	ility of winning a game is 0.3 and 0.5 against level 3 players. are at level 1, 25 % are at level y of winning a game against a
(A) 0.275(D) 0.325	(B) 0.375(E) 0.125	(C) 0.225
114. A man repays a loan increases the payment clear the loan is(A) 20	It by Rs.15 every month. The	20 in the first month and then number of months it takes to
(A) 20 (D) 40	(B) 25 (E) 10	(C) 35

115. The coeffici	ient of x^3 in the expansion of $\left(x^2 - \frac{2}{x}\right)$	\int_{0}^{6} is
(A) -160 (D) 0	(B) -80 (E) -10	(C) -40
	on of the sphere through the circle	
$x^2 + y^2 + z^2$	$x^2 = 5$; $2x + 3y + 4z = 5$ and through the	e origin is
$x^2 + y^2 + z^2$	$x^2 - 2x - 3y - 4z + C = 0$ then the value	of C is
(A) 1	(B) –1	(C) 0
(D) 5	(L) Z	ness fournament, as
117 The second	i agamst tovel 2 planers end to r ag the	g-institevel 1 pisyors, 0.4

117. The equation of the plane containing the lines

$\frac{x+1}{3} = \frac{y+3}{5} = \frac{z+5}{7}$ and	$\frac{x-2}{1} = \frac{y-4}{3} = \frac{z-6}{5}$ is	
(A) x+2y+z=0	(B) x - 2y + z = 0	(C) x-2y-z=0
(D) x+2y-z=0	(E) 2y - x - z = 0	di la constante de la constante

Space for rough work

Maths-II-B1/2019

- 118. A value of c for which the conclusion of mean value theorem holds for the function $f(x) = \log_e x$ on the interval [1, 3] is
 - (A) $8\log_3 e$ (B) $\frac{1}{2}\log_e 3$ (C) $\log_3 e$ (D) $\log_e 3$ (E) $2\log_3 e$

119. From 4 men and 6 ladies a committee of five is to be selected. The number of ways in which the committee can be formed so that men are in majority is

(C) 60

 (A) 68
 (B) 156

 (D) 72
 (E) 66

120. The degree of the diffe	rential equation	$\left[1 + \left(\frac{dy}{dx}\right)^2\right]$	$\frac{3}{2} = l \frac{d^2 y}{dx^2}$ is
(A) 1	(B) 2		(C) 3
(D) 4	(E) 5		

Space for rough work

BLANK PAGE

Maths-II-B1/2019

32

Maths

SEAL