			r any attempt to comm ill DISQUALIFY THI	nit any kind of malpractice in E CANDIDATE.
			MATHEMATI	
Version Code	B 1	Question Serial Nu		9126960
Time: 150 Mi	nutes	Number	r of Questions: 120	Maximum Marks: 480
Name of the (Candidat	e		
Roll Number				
Signature of t	he Cand	idate		
1. A 49	I	NSTRUCT	TIONS TO CANDID	ATES $\beta = 70$.
Booklet wit with the sar IMPORTA 2. Please fill t	th a differ ne Version NT. the items	ent Version n Code as in such as Nan	Code please get it rep the Admit Card from t ne, Roll Number and S	f you have received a Question laced with a Question Booklet he Invigilator. THIS IS VERY Signature in the columns given
		tite Question		er given at the top of this page
suggested a	nd given opriate Ar	against (A), 1swer.' Marl	(B), (C), (D) and (E)	ach question five answers are of which only one will be the the letter corresponding to the
'Most Appr Ball Point I	1996 B. 1997 B			by using enner blue or black
 Ball Point I 4. Negative M penalization number of ONE mark 	Pen only. Iarking: I formula wrong ans will be de	based on the wer marked educted for	he number of right and l. Each correct answer each incorrect answer.	g the score will be subjected to swers actually marked and the will be awarded FOUR marks
 Ball Point I 4. Negative M penalization number of ONE mark against a qu 5. Please read 	Pen only. Iarking: I formula wrong ans will be do estion will I the inst	based on the ower marked educted for be deemed ructions in	he number of right and L Each correct answer each incorrect answer. as incorrect answer and the OMR Answer Sh	g the score will be subjected to swers actually marked and the will be awarded FOUR marks. More than one answer marked
 Ball Point I 4. Negative M penalization number of ONE mark against a qu 5. Please read Candidates Sheet. IMMEDIAT SHOULD VE 	Pen only. Iarking: I formula wrong ans will be do estion will the inst are advise ELY AFT CRIFY WH	based on the wer marked educted for be deemed ructions in ed to strictly ER OPENIN	he number of right and L. Each correct answer each incorrect answer. as incorrect answer and the OMR Answer Sh follow the instruction G THE QUESTION BOOKL	g the score will be subjected to swers actually marked and the will be awarded FOUR marks. More than one answer marked will be negatively marked.

SEAL

Signature of the andi EVEL RECTIONS TO CANDIDATES ise ensure that the VERSION CODE shows a the top of this te as that shown in the Admit Card second to be in f you have r oldet with a different Version Code element of placed with a liferent version code element of the second placed with a th the same Version Code as in the Adda a share we have the Invigilar BLANK PAGE PORTANT. Please fill the items such is Name, Full stamle and signatur a second shows Pt an also with fittestion Booldan Second Plantier given at the rest of the against ttem 4 in he OMR Answer Shoet. This Ouestion Fooldet contains 120 miestions. For cath question for test ers art entropy of the second second (A) ((i), (C), (F)) and (F) of via the second be the - ... Appropriate Amove) . "Mark the boldsto out only the much book when the st i consuriate Answer' in the OMR Arisent Sheet, by death of Stiffle of Block Maths-II-B1/2020 2

PLEASE ENSURE THAT THIS QUESTION BOOKLET CONTAINS 120 QUESTIONS SERIALLY NUMBERED FROM 1 TO 120 PRINTED PAGES 32.

1.	The domain o	f the function f	given by $f(x) = \sqrt{1}$	$\sqrt{x-1}$ is		
	(A) (−∞,∞)	(B) (1,∞)	(C) [1,∞)	(D) [0,∞)	(E) (0,∞)	
2.	Let $f(x) = -2$	$2x^2 + 1$ and $g(x) =$	$=4x-3$, then $(g \circ$	f(-1) is equal t	.0	
	(A) 9	(B) -9	(C) 7	(D) – 7	(E) – 8	
3.	Let A and B b Then $n(B)$ is	102.179	that $n(A-B) = 18$	$B, n(A \cap B) = 25$	and $n(A \cup B) = 70$	Э.
	(A) 52	(B) 25	(C) 27	(D) 43) 3 10 1	(E) 45	8
4.			people can speak I to speak English or		can speak Englis	h.
	(A) 40	(B) 30	(C) 20	(D) 25	(E) 35	

Space for rough work

Maths-II-B1/2020

	(A) -2 (B) -1	(C) 1	(D) 2	(E) 0
9.	If $z = x - iy$ and $z^{1/3} = p + iq$	y, then $\frac{1}{p^2 + q^2} \left(\frac{x}{p} + \frac{x}{p}\right)$	$\left(\frac{y}{q}\right)$ is equal to	
	(D) $e^{-\sin 4x}$	(E) 0 de offv		HALL LOID HEAL
	(A) e^{3x} (D) $e^{3x} \sin 4x$	(B) $\cos 7x \mod 0$	(C) e	a de la companya de
0.				
8.	The real part of $e^{(3+4i)x}$ is		(B) 25	1) 52
	(D) {49,60,77}	(E) {36,45,49,60,7	77,90}	ten $n(B)$ t
) = 70.	(A) {60}(D) {49,60,77}	(B) {36,45,60,90}	(-)	{49,77}
	from A to B . Then the range			
7.	Let $A = \{2, 3, 4, 5\}$, $B = \{36$		let R be the	relation 'is factor of
	(D) $\{1, 2, 3, 4, 5, 6\}$	(E) {2,4}		
	(A) {1,3,5,6}	(B) {0,1,3,5,6}	(C)	{1,3,5}
6.	If $A = \{1, 2, 3, 4, 5\}$ and $B =$	$\{2, 4, 6\}$, then $A - B =$	non a constanti	
	(A) 4 (B) 3	(C) 2	(D) 1	(E) 5
	If $*$ is a binary operation de then $2 * 5$ is equal to	b	a'ab	shive integers a and
5.	If * is a binary operation de	efined by $a * b = \frac{a}{a} + \frac{b}{a}$	-+ for no	sitive integers a and

Maths-II-B1/2020

4

Maths-II-B1/2020

[P.T.O.

5

14.	If $z_1 = 2 + 3i$	and $z_2 = 3 + 2i$, the second secon	nen $ z_1 + z_2 $ is equ	al to	
	(A) 50	(B) 10	(C) 5√2	(D) 25	(E) 2√5
15.	$\frac{10i}{1+2i}$ is equa	ıl to			
	1 + 2i				
	(A) –2 <i>i</i>	(B) 2 <i>i</i>	(C) $-4+2i$	(D) $4 + 2i$	(E) 6 <i>i</i>
		10 Millionato In			
16.	The value of	$\sum_{k=1}^{10} \left(3k^2 + 2k - 1\right)$	is		
	(A) 1120	(B) 1200	(C) 1230	(D) 1265	(E) 1255
17.	The numbers	a_1, a_2, a_3, \dots fo	rm an arithmetic	sequence with	$a_1 \neq a_2$. The three
	numbers a_1, a_2	a_2 and a_6 form	a geometric sequer	nce in that order.	Then the common
		the arithmetic seq		l di	3.5
	(A) <i>a</i> ₁	(B) 2 <i>a</i> ₁	(C) 3 <i>a</i> ₁	(D) 4 <i>a</i> ₁	(E) $5 a_1$
		$\sin \pi - \sin$			
18.		tic sequence, the ms is 20. Then the		rd terms is 6 and	I the sum of second
	(A) 67	(B) 62	(C) 57	(D) 73	(E) 66

Maths-II-B1/2020

6

0255-18-11-selects

19.	In an A.P., the first term is 3 and the last term is 17. The sum of all the terms in the sequence is 70. Then the number of terms in the arithmetic sequence is							
	(A) 7	(B) 5	(C) 9	(D) 6	(E) 8			
20.			ive rational numbe owest terms. Their s		han 1 and that	have		
	(A) 1	(B) 2	(C) 3	(D) 4	(E) 5			
21.	If p , q and then $p + q =$		ng arithmetic seque	ence and p and q	are prime nun	nbers,		
	(A) 22	(B) 24	(C) 26	(D) 28	(E) 30			
22.	The 5 th and	7 th terms of a G.F	P. are 12 and 48 resp	pectively. Then the	ne 9 th term is			
	(A) 162	(B) 96	(B) (C) 192	(D) 144	(E) 182	27.		
23.	The number	of positive integ	ers less than 1000 h	naving only odd d	igits is			
	(A) 155	(B) 177	(C) 55	(D) 205	(E) 85			

Maths-II-B1/2020

24.		are marked on a ci drawn using some		- · · ·	ns of three or more is
	(A) 10	(B) 12	(C) 14	(D) 16	(E) 18
25.	The middle	term in the expansi	ion of $\left(1+\frac{1}{5}\right)^{20}$ is		
	$(A)\left(\frac{1}{5}\right)^{10}$	(B) $\left(\frac{1}{5}\right)^{11}$	(C) ${}^{20}C_{11}\left(\frac{1}{5}\right)^{11}$	(D) ${}^{20}C_9\left(\frac{1}{5}\right)^9$	(E) ${}^{20}C_{10}\left(\frac{1}{5}\right)^{10}$
26.	${}^{11}C_0 + {}^{11}C_0$	$C_1 + {}^{11}C_2 + {}^{11}C_2$	$_{3} + {}^{11}C_{4} + {}^{11}C_{5}$	national de la Co E	
	(A) 2 ⁶	(B) 2 ⁸	(C) 2 ¹⁰	(D) 2 ¹¹	(E) 2 ⁹
27.	If ${}^{n}P_{r} = 84$	0 and ${}^{n}C_{r} = 35$,	then the value of <i>r</i>	is equal to	22 15 5 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	(A) 2	(B) 4	(C) 6	(D) 3	(E) 5
28.	The sum of t	the coefficients in t	the expansion of ($(1+2x-x^2)^{20}$ is	22. (A)
	(A) 2 ²⁰	(B) 2 ²¹	(C) 2 ¹⁹	(D) 2 ⁴⁰	(E) 2

Maths-II-B1/2020

8

29.	The number of v is	ways a committee	of 4 people	can be chosen from	a panel of 10	people
	(A) 315	(B) 240	(C) 210	(D) 720	(E) 120	
30.	If $A = \begin{pmatrix} 6 & 2 \\ 7 & -5 \end{pmatrix}$	and $A-B = \left(\begin{array}{c} \\ \end{array} \right)$	$\begin{pmatrix} -2 & 1 \\ 4 & -9 \end{pmatrix},$	then $B =$		
	$(A)\begin{pmatrix} -8 & -1\\ 3 & 4 \end{pmatrix}$	(B) $\begin{pmatrix} 8 & 1 \\ -3 & -4 \end{pmatrix}$	(C) $\begin{pmatrix} 4\\11 \end{pmatrix}$		$ \begin{pmatrix} 1 \\ 4 \end{pmatrix} (E) \begin{pmatrix} 4 \\ 3 \end{pmatrix} $	$\begin{pmatrix} 1\\2 \end{pmatrix}$
		bc	ca ab			
31.	The value of the	e determinant $\begin{vmatrix} bc \\ a^3 \\ \frac{1}{a} \end{vmatrix}$	$b^3 c^3$ is		1201 7 1 ₂ * 2	
		$\left \frac{1}{a}\right $	$\frac{1}{b} \frac{1}{c}$			35.
	(A) $a^5 - 1$	(B) a^2bc+ab^2	$c + abc^2$ (C) ab	(a+b+c)	
	(D) $a^4 b^4 c^4 (a +$) 0			
		1 2 -1]				
32.	If the matrix -	$\begin{bmatrix} -3 & 4 & k \\ -4 & 2 & 6 \end{bmatrix}$ is sin	gular, then th	ne value of k is equa	l to	
	(A) 3	(B) 4	(C) 5	(D) 6	(E) 7	
		Sn	ace for rough u	ork		

Maths-II-B1/2020

•

33. If
$$\begin{bmatrix} -1 & 3 \\ 4 & -5 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 7 \end{bmatrix} = \begin{bmatrix} -1 & 19 \\ \alpha & -27 \\ 0 & 14 \end{bmatrix}$$
, then the value of α is
(A) 5 (B) 4 (C) 7 (D) -14 (E) -5
34. If $A^{-1} = \frac{1}{11} \begin{pmatrix} -3 & 4 \\ 5 & -3 \end{pmatrix}$, then $A =$
(A) $\frac{-1}{11} \begin{pmatrix} 3 & 4 \\ 5 & 3 \end{pmatrix}$ (B) $\frac{1}{11} \begin{pmatrix} 3 & 4 \\ 5 & 3 \end{pmatrix}$ (C) $\begin{pmatrix} 3 & -4 \\ -5 & 3 \end{pmatrix}$

(D) $\begin{pmatrix} 3 & 4 \\ 5 & 3 \end{pmatrix}$ (E) $\begin{pmatrix} -3 & 4 \\ 5 & -3 \end{pmatrix}$

35. The system of equations

$$x + y + 2z = 4$$

3x + 3y + 6z = 17
5x - 3y + 2z = 27

has

(A) no solution

(C) infinitely many solutions

(E) unique and non-trivial solution

(B) finitely many solutions

(D) unique and trivial solution

Space for rough work

36.	The smallest prime numb	per satisfying the inequalit	$y \frac{2n-3}{3} \ge \frac{n-3}{6}$	$\frac{-1}{-1} + 1$ is
	(A) 2 (B) 3	(C) 5	(D) 7	(E) 11
	a start the second			
37.	The number of integers s	atisfying the inequality	$n^2 - 100 < 50$	is
	(A) 5 (B) 6	(C) 12	(D) 8.	(E) 10
38.	The solution set of the ra	tional inequality $\frac{x+9}{x-6} \le$	0 is	
	(A) $(-\infty,9) \cup (6,\infty)$	(B) $(-\infty,9] \cup (6,\infty)$	(C) (-	-∞,9]∪[6,∞)
	(D) [-9,6)	(E) (-9,6]		
39.	Which of the following s	sentences is/are statement((s)?	
	(i) 10 is less than 5.			
	(ii) All rational numbers	are real numbers.		
	(iii) Today is a sunny da	y.		
	(A) (i), (ii) and (iii)	(B) (i) and (ii) only	(C) (i) and (iii) only
	(D) (ii) and (iii) only	(E) (i) only		

Maths-II-B1/2020

40.	The value of	$\theta \in \theta \le \theta \le \theta$	0° and $\sin^2\theta + 2c$	$\cos^2 \theta = \frac{7}{4}$ is equal	l to
	(A) 15°	(B) 30°	(C) 45°	(D) 60°	(E) 75°
41.	The value of	$\sin^2 1^\circ + \sin^2 2^\circ +$	$-\sin^2 3^\circ + \dots + \sin^2$	$88^\circ + \sin^2 89^\circ$ is a	equal to
	$(A)\frac{45}{2}$	(B) $\frac{49}{2}$	$(C)\frac{89}{2}$	(D) 45	(E) 89
42.	The value of	$\sin^4\frac{\pi}{8} + \sin^4\frac{3\pi}{8}$	is equal to		
	(A) $\frac{5}{8}$	(B) $\frac{3}{4}$ (6)	C) $\frac{3}{\sqrt{2}}$	(D) $\frac{3}{8}$	(E) $\frac{5}{4}$
43.	The value of	$\sin(45^\circ + \theta) - \cos(\theta)$	$(45^\circ - \theta)$ is equal	to	
	(A) 1	(B) $\cos\theta$	(C) $\sin \theta$	(D) $2\cos\theta$	(E) 0
44.	The values o	$fx \text{ in } 0 \le x \le \pi $ su	ch that $\cos 2x = \cos 2x$	os x are	
	(A) 0 and $\frac{2\pi}{3}$	(B) $\frac{\pi}{3}$ and $\frac{2\pi}{3}$	(C) 0 and $\frac{\pi}{3}$	(D) $\frac{\pi}{4}$ and $\frac{\pi}{3}$	(E) 0 and $\frac{\pi}{2}$

45.	The value of 10) $\tan(\cot^{-1}3 + \cot^{-1}3)$	$^{-1}$ 7) is equal to			
	(A) 3	(B) 5	(C) 7	(D) 9	(E) 10	
		n gener Litza er		panel n L The		
46.	If $\tan x + \tan y$	$x = \frac{5}{6}$ and $\cot x + c$	$\cot y = 5$, then tar	(x+y) is		
	$(A)\frac{6}{5}$	(B) $\frac{5}{6}$	(C) 5	(D) 6	(E) 1	
47.	$\frac{\sin 91^\circ + \sin 1^\circ}{\sin 91^\circ - \sin 1^\circ}$	erd Sile a				
	(A) tan 46°	(B) cot 46°	(C) sin 46°	(D) cos 46°	(E) 1	
48.	The value of c	$\cos\left(\cos^{-1}\frac{1}{5}+2\sin^{-1}\frac{1}{5}\right)$	$\left(1-\frac{1}{5}\right)$ is equal to			
	$(A)\frac{4}{5}$	(B) $\frac{-4}{5}$	(C) $\frac{3}{5}$	(D) $\frac{-1}{5}$	(E) $\frac{1}{5}$	

Maths-II-B1/2020

49.	49. The equation of the line passing through the point $(-3, 7)$ with slope zero is					
	(A) $x = 7$		(C) $x = -3$		(E) $x = 0$	
50.	The line $y = m$ of $a + m$ is eq		e parabola $y = ax$	$x^2 + 5x - 2$ at (1,	5). Then the value	
	(A) 1	(B) 2	(C) 3	(D) 4	(E) 5	
51.	If the points \tilde{H} equal to	P(7,5), Q(a,2a)	and <i>R</i> (12,30) ar	e collinear, then	the value of a is	
	(A) 5	(B) 6	(C) 8	(D) 9	(E) 10	
52.	If the straight 1 equal to	ines $4x + 6y = 5$	and $6x + ky = 3$	are parallel, ther	the value of k is	
	(A) $\frac{-2}{3}$	(B) 8	(C) 9	(D) 10	(E) $\frac{3}{2}$	
53.	If $(a,2)$ is the p	oint of intersection	on of the straight 1	lines $y = 2x - 4$	and $y = x + c$, then	
	the value of c is					
	(A) –1	(B) 3	(C) –2	(D) –3	(E) 1	

54. The maximum value of z = 7x + 5y subject to $2x + y \le 100$, $4x + 3y \le 240$, $x \ge 0$, $y \ge 0$ is (A) 350 (B) 380 (C) 400 (D) 410 (E) 420

55. A circle with centre at (3, 6) passes through (-1, 1). Its equation is

(A) $x^{2} + y^{2} - 6x - 12y + 3 = 0$ (B) $x^{2} + y^{2} + 6x - 10y + 3 = 0$ (C) $x^{2} + y^{2} - 3x - 6y + 1 = 0$ (D) $x^{2} + y^{2} + 5x + 9y + 5 = 0$ (E) $x^{2} + y^{2} - 6x - 12y + 4 = 0$

56. The centre and radius of the circle $x^2 + y^2 - 4x + 2y = 0$ are

(A) (2,-1) and 5 (B) (4, 2) and $\sqrt{20}$ (C) (2,-1) and $\sqrt{5}$ (D) (-2, 1) and 5 (E) (-2, 1) and $\sqrt{5}$

57. The equation of the circle whose radius is $\sqrt{7}$ and concentric with the circle $x^2 + y^2 - 8x + 6y - 11 = 0$ is (A) $x^2 + y^2 - 8x + 6y + 7 = 0$ (B) $x^2 + y^2 - 8x + 6y + 18 = 0$ (C) $x^2 + y^2 - 8x + 6y - 4 = 0$ (D) $x^2 + y^2 - 8x + 6y - 18 = 0$ (E) $x^2 + y^2 - 8x + 6y - 7 = 0$

Space for rough work

Maths-II-B1/2020

58. The vertex of the parabola $y = x^2 - 2x + 4$ is shifted p units to the right and then q units up. If the resulting point is (4, 5), then the values of p and q respectively are (A) 2 and 3 (B) 3 and 5 (C) 5 and 2 (D) 3 and 2 (E) 1 and 2

59. The vertex of the parabola y = (x-2)(x-8) + 7 is

(A)
$$(5, 2)$$
 (B) $(5, -2)$ (C) $(-5, -2)$ (D) $(-5, 2)$ (E) $(2, 8)$

60.The major and minor axis of the ellipse $400x^2 + 100y^2 = 40000$ respectively are(A) 100 and 20(B) 20 and 10(D) 400 and 100(E) 16 and 8

61. The eccentricity of the ellipse $x^2 + \frac{y^2}{4} = 1$ is

(A) $\sqrt{3}$ (B) $\frac{1}{2}$ (C) $\frac{\sqrt{3}}{4}$ (D) $\frac{\sqrt{3}}{2}$ (E) $\frac{1}{\sqrt{3}}$

62. The latus rectum of the hyperbola $3x^2 - 2y^2 = 6$ is

(A)
$$\frac{3}{\sqrt{2}}$$
 (B) $\frac{4}{\sqrt{3}}$ (C) $\frac{2}{\sqrt{3}}$ (D) 3 (E) $3\sqrt{2}$

Space for rough work

63. If
$$\vec{u} = \hat{i} - 3\hat{j} + 2\hat{k}$$
 and $\vec{v} = 2\hat{i} + 4\hat{j} - 5\hat{k}$, then $\left| \vec{u} \times \vec{v} \right|^2 + \left| \vec{u} \cdot \vec{v} \right|^2 =$
(A) 640 (B) 630 (C) 690 (D) 740 (E) 730

64. The direction cosines of the vector $\hat{i} - 5\hat{j} + 8\hat{k}$ are

$$(A) \left(\frac{1}{\sqrt{10}}, \frac{-5}{\sqrt{10}}, \frac{8}{\sqrt{10}}\right) \qquad (B) \left(\frac{1}{3\sqrt{10}}, \frac{-5}{3\sqrt{10}}, \frac{8}{3\sqrt{10}}\right) \qquad (C) \left(\frac{1}{3}, \frac{-5}{3}, \frac{8}{3}\right) \\(D) \left(\frac{1}{3\sqrt{10}}, \frac{-1}{3\sqrt{10}}, \frac{1}{3\sqrt{10}}\right) \qquad (E) \left(\frac{1}{3\sqrt{10}}, \frac{5}{3\sqrt{10}}, \frac{8}{3\sqrt{10}}\right)$$

65. If $\vec{a} = \hat{i} + \hat{j} - \hat{k}$, $\vec{b} = 2\hat{i} + 3\hat{j} + \hat{k}$ and θ is the angle between them, then $\tan \theta =$ (A) $\frac{\sqrt{38}}{4}$ (B) $\frac{\sqrt{26}}{4}$ (C) $\frac{\sqrt{26}}{5}$ (D) $\frac{\sqrt{26}}{6}$ (E) $\frac{\sqrt{38}}{6}$ 66. The value of λ such that the vectors $2\hat{i} - \hat{j} + 2\hat{k}$ and $3\hat{i} + 2\lambda\hat{j}$ are perpendicular is

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

Space for rough work

Maths-II-B1/2020

[P.T.O.

17

67.	The values of	α so that $\left \alpha \hat{i} + \alpha \hat{i} \right $	$\left (\alpha+1)\hat{j}+2\hat{k} \right = 3,$	are	
	(A) 2,-4	(B) 1, 2	(C) –1, 2	(D) -2, 4	(E) 1,-2
68.	If $\vec{a} = 2\hat{i} + 2\hat{j} + \hat{j}$		$-\hat{j}+\hat{k}$, then the value		$(-\vec{b})$ is equal to
	(A) 8	(B) 7	(C) 9	(D) 11	(E) 13
69.			$\lambda \hat{j} + 3\hat{k}$. If the properties of λ are	jection of \vec{a} on	\vec{b} is equal to the
	(A) $\pm \sqrt{7}$			(D) ±3	(E) ±√5
70.	If $ \vec{a} = 2, \vec{b} $	= 3 and $\vec{a} \cdot \vec{b}$ =	=4, then $ \vec{a} - \vec{b} $ is e	equal to	
	(A)√5	(B)√7	(C)√6	(D) 5	(E) 6
71.	Which one of th	e following poi	ints lies on the straig	ght line $\frac{x-1}{2} = \frac{y}{2}$	$\frac{+1}{4} = \frac{z-2}{-2}?$
	(A) (2, 6, −2)	(B) (4, 3, 1)	(C) (3, 4, -1)	(D) (3, 3, 0)	(E) (6, 2, -1)

A plane passes through the point (0, 1, 1) and has normal vector $\hat{i} + \hat{j} + \hat{k}$. Its equation 72. is (A) x + y + z = 1(B) x + y + z = 2(C) 2x + 2y + 2z = 1(D) y + z = 2(E) v + z = 1The distance of the point (4, 2, 3) from the plane $\vec{r} \cdot (6\hat{i} + 2\hat{j} - 9\hat{k}) = 46$ is 73. $(A)\frac{23}{5}$ (B) $\frac{46}{11}$ $(C)\frac{45}{11}$ (D) $\frac{11}{45}$ (E) $\frac{5}{23}$ The sum of the intercepts made by the plane $\vec{r} \cdot (3\hat{i} + \hat{j} + 2\hat{k}) = 18$ on the co-ordinate 74. axes is (A) 30 (B) 18 (C) 33 (D) 36 (E) 27 The point at which the line $\frac{x-2}{1} = \frac{y-4}{-5} = \frac{z+3}{4}$ intersects the xy-plane is 75. (A) $\left(\frac{11}{4}, \frac{1}{4}, 0\right)$ (B) $\left(\frac{5}{4}, \frac{1}{4}, 0\right)$ (C) $\left(\frac{11}{4}, \frac{3}{4}, 0\right)$ (D) $\left(\frac{7}{4}, \frac{1}{4}, 0\right)$ (E) $\left(\frac{11}{4}, \frac{7}{4}, 0\right)$

Space for rough work

Maths-II-B1/2020

76. The Cartesian equation of the line passing through the points (1, -1, 2) and (7, 0, 5) is

(A)
$$\frac{x-1}{4} = \frac{y+1}{1} = \frac{z-2}{2}$$
 (B) $\frac{x-7}{1} = \frac{y}{-1} = \frac{z-5}{2}$ (C) $\frac{x-1}{7} = \frac{y+1}{1} = \frac{z-2}{5}$
(D) $\frac{x-1}{6} = \frac{y+1}{1} = \frac{z-2}{3}$ (E) $\frac{x-7}{6} = \frac{y}{-1} = \frac{z-5}{3}$

77. The angle between the planes x + y + z = 1 and x - 2y + 3z = 1 is

(A)
$$\cos^{-1}\left(\frac{2}{\sqrt{42}}\right)$$
 (B) $\cos^{-1}\left(\frac{5}{\sqrt{42}}\right)$ (C) $\cos^{-1}\left(\frac{3}{\sqrt{42}}\right)$
(D) $\cos^{-1}\left(\frac{1}{\sqrt{42}}\right)$ (E) $\cos^{-1}\left(\frac{4}{\sqrt{42}}\right)$

78. The equation of the plane passing through the intersection of the planes

x+2y-z=3 and x+y-3z=5 and passing through the point (1,-1,0) is

(A)
$$x + 7y + 6z + 6 = 0$$
 (B) $x - 6y - 7z + 5 = 0$ (C) $x + 7y + 6z + 5 = 0$

$$(E)x+6y+7z+5=0$$

Space for rough work

Maths-II-B1/2020

(D) x + 6y - 7z - 5 = 0

	(A) $\frac{1}{2}$		producinty that th	from the set {1, 2, 3, 4, the resulting sequence is an $(D)\frac{1}{10} \qquad (E)$	A.P. is
	rince differ	ent numbers are	e chosen at random	from the set $\{1, 2, 3, 4,, 1,$	
81.	$(A) = \frac{1}{6}$	(B) $\frac{3}{36}$	$(C)\frac{1}{18}$	(D) $\frac{1}{9}$ (E)	$\frac{1}{12}$
80.			and stanioers on th	ch are numbered 2, 3, 5, e top faces being a prime n	· · · · ·
	(A) 62	(B) 72	(C) 70	(D) 52 (E) 60	
	The average the class, the class of the marks of the	te marks of 30 the average man e two left out stu	students in a class w ks of the remaining idents is	as 80. After two students students was 82. Then th	left out of e average

Maths-II-B1/2020

83. If A and B are mutually exclusive events such that p(A) = 0.5 and $p(A \cup B) = 0.75$, then P(B) is equal to

(A) 0.4 (B) 0.25 (C) 0.5 (D) 0.6 (E) 0.75

- **84.** A jar contains 7 black balls, 6 yellow balls, 4 green balls and 3 red balls. All of them are of same size and weight. If a ball is drawn at random, then the probability of the ball being red is
 - (A) $\frac{1}{5}$ (B) $\frac{3}{20}$ (C) $\frac{1}{10}$ (D) $\frac{3}{10}$ (E) $\frac{1}{20}$

85.

Let the probability distribution of a random variable X be given by

	X	-1	0	. 1	2	3	
	p(X)	a	2 <i>a</i>	3 <i>a</i>	4 <i>a</i>	5a	
Then the e	xpectation	of X is					
1.		1		_ 2	1.0	4	

Space for rough work

Let $f(x) = \begin{cases} 1-5x, & \text{if } x < -2\\ x^2 - 2x, & \text{if } -2 \le x \le 1\\ -1 + 2x, & \text{if } x > 1. \end{cases}$ 86. Then the value of f(-1) is equal to (A) - 3(B) 3 (C) -1 (D) 1 (E) 0 The general solution of $\frac{dy}{dx} = \frac{2x - y}{x + 2y}$ is given by 87. (A) $x^2 - y^2 - xy = C$ (B) $x^2 + y^2 + xy = C$ (C) $x^2 + 2y^2 + y + x = C$ (D) $2x^2 + y^2 + xy + y = C$ (E) $x^2 - y^2 - xy + x = C$ $\lim_{x \to 3} \frac{e^{x-3} - x + 1}{x^2 - \log(x-2)}$ is equal to 88. (A) $\frac{-1}{3}$ (B) $\frac{-2}{9}$ (D) $\frac{-1}{4}$ (C) $\frac{-1}{2}$ (E) $\frac{-1}{9}$

Space for rough work

Maths-II-B1/2020

89.	$\lim_{x \to 4} \frac{\sqrt{x^2 + 9} - 1}{x - 4}$	$\frac{5}{-}$ is equal to				
	(A) $\frac{2}{5}$	(B) $\frac{8}{25}$	(C) 0	(D) $\frac{8}{5}$	(E) $\frac{4}{5}$	
90.	Let $f(x) = \begin{cases} c \\ c$	$x^2 + 2x, \text{ if } x < 2$ $2x + 4, \text{ if } x \ge 2$				
	If the functior	f is continuous o	on $(-\infty,\infty)$, the	on the value of c	is equal to	
	(A) 4	(B) 2	(C) 3	(D) 1	(E) 5	
91.	$\lim_{x \to 0} \frac{x^{100} \sin 7}{(\sin x)^{101}}$	$\frac{x}{x}$ is equal to				
	(A) 7	(B) $\frac{1}{7}$	(C) 14	(D) 1	(E) 0	
92.	Let $f(x) = \frac{5}{2}x$	$e^2 - e^x$. Then the ve	alue of c such th	hat $f''(c) = 0$ is		
	(A) 1	(B) log 5	(C) 5e	(D) e^{5}	(E) 0	
·	· · · · · · · · · · · · · · · · · · ·	0	fan nau ak man	1-		-

0.2		or dv			
93.	If $y = (\cos x)$	$\frac{dy}{dx}$, then $\frac{dy}{dx}$ is equivalent to the second	lual to		
	(A) $2(\cos x)^2$	$x(\sin x - x \tan x)$	(B)	$2(\cos x)^{2x} [\log($	$(\cos x) + x \tan x$
	(C) $2(\sin x)^2$	$x \left[\log(\cos x) - x \mathrm{tx} \right]$	an x] (D)	$2(\sin x)^{2x}x\cot x$	x
	(E) $2(\cos x)^2$	$x [\log(\cos x) - xt]$	an x]		
94.	If $x^3 + 2xy + \frac{1}{2}$	$\frac{1}{3}y^3 = \frac{11}{3}$, then $\frac{3}{2}$	$\frac{dy}{dx}$ at (2,-1) is		
	(A)-2	(B) 2	(C) 5	(D)-5	(E) –10
	ſ	2 6 11			
95.	Let $f(r) = d$	$x^{2}, \text{ for } x \leq 1$ 1, for $1 < x \leq 1$	per l'andor		
		-2x, for x > 3	3		
	torget line	2x, for $x > 5$			
	Then $f'(6)$ is	equal to			
	(A) –7	(B) 3	(C) –2	(D) –3	(E) 2
96.	Given $F(x) =$	$\left(f(g(x))\right)^2, g(x)$	(1) = 2, g'(1) = 3	f(2) = 4 and	f'(2) = 5. Then the
	value of $F'(1)$	is equal to			ाल्य ज्यांते आहे. आह
-	(A) 25	(B) 100	(C) 75	(D) 50	(E) 120

Maths-II-B1/2020

97.

98.

- If $y = 2 + \sqrt{u}$ and $u = x^3 + 1$, then $\frac{dy}{dx} =$
- (A) $\frac{x^2}{2\sqrt{x^3+1}}$ (B) $\frac{3x^2}{\sqrt{x^3+1}}$ (C) $\frac{3x^2}{2\sqrt{x^3+1}}$ (D) $3x^2\sqrt{x^3+1}$ (E) $x^2\sqrt{x^3+1}$

The equation of the tangent to $y = -2x^2 + 3$ at x = 1 is (A) y = -4x (B) y = -4x + 5(D) y = 4x + 5 (E) y = -4x + 3

99. The function f given by $f(x) = x^3 e^x$ is increasing on the interval

(A) $(0,\infty)$ (B) $(3,\infty)$ (C) $(-3,\infty)$ (D) (-3,3) (E) $(-\infty,-3)$

(C) y = 4x

100. Let $f(x) = \sqrt{x}$, $4 \le x \le 16$. If the point $c \in (4, 16)$ is such that the tangent line to the graph of f at x = c is parallel to the chord joining (16, 4) and (4, 2), then the value of c is

(A) 7 (B) 9 (C) 10 (D) 11 (E) 14

101. The function f given by $f(x) = (x^2 - 3)e^x$ is decreasing on the interval

(A) $(-3, \infty)$ (B) $(1, \infty)$ (C) $(-\infty, 1)$ (D) $(-\infty, -3)$ (E) (-3, 1)

Space for rough work

102	. The equation of normal to	the curve $y = \frac{2}{x^2}$ at the p	point on the curve where $x = 1$, is
	(A) $4y - x - 7 = 0$ (D) $y - x - 1 = 0$	(B) $y-4x+2=0$ (E) $4y+x+7=0$	(C) $4y + x - 9 = 0$
103.	The local minimum value	The State of the	$f(x) = x^2 - x, x \in \mathbb{R}$, is
	(A) $\frac{1}{2}$ (B) $\frac{1}{4}$	(C) $\frac{-1}{4}$	(D) $\frac{3}{4}$ (E) $\frac{-1}{2}$
104.	$\int 3x^2 (x^3 + 1)^{10} dx =$		no provi A Provincia A Provincia
	(A) $\frac{(x^3+1)^{11}}{11} + C$	(B) $\frac{(x^3+1)^9}{9} + C$	(C) $\frac{(x^3+1)^{11}}{33} + C$
	(D) $\frac{(x^3+1)^{11}}{11} + x^3 + C$	(E) $\frac{(x^3+1)^{11}}{10} + C$	
	$\int \frac{2x + \sin 2x}{1 + \cos 2x} dx =$		
	(A) $x^2 \sec x + C$ (D) $x \sec x + C$	(B) $x + \tan x + C$ (E) $x \tan x + C$	(C) $x^2 \tan x + C$

Maths-II-B1/2020

27

106.
$$\int \frac{1}{x^2 - 25} dx =$$
(A) $\log \left| \frac{x - 5}{x + 5} \right| + C$
(B) $\log \left| \frac{x + 5}{x - 5} \right| + C$
(C) $\frac{1}{5} \log \left| \frac{x - 5}{x + 5} \right| + C$
(D) $\frac{1}{10} \log \left| \frac{x - 5}{x + 5} \right| + C$
(E) $\frac{1}{5} \log \left| \frac{x + 5}{x - 5} \right| + C$

107.
$$\int \frac{1}{x(\log x)} dx =$$
(A) $\log |\log x| + C$
(B) $\frac{(\log |x|)^2}{2} + C$
(C) $\log |x| + C$
(D) $\frac{1}{\log |x|} + C$
(E) $\frac{1}{(\log |x|)^2} + C$

108.
$$\int e^{x} \sec x (1 + \tan x) dx =$$
(A) $e^{x} \tan x + C$
(B) $e^{x} + \sec x + C$
(C) $e^{-x} \sec x + C$
(D) $e^{x} + \tan x + C$
(E) $e^{x} \sec x + C$
109.
$$\int \frac{1}{x + \sqrt{x}} dx =$$
(A) $\log |1 + \sqrt{x}| + C$
(B) $2 \log |1 - \sqrt{x}| + C$
(C) $\log |1 - \sqrt{x}| + C$

(E) $2\log|x+\sqrt{x}|+C$

Maths-II-B1/2020

(D) $2\log|1+\sqrt{x}|+C$

Maths-II-B1/2020

29

114.	The area of the region bounded by $y = x $, $y = 0$, $x = 3$ and $x = -3$ is (in square units)						
	(A) 3	(B) 6	(C) 7	(D) 9	(E) 10		
		e ² .					
115.	The value of	$\int_{e}^{1} \frac{1}{x} dx \text{ is equ}$	al to				
	(A) <i>e</i>	(B) 1	(C) e^2	(D) $e^2 - e$	(E) 0		
116.	$\int_{-3}^{3} x+2 dx =$						
	(A) 17	(B) 9	(C) 14	(D) 13	(E) 12		
117.	The order and degree of the differential equation $\frac{d^2 y}{dx^2} + \sqrt{x^2 + \left(\frac{dy}{dx}\right)^{3/2}} = 0$						
	are respective	ly					
	(A) 2, 4	(B) 2, 3	(C) 2, 2	(D) 3, 4	(E) 4, 3		
- C 11	the spectrum of the second	The Party Service	Same from 1 1	the second second			

118. The general solution of the differential equation $xy' + y = x^2$, x > 0 is

(A)
$$y = \frac{x^2}{2} + Cx$$
 (B) $y = \frac{x^3}{3} + C$ (C) $y = \frac{x^2}{3} + C$
(D) $y = \frac{x^3}{3} + \frac{C}{x}$ (E) $y = \frac{x^2}{3} + \frac{C}{x}$

119. The integrating factor of the differential equation $3xy' - y = 1 + \log x$, x > 0 is

(A) $\log x$ (B) $\frac{1}{x}$ (C) $x^{-1/3}$ (D) $\frac{1}{x^3}$ (E) $x^{1/3}$

120. Elimination of arbitrary constants A and B from $y = \frac{A}{x} + B$, x > 0 leads to the differential equation

(A)
$$x \frac{d^2 y}{dx^2} + 2 \frac{dy}{dx} = 0$$
 (B) $x^2 \frac{d^2 y}{dx^2} + 2 \frac{dy}{dx} = 0$ (C) $x^2 \frac{d^2 y}{dx^2} + \frac{dy}{dx} = 0$
(D) $x \frac{d^2 y}{dx^2} - 2 \frac{dy}{dx} = 0$ (E) $x \frac{d^2 y}{dx^2} - \frac{dy}{dx} = 0$

Space for rough work

BLANK PAGE

Maths-II-B1/2020

SEA