Telangana State Council Higher Education

Notations:

- Options shown in green color and with vicon are correct.
- 2. Options shown in red color and with * icon are incorrect.

Question Paper Name: Civil Engineering 11th May 2019 Shift1

Subject Name: Civil Engineering
Creation Date: 2019-05-11 13:35:19

Duration:180Total Marks:200Display Marks:NoShare Answer Key With DeliveryYes

Engine:

Actual Answer Key: Yes **Calculator:** None Magnifying Glass Required?: No Ruler Required?: No **Eraser Required?:** No **Scratch Pad Required?:** No Rough Sketch/Notepad Required?: No **Protractor Required?:** No **Show Watermark on Console?:** Yes **Highlighter:** No **Auto Save on Console?:** No

Civil Engineering

Group Number:	1
Group Id:	89465819
Group Maximum Duration :	0
Group Minimum Duration :	180
Revisit allowed for view?:	No
Revisit allowed for edit?:	No
Break time:	0
Group Marks:	200

Mathematics

Section Id: 89465871 **Section Number:** 1 Online **Section type: Mandatory or Optional:** Mandatory **Number of Questions:** 50 **Number of Questions to be attempted:** 50 **Section Marks:** 50 **Display Number Panel:** Yes **Group All Questions:** No

Sub-Section Number:

Sub-Section Id: 89465881 **Question Shuffling Allowed:** Yes

Question Number: 1 Question Id: 8946583609 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No. Option Option: Vertical

Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

Let $M = (a_{ij})$ be a 10×10 matrix such that $a_{ij} = \begin{cases} 1, & \text{if } i+j=11 \\ 0, & \text{otherwise} \end{cases}$. Then, the

determinant of M is _____.

Options:

- 1 * 0
- 2 💥 🚶
- J
- 4 * 11

Question Number: 2 Question Id: 8946583610 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Let A and B be two square matrices of order n. If AB = A, BA = B then $A^2 + B^2 =$ ____.

Options:

- 1 × AB
- 2. **≈** A−B
- 3 * 0
- A+B

Question Number: 3 Question Id: 8946583611 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Consider the system of linear equations x + y + z = 3, x - y - z = 4, $x - 5y + \alpha z = 6$. Then,

the value of α for which this system has an infinite number of solutions is _____.

Question Number: 4 Question Id: 8946583612 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

If
$$A(\alpha, \beta) = \begin{pmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & e^{\beta} \end{pmatrix}$$
, then the inverse of the matrix $A(\alpha, \beta)$ is ______.

Options:

$$A(\alpha,\beta)$$

$$_{2} \approx A(\alpha, -\beta)$$

3.
$$\checkmark$$
 $A(-\alpha, -\beta)$
4. \checkmark $A(-\alpha, \beta)$

$$_{4} \times A(-\alpha,\beta)$$

Question Number: 5 Question Id: 8946583613 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The rational fraction $\frac{x^2+1}{(x^2+4)(x-2)}$ is equal to _____

$$\frac{3x+6}{8(x^2+4)} + \frac{5}{4(x-2)}$$

$$\frac{3x+6}{4(x^2+4)} + \frac{5}{8(x-2)}$$

$$3x+6 \over 8(x^2+4) + \frac{5}{8(x-2)}$$

$$\frac{3x+6}{(x^2+4)} + \frac{5}{(x-2)}$$

Question Number : 6 Question Id : 8946583614 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

If
$$\log_2 3 = a, \log_3 5 = b, \log_7 2 = c$$
, then $\log_{140} 63 =$ _____.

Options:

$$\frac{1-2ac}{2c+abc+1}$$

$$\frac{1-2ac}{2c-abc-1}$$

$$\frac{1+2ac}{2c-abc-1}$$

$$\frac{1+2ac}{2c+abc+1}$$

Question Number: 7 Question Id: 8946583615 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

$$\cos\frac{2\pi}{7} + \cos\frac{4\pi}{7} + \cos\frac{6\pi}{7} = \underline{\hspace{1cm}}.$$

$$\frac{1}{2}$$

$$\frac{-1}{2}$$

Question Number: 8 Question Id: 8946583616 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

If the angles A, B and C of a triangle are in an arithmetic progression and if a, b and c denote the lengths of the sides opposite to A, B and C respectively, then the value of the expression $\frac{a}{c}\sin 2C + \frac{c}{a}\sin 2A$ is -.

Options:

$$\frac{\sqrt{3}}{2}$$

Question Number : 9 Question Id : 8946583617 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

If
$$\sin x + \sin y = \frac{1}{4}$$
 and $\cos x + \cos y = \frac{1}{3}$, then $\cot(x+y) = \underline{\hspace{1cm}}$.

$$\frac{3}{4}$$

Question Number: 10 Question Id: 8946583618 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

If $\sin(x^{\circ} + 28^{\circ}) = \cos(3x^{\circ} - 78^{\circ})$ and $0^{\circ} < x^{\circ} < 90^{\circ}$, then, which of the following is the

value of x° ?

Options:

Question Number: 11 Question Id: 8946583619 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

If
$$x = \tan\left(\operatorname{Cosec}^{-1}\frac{65}{63}\right)$$
 and $y = \sec^2\left(\operatorname{Cot}^{-1}\frac{1}{2}\right) + \cos ec^2\left(\operatorname{Tan}^{-1}\frac{1}{3}\right)$, then $(x, y) = \underline{\qquad}$.

Options:

$$\left(\frac{63}{16},15\right)$$

$$\left(\frac{16}{63},15\right)$$

$$\left(\frac{63}{16},5\right)$$

$$\left(\frac{16}{63},5\right)$$

Question Number: 12 Question Id: 8946583620 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The equation $Tan^{-1} \left(\frac{x+1}{x-1} \right) + Tan^{-1} \left(\frac{x-1}{x} \right) = Tan^{-1} \left(-7 \right)$ has ______.

Options:

unique solution x = 2

- two solutions x = 1, 2
- no solution
- infinite number of solutions

 $Question\ Number: 13\ Question\ Id: 8946583621\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Correct Marks: 1 Wrong Marks: 0

In a triangle ABC, let a, b and c denote the lengths of the sides opposite to

A, B and C respectively. If $\frac{1}{a+c} + \frac{1}{b+c} = \frac{3}{a+b+c}$, then the angle C is _____.

Options:

- 1. * 30°
- 90°
- ≥ ✓ 60
- 4. × 45°

Question Number: 14 Question Id: 8946583622 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

If $\sin hx = 3$ then x =_____.

- $\log(3+\sqrt{10})$
- $\log(3-\sqrt{10})$

$$\log(6+\sqrt{10})$$

, **x** 1

Question Number: 15 Question Id: 8946583623 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks : 1 Wrong Marks : 0

Which of the following is NOT true for the complex numbers z_1 and z_2 ?

Options:

$$\frac{z_1}{z_2} = \frac{z_1 \overline{z}_2}{\left|z_2\right|^2}$$

$$|z_1 + z_2| \le |z_1| + |z_2|$$

$$|z_1+z_2|\leq ||z_1|-|z_2||$$

$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2|z_1|^2 + 2|z_2|^2$$

Question Number: 16 Question Id: 8946583624 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

If a complex number $z = \frac{\sqrt{3}}{2} + i\frac{1}{2}$, then z^4 is ______.

$$2\sqrt{2} + 2i$$

$$\frac{-1}{2} + i \frac{\sqrt{3}}{2}$$

$$\frac{\sqrt{3}}{2} - i\frac{1}{2}$$

$$\frac{\sqrt{3}}{8} - i\frac{1}{8}$$

Question Number: 17 Question Id: 8946583625 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The equation of the straight line which makes intercepts r and s on the coordinate axes

such that r+s=5 and rs=6 is ax+by+c=0, then a+b+c=

Options:

- 1 * 11
- o x 5
- -7
- 4 / -1

Question Number: 18 Question Id: 8946583626 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

If a straight line $ax + by + \sqrt{5} = 0$ touches the circle $x^2 + y^2 = 5$, then which of the

following is TRUE?

Options:

$$5(a^2+b^2)=1$$

$$a^2 + b^2 = \sqrt{5}$$

$$a^2 + b^2 = 1$$

$$\sqrt{a^2 + b^2} = 5$$

Question Number: 19 Question Id: 8946583627 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

If a chord of length 12 cm is at a distance of $4\sqrt{10}$ cm from the centre of the circle, then

the radius of the circle is ...

$$_{2} * \sqrt{304} \text{ cm}$$

$$\sqrt{124}$$
 cm

Question Number : 20 Question Id : 8946583628 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

The 2019th derivative of the function $(x-1)e^{-x}$ is _____

Options:

$$\frac{x-2019}{e^x}$$

$$\begin{array}{c}
2019 - x \\
e^{x}
\end{array}$$

$$x - 2020$$

$$e^{x}$$

$$\begin{array}{c}
2020 - x \\
e^{x}
\end{array}$$

 $Question\ Number: 21\ Question\ Id: 8946583629\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Correct Marks: 1 Wrong Marks: 0

If
$$z = f(x+ct) + \varphi(x-ct)$$
, then $\frac{\partial^2 z}{\partial t^2} = \underline{\qquad}$.

$$c^2 \frac{\partial^2 z}{\partial x^2}$$

$$-c^2 \frac{\partial^2 z}{\partial x^2}$$

$$\frac{1}{c^2} \frac{\partial^2 z}{\partial x^2}$$

$$-\frac{1}{c^2}\frac{\partial^2 z}{\partial x^2}$$

Question Number: 22 Question Id: 8946583630 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

If
$$x = r \cos \theta$$
, $y = r \sin \theta$ and $U = \frac{f(\theta)}{r}$ then $x \frac{\partial U}{\partial x} + y \frac{\partial U}{\partial y} = \underline{\qquad}$.

Options:

Question Number: 23 Question Id: 8946583631 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Let
$$f(x+y) = f(x)f(y)$$
, $\forall x, y$ and $f'(0) = 5$, $f(2019) = 15$. Then the value of $f'(2019)$ is _____.

Question Number: 24 Question Id: 8946583632 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The set of values of x for which the function $f(x) = 2x^3 - 9x^2 + 12x + 4$ is increasing

is .

Options:

all
$$x \in \mathbb{R}$$

$$\mathbb{R}$$
 -[1, 2]

$$x \ge 2$$

 $Question\ Number: 25\ Question\ Id: 8946583633\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Correct Marks: 1 Wrong Marks: 0

$$\lim_{x \to \infty} x \left(\log \left(1 + \frac{x}{2} \right) - \log \left(\frac{x}{2} \right) \right) = \underline{\hspace{1cm}}.$$

Options:

$$e^2$$

Question Number : 26 Question Id : 8946583634 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

If
$$f(x, y, z) = x^3 + xz^2 + y^3 + xyz$$
, $x = e^t$, $y = \cos t$, $z = t^3$ then $\frac{df}{dt}$ at $t = 0$ is _____.

- . * 2
- o × 4
- 2 × e
- 4. 🗸 3

Question Number: 27 Question Id: 8946583635 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Which of the following is the value of $5050 \times \frac{\int_0^1 (1 - (1 - x)^{50})^{100} x^{49} dx}{\int_0^1 (1 - x^{50})^{101} x^{49} dx}$?

Options:

- 1. 🗸 5100
- 2 * 1
- 3. **3** 5050
- 4 * 2

Question Number : 28 Question Id : 8946583636 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

$$\int_0^1 \max \left\{ x, \frac{1}{2} - x \right\} dx = \underline{\qquad}.$$

- 1 * 0
- 2. * 2
- 3. **√** 16

$$\frac{9}{8}$$

Question Number: 29 Question Id: 8946583637 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

$$\lim_{n \to \infty} \frac{1}{n^6} \sum_{k=1}^{n} k^5 = \underline{\hspace{1cm}}.$$

Options:

$$\frac{1}{6}$$

Question Number : 30 Question Id : 8946583638 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

$$\int_{-1}^{1} \frac{x^{15} (1 - x^2)^{12}}{(1 + x^2)^8} dx = \underline{\hspace{1cm}}.$$

$$\frac{22}{7} - \pi$$

$$\frac{71}{15} - \frac{3\pi}{4}$$

The area of the region bounded by the curves $y = 2 - x^2$ and y = -x is _____.

Options:

- 1 %
- 8 19
- 35 3. * 4
- $\frac{2^{\prime}}{6}$

Question Number : 32 Question Id : 8946583640 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

The volume of the solid obtained by revolving the region bounded by the curves

 $y = x^3$, y = 8 and x = 0 about the y-axis is _____

Options:

- 96 1 * 5
- 96π
- $\frac{32\pi}{5}$
- 32

 $Question\ Number: 33\ Question\ Id: 8946583641\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Correct Marks: 1 Wrong Marks: 0

The value of $\int_0^{\pi} \theta \sin^2 \theta \cos^4 \theta d\theta$ is _____.

$$\frac{\pi^2}{32}$$

- $\frac{\pi}{32}$
- $\frac{\pi^2}{16}$
- $\frac{\pi}{4} \approx \frac{16}{16}$

Question Number: 34 Question Id: 8946583642 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The average value of the function $f(x) = 4 - x^2$ over the interval [-1, 3] is _____.

Options:

- 1 💥 5
- 20
- $\frac{5}{3}$
- ₄ * 1

Question Number : 35 Question Id : 8946583643 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

The differential equation $x \frac{dy}{dx} = y + x^2$, x > 0 satisfying y(0) = 0 has ______.

- infinitely many solutions
- no solution
- a unique solution
- 4. * exactly two solutions

Question Number: 36 Question Id: 8946583644 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The differential equation $(axy^3 + y\cos x)dx + (x^2y^2 + b\sin x)dy = 0$ is an exact

differential equation for ______.

Options:

$$a = 1, b = \frac{3}{2}$$

$$a = \frac{3}{2}, b = 1$$

$$a = \frac{2}{3}, b = 1$$

$$a=1, b=\frac{2}{3}$$

Question Number : 37 Question Id : 8946583645 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

If $\sin x$ is a solution of the differential equation $\frac{d^4y}{dx^4} + 2\frac{d^3y}{dx^3} + 6\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y = 0$,

then the general solution is ______.

Options:

$$y = c_1 \sin x + c_2 \cos x + e^{-x} (c_3 \sin 2x + c_4 \cos 2x)$$

$$y = c_1 \sin x + c_2 \cos x + c_3 \sin 2x + c_4 \cos 2x$$

$$y = c_1 \sin x + c_2 \cos x + c_3 e^{-3x} + c_4 e^{-2x}$$

$$y = c_1 \sin x + c_2 \cos x + c_3 e^{3x} + c_4 e^{2x}$$

Question Number : 38 Question Id : 8946583646 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

If
$$D = \frac{d}{dx}$$
, then $\frac{1}{D^2 - 4D + 13} (6e^{2x} \sin 3x)$ is _____.

Options:

$$-xe^{2x}\cos 3x$$

$$xe^{2x}\cos 3x$$

$$-xe^{2x}\sin 3x$$

$$xe^{2x} \sin 3x$$

Question Number : 39 Question Id : 8946583647 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

The general solution of $\left(\frac{e^{-2\sqrt{x}}}{\sqrt{x}} - \frac{y}{\sqrt{x}}\right) \frac{dx}{dy} = 1$ is ______.

Options:

$$y = e^{2\sqrt{x}} (2\sqrt{x} + c)$$

$$y = 2\sqrt{x} e^{2\sqrt{x}} + c$$

$$y = 2\sqrt{x} e^{-2\sqrt{x}} + c$$

$$y = e^{-2\sqrt{x}} \left(2\sqrt{x} + c \right)$$

Question Number : 40 Question Id : 8946583648 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

Let y be the solution of the differential equation $\frac{dy}{dx} + y = x$, $x \in \mathbb{R}$ and y(-1) = 0.

Then, y(1) is equal to _____.

$$\frac{2}{e} - \frac{2}{e^2}$$

$$2-\frac{2}{e}$$

$$_{4} \approx 2-2\epsilon$$

Question Number : 41 Question Id : 8946583649 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

If the substitution x = X + h, y = Y + k transforms the differential equation

(y-x+1)dy-(y+x+2)dx=0 into a homogeneous equation, then the

value of (h,k) is _____.

Options:

$$\left(\frac{1}{2},\frac{3}{2}\right)$$

$$\left(\frac{-1}{2}, \frac{-3}{2}\right)$$

$$\left(\frac{3}{2},\frac{1}{2}\right)$$

$$\left(\frac{-3}{2},\frac{-1}{2}\right)$$

Question Number : 42 Question Id : 8946583650 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

The general solution of $\frac{dy}{dx} - y = y^2(\sin x + \cos x)$ is _____.

$$y = \frac{1}{ce^x - \sin x}$$

$$y = ce^{-x} - e^x \sin x$$

$$y = ce^{-x} - \sin x$$

$$y = \frac{1}{ce^{-x} - \sin x}$$

Question Number: 43 Question Id: 8946583651 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The Laplace transform of the function $f(t) = \begin{cases} \sin t, & \text{for } 0 \le t \le \pi \\ 0, & \text{for } t > \pi \end{cases}$

is ______

Options:

$$\frac{1}{(1+s^2)} \text{ for all } s > 0$$

$$\frac{1}{(1+s^2)} \text{ for all } s < \pi$$

$$\frac{(1+e^{-\pi s})}{(1+s^2)} \text{ for all } s > 0$$

$$\frac{e^{-\pi s}}{(1+s^2)} \text{ for all } s > 0$$

Question Number: 44 Question Id: 8946583652 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The inverse Laplace transform of $\frac{5}{s} - \frac{3e^{-3s}}{s} - \frac{2e^{-7s}}{s}$ is ______.

$$f(x) = \begin{cases} 5, & 0 < x < 3 \\ 0, & 3 < x < 7 \\ 2, & x > 7 \end{cases}$$

$$f(x) = \begin{cases} 5, & 0 < x < 7 \\ 2, & x > 7 \end{cases}$$

2 *

$$f(x) = \begin{cases} 5, & 0 < x < 3 \\ 2, & 3 < x < 7 \\ 0, & x > 7 \end{cases}$$

$$f(x) = \begin{cases} 5, & 0 < x < 7 \\ 0, & x > 7 \end{cases}$$

Question Number: 45 Question Id: 8946583653 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The Laplace transform of a function f(x) is $F(s) = \frac{1}{s^3 + 2s^2 + 2s}$ Then, $\lim_{x \to 0} f(x) = \frac{1}{s^3 + 2s^2 + 2s}$

Options:

$$\frac{1}{2}$$

Question Number : 46 Question Id : 8946583654 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

The Laplace transform of the solution of the differential equation $\frac{dy}{dx} - 2y = e^{5x}$ with the

initial condition y(0) = 3 is _____.

Options:

$$\frac{1}{3(s-2)} + \frac{1}{3(s-5)}$$

$$\frac{8}{3(s-2)} + \frac{1}{s-5}$$

$$\frac{8}{3(s-2)} + \frac{1}{3(s-5)}$$

$$\frac{8}{s-2} + \frac{1}{3(s-5)}$$

Question Number: 47 Question Id: 8946583655 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

If
$$L(y(x)) = Y(s)$$
 and $y(x) = x^3 + \int_0^x \sin(x-t) y(t) dt$ then $\frac{1}{6}Y(s) =$ ______.

Options:

$$\left(\frac{1}{s^4} + \frac{1}{s^6}\right)$$

$$\left(\frac{1}{s^3} + \frac{1}{s^5}\right)$$

$$\left(\frac{1}{s^3} + \frac{1}{s^7}\right)$$

$$\left(\frac{1}{s} + \frac{1}{s^3}\right)$$

Question Number: 48 Question Id: 8946583656 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

For
$$x > 0$$
, $\int_0^\infty \frac{\sin xt}{t} dt$ is _____.

Options:

$$\frac{\pi}{2x}$$

$$\frac{1}{x}$$

$$\frac{\pi}{2}$$

Question Number : 49 Question Id : 8946583657 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

If
$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
 is the Fourier series of the function

$$f(x) = \begin{cases} 0, & -\pi \le x < 0 \\ \pi, & 0 \le x \le \pi \end{cases}$$
 then, which of the following is TURE?

Options:

$$a_n = 0$$
, for all $n \ge 0$

$$a_0 = \frac{\pi}{2}$$
 and $a_n = 0$, for all $n \ge 1$

$$b_n \neq 0$$
, for all $n \ge 1$

$$a_0 = \pi$$
 and $a_n = 0$, for all $n \ge 1$

Question Number: 50 Question Id: 8946583658 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

A function
$$f(x)$$
 is such that $f(x+2\pi)=f(x)$ and $f(x)=x, -\pi \le x \le \pi$. The Fourier series of $f(x)$ is ______.

$$2(\sin x - \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x - \dots)$$

$$2(\sin x + \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x + \dots)$$

$$2(\cos x - \frac{1}{2}\cos 2x + \frac{1}{3}\cos 3x - \dots)$$

$$2(\cos x + \frac{1}{2}\cos 2x + \frac{1}{3}\cos 3x + \dots)$$

Physics

89465872 **Section Id:**

Section Number: 2

Section type: Online Mandatory **Mandatory or Optional:**

Number of Questions: 25 **Number of Questions to be attempted:** 25 25 **Section Marks: Display Number Panel:** Yes

Group All Questions: No

Sub-Section Number:

Sub-Section Id: 89465882 **Question Shuffling Allowed:** Yes

Question Number: 51 Question Id: 8946583659 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes

Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The dimensional formula for gravitational constant is . .

Question Number: 52 Question Id: 8946583660 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The dimensions of the quantities in one of the following pairs are same. Identify the pairs.

Options:

1. v torque and work

angular momentum and work

energy and Young's modules

 $_{4}$ $_{4}$ light year and wavelength

Note: For this question, ambiguity is found in question/answer. Candidate will get full marks for this question if any of the correct options are chosen.

Question Number : 53 Question Id : 8946583661 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

Which of the following is not correct?

Options:

$$j \times i = -k$$

$$k \times j = -i$$

Question Number: 54 Question Id: 8946583662 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

If 0.5 i + 0.8 j + c k is a unit vector then c is _____.

Question Number: 55 Question Id: 8946583663 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Which of the following is correct?

Options:

$$A.(B+C) = A.B+C.A$$

Question Number : 56 Question Id : 8946583664 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

The acceleration due to gravity on the surface of the earth is given by

Options:

- 1. # G
- 3 SM/R
- ₄ ¥ GM

Question Number: 57 Question Id: 8946583665 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The value of g is maximum at .

- equator
- 2. Pole

higher altitudes
at the centre of the earth
Question Number: 58 Question Id: 8946583666 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
When the speed of rotation of earth increases your weight
Options:
increases
2. decreases
remains constant
4. * becomes zero
Question Number: 59 Question Id: 8946583667 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 The value of G is zero at
Options: 1. nowhere
the centre of the earth
3. * surface of the earth
pole pole
Question Number: 60 Question Id: 8946583668 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
If the linear momentum is increased by 50%, the kinetic energy will be increased
by
Options:

1. 🝔	50%
2. 🚜	100%
3. 🗸	125%
4. 🗱	25%
Single	ion Number: 61 Question Id: 8946583669 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Line Question Option: No Option Orientation: Vertical ct Marks: 1 Wrong Marks: 0
	netallic block slides down a smooth inclined plane when released from the top, while
the	other falls freely from the same point, then
Option	ns:
1. 🗸	both will reach the ground with the same velocity
2. 🚜	both will reach the ground together
3. 🏶	both will reach the ground travelling with same acceleration
4. 🛎	the block sliding down the plane will strike earlier
Single	ion Number: 62 Question Id: 8946583670 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Line Question Option: No Option Orientation: Vertical ct Marks: 1 Wrong Marks: 0
A	long spring is stretched by 2 cm and its potential energy is u. If the spring is stretched
by	10 cm, then the potential energy stored in it will be
Option	ns:
1. 💥	u/24
2. 🕷	u/5
3. 🛎	5u
4. 🖋	25u

Question Number: 63 Question Id: 8946583671 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
Two masses of 1 gm and 4 gm are moving with equal kinetic energies. The ratio of the
magnitudes of their linear momentum is
Options:
1. * 4:1
$\sqrt{2}$:1
3. 1:2
4 * 1:16
Question Number: 64 Question Id: 8946583672 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
A body is dropped from rest at height 0.5 m. What will be its velocity when it just
strikes the ground?
Options:
1. * 7 m/s
2. 3 9.8 m/s
3. 3 4.9 m/s
$_{4.}$ \checkmark $\sqrt{9.8}$ m/s
Question Number: 65 Question Id: 8946583673 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
A particle moves such that its acceleration a is given by $a = -bx$ where x is the
displacement from equilibrium and b is a constant. The period of Oscillation is
Note: For this question, discrepancy is found in question/answer. Full Marks is being awarded to all candidates. Options:
$1. \frac{2\Pi b}{}$

2.	$2\Pi\sqrt{b}$

з. 2П/b

4.
$$2\sqrt{\Pi}/b$$

Question Number: 66 Question Id: 8946583674 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

A particle is vibrating in simple harmonic motion with amplitude of 4 cm. At what

displacement from the equilibrium position is its energy half potential and half kinetic?

Options:

$$_{2} \approx \sqrt{2}$$
 cm

$$_{4}$$
 \checkmark $2\sqrt{2}$ cm

Question Number: 67 Question Id: 8946583675 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

When a star approaches the earth, the waves are shifted towards

Options:

green colour

yellow colour

blue end

red end

Question Number: 68 Question Id: 8946583676 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

If a tuning fork of frequency 90 is sounded and moved towards an observer with a velocity
equal to one tenth the velocity of sound, then the note heard by the observer will have
frequency
Options:
1. 100
2. * 90
3. * 80
4. * 900
Question Number: 69 Question Id: 8946583677 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
What is the most important factor which helps to recognise a person by his/her voice
alone
Options:
quality 1.
2. * pitch
3. * intensity
quality, pitch and intensity
Question Number: 70 Question Id: 8946583678 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
The quality of tone
Options:
decreases with loudness
varies inversely as amplitude
varies directly as pitch

4. depends on the overtones present Question Number: 71 Question Id: 8946583679 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 The conduction of heat from hot body to cold body is an example of **Options:** reversible process irreversible process isothermal process isobaric process Question Number: 72 Question Id: 8946583680 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 From the isothermal drawn from Andrews experiment, it can be inferred that **Options:** CO2 is a perfect gas 2. w there is continuity of state there is discontinuity of state gases like CO2 and H2 cannot be liquefied Question Number: 73 Question Id: 8946583681 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 A diesel cycle works at **Options:** constant volume constant pressure

3. 🛎	constant temperature	
4. 🛎	both constant volume and constant	temperature
Single Correc	Line Question Option: No Option Orientation: Yet Marks: 1 Wrong Marks: 0	
The	transition temperature of most low to	emperature superconducting elements is in the
ran	nge of	
Option	ns:	
1. 🗸	zero to 10 k	
2. 🗱	10 k to 20 k	
3. 🗱	20 k to 50 k	
4. 🗱	50 k alone	
Single	on Number: 75 Question Id: 8946583683 Questi Line Question Option: No Option Orientation: Vect Marks: 1 Wrong Marks: 0	ion Type : MCQ Option Shuffling : Yes Display Question Number : Yes Vertical
Pro	pagation of light through fiber core i	s due to
Option	ns:	
1. 💥	diffraction	
2. 🗱	interference	
3. 🗸	total internal reflection	
4. 🗱	reflection	
		Chemistry
	Section Id:	89465873
	Section Number :	89465873
	Section Number: Section type:	Online
	Mandatory or Optional:	Mandatory
	Number of Questions:	25
	Number of Questions to be attempted:	25
	and the formation of the matter production of the second o	

Section Marks:	25
Display Number Panel:	Yes
Group All Questions:	No
Sub-Section Number:	1
Sub-Section Id: Question Shuffling Allowed:	89465883 Yes
Question Shuffing Anowed.	165
Question Number: 76 Question Id: 8946583684 Question Type: Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0	MCQ Option Shuffling: Yes Display Question Number: Yes
Which of the following energy orders is correct	?
0.4	
Options:	
1.	
15/51/6/6	
2. 3 4f<5d<6s<6p	
4f<6s<6p<5d	
3. * 41 05 0p 3d	
4. * 6s<6p<5d<4f	
4.	
Question Number: 77 Question Id: 8946583685 Question Type: Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0	MCQ Option Shuffling: Yes Display Question Number: Yes
An element A of atomic number 11 combines v	vith an element B of atomic
number 17. The compound formed is	
Options:	
Covalent AB	
1. *	
Ionic AB	
et sie	
Covalent AB ₂	
3. * Covalent Ab2	
Ionic AB ₂	
4. * Tollie AD2	
Question Number : 78 Question Id : 9046592696 Question Tomas	MCO Ontion Shuffling . Voc Dionlay Operation Number : Voc
Question Number: 78 Question Id: 8946583686 Question Type: Single Line Question Option: No Option Orientation: Vertical	NICQ Option Shuming: Tes Display Question Number: Yes
Correct Marks: 1 Wrong Marks: 0	
The oxidation number of 'S' in S ₈ , S ₂ F ₂ , H ₂ S res	spectively are .
Options:	

 $Question\ Number: 79\ Question\ Id: 8946583687\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Correct Marks: 1 Wrong Marks: 0

The elements A, B, C and D have the following electronic configurations:

The elements that belong to same group are _____.

Options:

Question Number: 80 Question Id: 8946583688 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

4.9 gm of H2SO4 is present in 2 lit of its solution. The molarity of the solution is

1. 🛎	0.1 M
2. 🗸	0.025 M
3. 🗱	0.25 M
4. 🕱	0.01 M
Single	on Number: 81 Question Id: 8946583689 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Line Question Option: No Option Orientation: Vertical et Marks: 1 Wrong Marks: 0
The 1	molecular weight of H ₃ PO ₄ is 98. The equivalent weight is gram / equivalents.
Option	
1. 🗱	98
2. 🗱	49
3. 🗸	32.66
4. 🕷	24.5
Single	on Number: 82 Question Id: 8946583690 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Line Question Option: No Option Orientation: Vertical et Marks: 1 Wrong Marks: 0
Wh	ich of the following is the Bronsted acid?
Option	
1. 🗱	Cl ⁻
2. 🚜	NH ₂ -
3. *	CH ₃ COO ⁻
4. 🖋	$\mathrm{NH_4}^+$

Question Number: 83 Question Id: 8946583691 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
The ph of 1 M KOH is
Options:
1. * 12
2. * 11
3. 1 4
4. * 13
Question Number: 84 Question Id: 8946583692 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
Froth floatation process is used for the
Options:
1. Solution Oxide ores
2. Sulphide ores
3. * Chloride ores
4. * Oxide ores and Chloride ores
Question Number: 85 Question Id: 8946583693 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
The composition of brass is
Options:
1. V Cu and Zn
Cu and Ni
3. Cu and Mn
4. * Cu and Fe

Question Number: 86 Question Id: 8946583694 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
Which of the following statements is correct?
Options:
Cathode is positive terminal in an electrolytic cell
Cathode is negative terminal in a galvanic cell
Reduction occurs at cathode in either of cells
Oxidation occurs at cathode in either of cells
Question Number: 87 Question Id: 8946583695 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
In the electrolysis of CuCl2 solution using copper electrode, if 2.5 gm of Cu is
deposited at cathode, then at anode
Options:
1. ** 890 mL of Cl ₂ at STP is liberated
2. * 445 mL of O ₂ at STP is liberated
3. * 2.5 gm of copper is deposited
a decrease of 2.5 gm of mass takes place
Question Number: 88 Question Id: 8946583696 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
The unit of resistivity is
Options:
1. * Ω
2. ✓ Ω m

$_{3.}$ $\stackrel{\mathbf{\Omega}}{\sim}$ $^{\prime}$ m
Ωm^2
Question Number: 89 Question Id: 8946583697 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
Which of the following metals provide cathodic protection to iron?
Options:
1. * Cu and Ni
2. Al and Zn
3. * Al and Cu
Co and Ni
Question Number: 90 Question Id: 8946583698 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
The chemical composition of rust is
Options:
1. ** Fe ₃ O ₄
2. * Fe ₃ O ₃
Fe_2O_3 . nH_2O
Fe ₃ O ₃ . xH ₂ O
Question Number: 91 Question Id: 8946583699 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
1 ppm of hardness of water is equal to
Options:
1 part of CaCO₃ hardness in 10 ⁶ parts of water

1 part of CaCO ₃ hardness in 10 ⁸ parts of water
1 part of CaCO ₃ hardness in 10 ⁷ parts of water
1 part of CaCO ₃ hardness in 10 ⁵ parts of water
Question Number: 92 Question Id: 8946583700 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
The temporary hardness of water is due to the presence of .
Options:
1. MgCl ₂ and CaCl ₂
2. \approx Ca(NO ₃) ₂ and Mg(NO ₃) ₂
CaSO ₄ and MgSO ₄
4. ✓ Ca(HCO ₃) ₂ and Mg(HCO ₃) ₂
Question Number: 93 Question Id: 8946583701 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
The basic buffer solution is a mixture of
Options:
1. ✓ NH ₃ + NH ₄ Cl
2. * HCl +NH ₄ Cl
3. ■ NaCl + NH ₄ Cl
4. * KOH + NH4Cl
Question Number: 94 Question Id: 8946583702 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
Which of the following polymers has amide linkage?
Options:

1 * Terylene
2. * Bakelite
3. Vylon
4. * PVC
Question Number: 95 Question Id: 8946583703 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
The monomer of natural rubber is
Options: 1. ** Butadiene
2. *Chloroprene
2-methyl 1,2 butadiene
2-methyl 1,3 butadiene
Question Number: 96 Question Id: 8946583704 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
Which of the following is a thermo setting?
Options:
1. Bakelite
2. ** Polyethylene
3. × Nylon-6
4. * Natural rubber
Question Number: 97 Question Id: 8946583705 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
The composition of water gas is
Options:

CO and H ₂ are combustible gases and CO ₂ and N ₂ are non-combustible gases
2. CO + CO ₂ are combustible gases and H ₂ O and N ₂ non-combustible gases
$_{3.}$ $\stackrel{\text{\tiny *}}{*}$ CO + N_2 are combustible gases and H_2 O and H_2 are non-combustible gases
$_{4.}$ \approx N_2+H_2 are combustible gases and $CO+H_2O$ are non-combustible gases
Question Number : 98 Question Id : 8946583706 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical Correct Marks : 1 Wrong Marks : 0
Earth is protected from UV radiation by
Options:
1. * Nitrogen layer
2. Ozone layer
3. * Carbon dioxide layer
4. * Oxygen layer
Question Number: 99 Question Id: 8946583707 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 Which of following statements is not correct?
Options:
CO is the main air pollutant
2. * All pollutants are not wastes
Water is polluted by dissolved Oxygen 3. ✓
Lichens are pollution indicators
O

 $Question\ Number: 100\ Question\ Id: 8946583708\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Minamata disease is caused due to the presen	nce of
Options:	
1. * Cd	
•	
2. Pb	
a. ★ As	
4. ✓ Hg	
	Civil Engineering
Section Id:	89465874
Section Number :	4
Section type :	Online
Mandatory or Optional:	Mandatory
Number of Questions:	100
Number of Questions to be attempted:	100
Section Marks:	100 Yes
Display Number Panel: Group All Questions:	Yes No
Sub-Section Number:	1
Sub-Section Id:	89465884
Question Shuffling Allowed:	Yes
Question Number: 101 Question Id: 8946583709 Question T Single Line Question Option: No Option Orientation: Vertic Correct Marks: 1 Wrong Marks: 0	Type: MCQ Option Shuffling: Yes Display Question Number: Yes cal
The product of either force of couple with	the arm of the forces is called
Options:	
resultant couple	
moment of the couple	
moment of the forces	
resulting couple	

Correct Marks: 1 Wrong Marks: 0

Twisting moment is also called as _____.

Options:

1. v torsional moment

moment of line

moment of section

moment of plane

Question Number: 103 Question Id: 8946583711 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Two balls of equal mass and of perfectly elastic material are lying on the floor. One of the balls with velocity v is made to struck the second ball. Both the balls after impact will move with a velocity v.

Options:

1. **

v/4

v/8

4. **√** v/2

Question Number: 104 Question Id: 8946583712 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Which of the following is not the condition for the equilibrium in three dimensional system of axis for the composite bodies if we are determining the moment of inertia for them?

Options:

$$\sum F \neq 0$$

 $\sum F_X = 0$

 $\sum Fy = 0$

$$\sum Fz = 0$$

 $Question\ Number: 105\ Question\ Id: 8946583713\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Correct Marks: 1 Wrong Marks: 0

The maximum value of Poisson's ratio for an elastic material is ______.

Options:

1. 🗸 0.5

0.75

1.0

0.25

Question Number: 106 Question Id: 8946583714 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

A torsion member is fabricated from two concentric thin tubes. At the ends, the tubes are welded to rigid discs so that both the tubes can be twisted as a unit. The radius of the outer tube is 2r and that of the inner tube is r. If the shear stress developed in the outer tube is T, then the shear stress in the inner tube will be

Options:

1 %

0.75 T

3. **✓** 0.5 T

0.25 T

Correct Marks: 1 Wrong Marks: 0
A simply supported beam of span L carries a uniformly distributed load W. the maximum
bending moment M is
Options:
1. * WL/2
2. W L/8
3. ₩ L/4
4. * WL/12
Question Number: 108 Question Id: 8946583716 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
When a cantilever beam having rectangular cross-section is loaded transversely, the maximum
compressive stress is developed on the
Options:
top layer
neutral axis
every cross-section
bottom layer 4. ✓
Question Number: 109 Question Id: 8946583717 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
The shape of the bending moment diagram over the length of a beam carrying a uniformly
increasing load, is always
Options:
linear 1. **

cubic parabola
circular 3. **
parabolic 4. **
Question Number: 110 Question Id: 8946583718 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
A compound bar consisting of material A and B is tightly secured at the ends. The coefficient of
thermal expansion of A is more than that of B. When temperature is increased, the stresse
induced will be
Options:
tensile in both the materials
tensile in material A and compressive in material B
compressive in material A and Tensile in material B
compressive in both the materials
Question Number: 111 Question Id: 8946583719 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
The maximum shear stress in a rectangular section is times the average shear stress.
Options :
1. * 3/4
2. * 3/7
3. 3 /2
4. * 5/3

 $Question\ Number: 112\ Question\ Id: 8946583720\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

A shaft of length L is subjected to a constant twisting moment T along its length L, then angle θ through which one end of the bar will twist relative to other will be

Options:

TL/GJ

T/G

T/GJ

GJ/TL

 $Question\ Number: 113\ Question\ Id: 8946583721\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Correct Marks: 1 Wrong Marks: 0

The ratio of torsional moments of resistance of a solid circular shaft of diameter D and a hallow shaft having external diameter D and internal diameter 'd' is given by_____

Options:

$$\frac{D^4}{D^4 - d^4}$$

$$\frac{D^4 - d^4}{D^4}$$

$$\frac{D^3 - d^3}{D^3}$$

$$\begin{array}{c}
D^3 \\
D^3 - d^3
\end{array}$$

Question Number: 114 Question Id: 8946583722 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Strength of a shaft_____

Options:

is equal to maximum shear stress in the shaft at the time of elastic failure

2. v is the ability to resist maximum twisting moment is equal to maximum shear stress in the shaft at the time of rupture is equal to torsional rigidity Question Number: 115 Question Id: 8946583723 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 The Young's modulus of the material is 3.0 times its modulus of rigidity. The Poisson's ratio for the material will be _____. **Options:** 0.150.3 3. ✔ 0.5 0.75 Question Number: 116 Question Id: 8946583724 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 A hollow circular section with outside diameter 'D' and inside diameter 'd' will have section modulus 'Z' as . **Options:** $\pi(D^4 - d^4)/16d$ $\pi(D^3 - d^3)/6d$

Question Number: 117 Question Id: 8946583725 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
A rectangular beam of depth d and breadth b is to be cut from a circular log of diameter D.
Find the ratio of depth to breadth for the straight section in bending
Options:
d/b = 2
$d/b = \sqrt{2}$
d/b = 1
$\frac{d}{b} = 4$
Question Number: 118 Question Id: 8946583726 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
In a triangular section, the relation between maximum shear stress and average
shear stress at neutral axis is
Options:
$\tau = 1.5 \tau av$
$\tau = 2.5 \tau av$
$\tau = 1.33 \tau av$
$\tau = 3.5 \tau av$
Question Number: 119 Question Id: 8946583727 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Beams composed of more than one material rigidly connected together so as to behave as one

Correct Marks: 1 Wrong Marks: 0

Options:

piece are known as ______.

1. 🗸	composite beams
2. 🗱	compound beams
3. 🗱	indeterminate beams
4. 🗱	determinate beams
	on Number: 120 Question Id: 8946583728 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Line Question Option: No Option Orientation: Vertical t Marks: 1 Wrong Marks: 0
The	maximum magnitude of shear stress due to shear force F on a rectangular section of area A
at a	neutral axis is
Option	\mathbf{s} :
1. 🛎	F/A
2. 🗱	F/2A
3. 🗸	3F/2A
4, 🕊	2F/3A
Single 1	on Number : 121 Question Id : 8946583729 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Line Question Option : No Option Orientation : Vertical t Marks : 1 Wrong Marks : 0
Sep	aration of coarse aggregate from the concrete mix is known as
Option	s:
1. **	bleeding
2. 🗱	shrinkage
3. 🗸	segregation
4. 🗱	creep

Question Number: 122 Question Id: 8946583730 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
Modulus of rupture of concrete is the measure of
Options:
direct tensile strength
flexural tensile strength
compressive strength
split tensile strength
Question Number: 123 Question Id: 8946583731 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
The minimum reinforcement in RC slab having high yield strength deformed bars is
Options:
1. ** 0.10%
2. 🗸 0.12 %
3. № 0.15%
4. ₩0.18%
Question Number: 124 Question Id: 8946583732 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
Design bond stress in limit state method for plain bars in tension for M20 grade shall
be
Options:
1.0
2. 🗸 1.2

3. * 1.4
4. * 1.6
Question Number: 125 Question Id: 8946583733 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
The maximum area of tension reinforcement in beams shall not exceed
Options:
0.02bD
0.04bD
0.06bD
0.08bD
Question Number: 126 Question Id: 8946583734 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
The shrinkage deflection in an RCC beam can be reduced by providing
Options:
compression steel
tension steel
stirrups
distribution steel
Question Number: 127 Question Id: 8946583735 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
In limit stage design, the permissible bond strength in the case of deformed bars is more than
that in plain bars by

1. 🕊	80%
2. 🗱	40%
3. 🚜	70%
4. 🗸	60%
Single 1	on Number: 128 Question Id: 8946583736 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Line Question Option: No Option Orientation: Vertical t Marks: 1 Wrong Marks: 0
In a	rectangular orthotropic slab, the bending moment capacities of the section in two mutually
per	pendicular directions are
Option	\mathbf{s} :
1. 📽	equal
2. 🗱	Infinite
3. **	zero
4. 🗸	unequal
Single 1	on Number : 129 Question Id : 8946583737 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Line Question Option : No Option Orientation : Vertical t Marks : 1 Wrong Marks : 0
The	lateral ties in a reinforced column under pure axial compression are to
Option	s:
1. 🗸	avoid buckling of the longitudinal reinforcement
2. 🕷	provide adequate shear capacity
3. 🕷	provide adequate confinement to concrete
4. 🕷	reduce the axial deformation to the column

Question Number: 130 Question Id: 8946583738 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
Bond between steel and concrete ensures
Options:
equal volume of both the materials
strain compatibility
force compatibility
equal weight of both the materials
Question Number: 131 Question Id: 8946583739 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
In limit state method, stress in compression steel is based on
Options:
stress in concrete at its level
strain in concrete at its level
force in concrete at its level
toughness in concrete at its level
Question Number: 132 Question Id: 8946583740 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
External wind pressure for design of roof depends on
Options:
degree of permeability of roof
slope of roof

3. 🛎	type of material for roof
4. 🗱	temperature of roof
Single L	n Number: 133 Question Id: 8946583741 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes ine Question Option: No Option Orientation: Vertical Marks: 1 Wrong Marks: 0
As p	ercentage of steel increases
Options	:
1. 38	depth of neutral axis decreases
2. 🗸	depth of neutral axis increases
3. 🗱	lever arm increases
4. *	lever arm decreases
Single L	n Number: 134 Question Id: 8946583742 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes ine Question Option: No Option Orientation: Vertical Marks: 1 Wrong Marks: 0
A sh	ort column 200 mm x 200 mm in section is reinforced with reinforcing bars whose area of
cross	section is 400 mm ² . If permissible compressive stresses in concrete and steel are 5 MPa and
130	MPa, the safe load on the column as per working stress method should not exceed
Options	:
1. *	464 kN
2. 🗸	232 kN
3. *	400 kN
4. 🗱	696 kN

 $Question\ Number: 135\ Question\ Id: 8946583743\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

The diameter of longitudinal bars of square column is 20 mm, the diameter of lateral ties should no
be less than
Options:
1. * 4 mm
5 mm
3. ✓ 6 mm
8 mm
Question Number: 136 Question Id: 8946583744 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
Following is used to measure a short offset.
Options:
a metallic tape
an ordinary tape
a steel tape
an invar tape
Question Number: 137 Question Id: 8946583745 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
The magnetic bearing of a line AB is S28°30'E. If the declination is 7°30'W, then the true
bearing of the line is
Options:
S28°30'W 1. ₩
S36°00'E
3. ✓ S21°00'E

Question Number: 138 Question Id: 8946583746 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
A telescope is said to be inverted if its
Options :
vertical circle is to its right and the bubble of the telescope is down
vertical circle is to its right and the bubble of the telescope is up
vertical circle is to its left and the bubble of the telescope is down
vertical circle is to its left and the bubble of the telescope is up
Question Number: 139 Question Id: 8946583747 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yo Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
The satellite constellation of GPS consists of
Options:
4 Satellites
6 Satellites
18 Satellites
24 Satellites
Question Number: 140 Question Id: 8946583748 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
The angle of intersection of the two plane mirrors of an optical square is

Options: 30°

2. 🗸

60°

4 **≈** 90°

Question Number: 141 Question Id: 8946583749 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The correction to be applied to each 30 meter chain length along Θ° slope is _____.

Options:

30 (sin ⊖ - 1) m

30 (cos ⊖ - 1) m

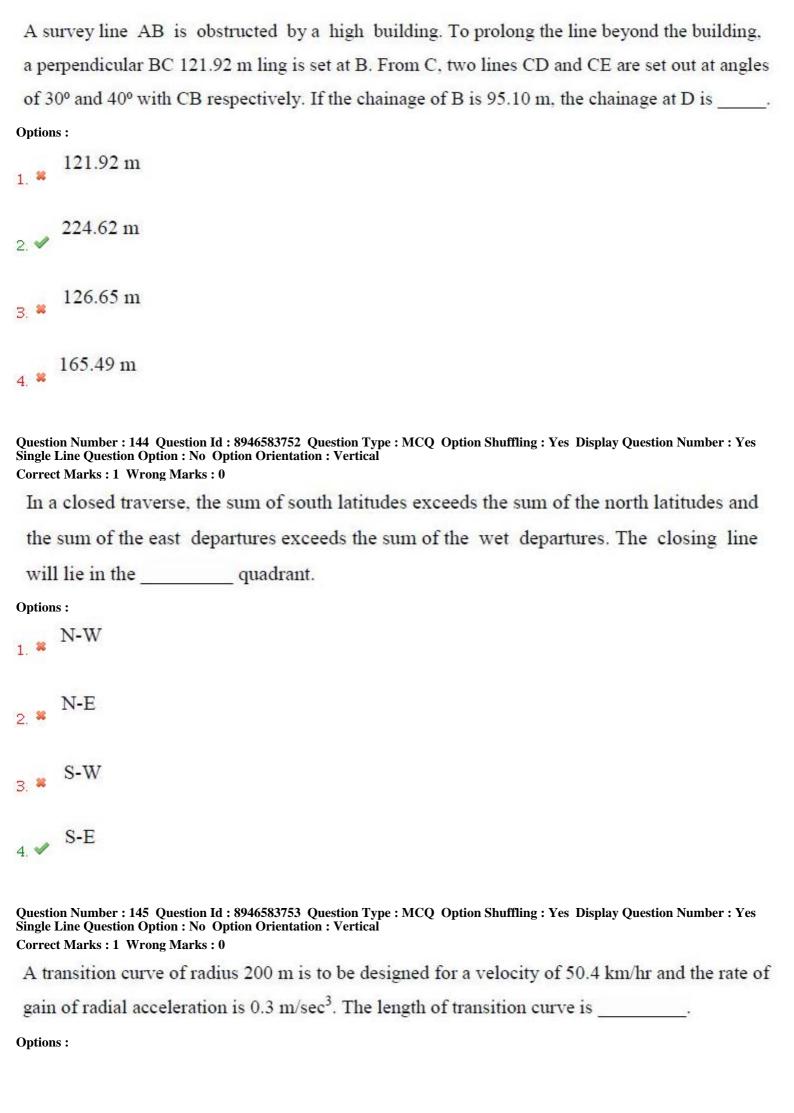
30 (tan ⊖ - 1) m

Question Number: 142 Question Id: 8946583750 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Straight, parallel and widely spaced contours represent

Options:


a steep surface

a flat surface

an inclined plane surface

a curved surface

Question Number: 143 Question Id: 8946583751 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

15.1 m
168.0 m
3. ✓ 46.0 m
4. ≈ 50.4 m
Question Number: 146 Question Id: 8946583754 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
The hydraulic pressure on a plane surface is equal to
(where w = unit weight of liquid, A = Area of plane surface and h = Depth of
centroid of the plane area below the liquid free surface).
Options:
ı. ✓ wAĥ
wAĥsin²θ
3. * 1/2wAĥ
wAĥsinθ 4. ♥
Question Number: 147 Question Id: 8946583755 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
Poise is the unit of
Options:
density 1. **
velocity gradient
kinematic viscosity

 $Question\ Number: 148\ Question\ Id: 8946583756\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Correct Marks: 1 Wrong Marks: 0

Compressibility is equal to _____.

Options:

$$-\frac{\left[\frac{dV}{V}\right]}{dp}$$

$$\frac{dp}{-\left[\frac{dV}{V}\right]}$$

$$\frac{dp}{d\rho}$$

$$4. * \sqrt{dp}$$

Question Number: 149 Question Id: 8946583757 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

The convective acceleration in the direction of x is given by ______.

Options:

$$u\frac{\partial u}{\partial y} + \frac{v\partial v}{\partial y} + \frac{w\partial w}{\partial z}$$

$$\frac{u\partial u}{\partial x} + \frac{u\partial u}{\partial y} + \frac{u\partial u}{\partial z}$$

$$\frac{u\partial u}{\partial x} + \frac{u\partial v}{\partial y} + \frac{u\partial w}{\partial z}$$

$$\frac{u\partial u}{\partial x} + \frac{v\partial u}{\partial y} + \frac{w\partial u}{\partial z}$$

Question Number: 150 Question Id: 8946583758 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The velocity distribution across a section of 2 fixed parallel plates having viscous flow is given by ______.

Options:

$$u = \frac{1}{2\mu} \left\{ -\frac{\partial p}{\partial x} \right\} (t^2 - y^2)$$

$$u = \frac{1}{2\mu} \frac{\partial p}{\partial x} [t_y - y^2]$$

$$u = \frac{1}{2\mu} \frac{\partial p}{\partial x} [y - t_y]$$

$$u = -\frac{1}{2\mu} \frac{\partial p}{\partial x} [t - y^2]$$

Question Number: 151 Question Id: 8946583759 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Specific energy of a flowing fluid per unit weight is equal to ______.

Options:

$$\frac{p}{w} + \frac{V^2}{2g}$$

1. 8

$$\frac{p}{w} + h$$

$$\frac{v^2}{2g} + h$$

$$\frac{p}{w} + \frac{v^2}{2g} + h$$

Question Number: 152 Question Id: 8946583760 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The force exerted by a jet of water (F_x) having velocity (V) on a series of vertical plates, moving with a velocity u is given by_____.

(where ρ is the density of water)

Options:

$$F_x = \rho A V^2$$

$$F_x = \rho A (V - u)^2$$

$$F_x = \rho A V_u$$

$$F_x = \rho A (V + u)^2$$

 $Question\ Number: 153\ Question\ Id: 8946583761\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Correct Marks: 1 Wrong Marks: 0

The surface tension of water at 20°C is 75x10⁻³ N/m. The difference in the water surfaces within and outside an open ended capillary tube of 1 mm internal bore, inserted at the water surface would nearly be ______.

Options:

5 mm

10 mm

15 mm

20 mm

 $Question\ Number: 154\ Question\ Id: 8946583762\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Correct Marks: 1 Wrong Marks: 0

A cylindrical vessel of radius 42.31 cm and height 1m is open at the top. It holds water to half its depth. Which one of the following values approximates the speed at which the cylinder is to be rotated about the vertical axis, so as to make the apex of the paraboloid just reach the center of the bottom of the vessel?

2. *****

250 rpm

300 rpm

 $Question\ Number: 155\ Question\ Id: 8946583763\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Correct Marks: 1 Wrong Marks: 0

In an open channel of wide rectangular section with constant 'n' value, the bed slope is 1.2×10^{-3} , the local friction slope at a section is 1.05×10^{-3} , and the local Froude number of the flow is 0.8. The local rate of variation of depth with longitudinal distance along the flow direction is

Options:

Question Number: 156 Question Id: 8946583764 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Speed ratio is given by _____.

$$\frac{u}{\sqrt{2gH}}$$

$$\frac{Vf}{\sqrt{2gH}}$$

3. *
$$\frac{\sqrt{2gH}}{Vf}$$

$$\frac{Vw}{\sqrt{2gH}}$$

Question Number: 157 Question Id: 8946583765 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Cavitation can take place in case of . .

Options:

Pelton wheel

gear pump

reciprocating pump

centrifugal pump

Question Number: 158 Question Id: 8946583766 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

A trapezoidal section of channel is 2 m wide at a base and the side slopes are 1H to 1.5V. It carries a water discharge of 7 m³/sec at a depth of 1m. Consider the specific force comprising $(\rho QV + \Upsilon A\bar{\Upsilon})$. For an increase of 2 cm of depth, what would be the change in the magnitude of the second term $(\Upsilon A\bar{\Upsilon})$?

Question Number: 159 Question Id: 8946583767 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

A rectangular open channel carries a discharge of 15 m³/sec when the depth of flow 1.5 m and the bed slope is 1:1440. What will be the discharge through the channel at the same depth if the slope would have been 1:1000?

Options:

Question Number: 160 Question Id: 8946583768 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The base period for a particular crop is 100 days and duty of the canal is 1000 ha/cu mec, the depth of water will be

Options:

Question Number: 161 Question Id: 8946583769 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Consumptive use of water by a crop means water consumed by

1. 🗸	evaporation and transpiration
2. 🕱	evaporation only
3. 🗱	conveyance loss and evaporation
4. 🛎	transpiration and conveyance loss
Single	on Number: 162 Question Id: 8946583770 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Line Question Option: No Option Orientation: Vertical ct Marks: 1 Wrong Marks: 0
Th	e theoretical equilibrium discharge in m ³ /sec from an effective rainfall intensity
95	mm/hr continuously falling uniformly over a drainage basin of area of 100 sq.km
is	
Option	ns:
1. 🗸	$1000 \text{ m}^3/\text{sec}$
2. 🛎	$100 \text{ m}^3/\text{sec}$
3. 🗱	$400 \text{ m}^3/\text{sec}$
4. 🛎	$2000 \text{ m}^3/\text{sec}$
Single	on Number: 163 Question Id: 8946583771 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Line Question Option: No Option Orientation: Vertical ct Marks: 1 Wrong Marks: 0
Me	an precipitation over an area is best obtained from gauged amounts by
Option	as:
1. 🛎	Arithmetic mean method
2. 🗸	Linearly interpolated isohyetal method
3. 🛎	Thiessen method

Orographically weighted isohyetal method Question Number: 164 Question Id: 8946583772 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 The useful moisture of soil is equal to its **Options:** field capacity

saturation capacity

difference between field capacity and permanent wilting point

- within the root zone of plants
- moisture content at permanent wilting point

 $Question\ Number: 165\ Question\ Id: 8946583773\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Correct Marks: 1 Wrong Marks: 0

In order to obtain a 2-hour hydrograph from a six hour unit hydrograph, which of the following method can be employed?

Options:

S-Curved method

- Synthetic unit hydrograph
- Instantaneous unit hydrograph
- Simple unit hydrograph

Question Number: 166 Question Id: 8946583774 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Probability of a 100 year flood to occur at least once in the next 4 years is
Options:
1. 🗸 35%
2. **
25% 3. *
4. **
Question Number: 167 Question Id: 8946583775 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
The purpose of balancing reservoir is, it
Options: balances the flow rates of supply and demand 1.
balances the peak and minimum flows
balances distribution
stores water for emergencies
Question Number: 168 Question Id: 8946583776 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
For standing crops in undulating sandy fields, the best method of irrigation is
Options:
Sprinkler method
Free flooding
Check method

Question Number: 169 Question Id: 8946583777 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 Portion of dam in contact with ground at downstream side is . **Options:** crest toe foot heel Question Number: 170 Question Id: 8946583778 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 Which of the following is the earth dam? **Options:** Banasura sagar dam Nagarjuna sagar dam Tehri dam Bisalpur dam Question Number: 171 Question Id: 8946583779 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 Earthen dams compared to gravity dams. **Options:** are costlier

Furrow method

require less skilled labour
require sound rock foundations
are less susceptible to failure
Question Number: 172 Question Id: 8946583780 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
Irrigation canals are generally aligned along
Options:
contour line
valley line
straight line
ridge line
Question Number: 173 Question Id: 8946583781 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
structure is used to remove surplus water from and irrigation channel into a natural
drain?
Options:
Canal Regulator
Canal outlet
Canal fall
Canal escape

 $Question\ Number: 174\ Question\ Id: 8946583782\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Correct Marks: 1 Wrong Marks: 0
For granular sub-base layers where the compacted thickness exceeding 100 mm and upto
225 mm compaction is done by
Options:
vibratory roller of static weight 10 tons or more
sheep foot roller of static weight 12 tons or more
roller of static weight 14 tons or more
compaction roller of static weight 8 tons or more
Question Number: 175 Question Id: 8946583783 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
The cement content in the dry lean concrete mix for pavement construction should be such
that the average compressive strength at 7 days shall not be less than
Options:
50 kg/m ³
100 kg/m³ 2. ₩
120 kg/m³ ₃. *
4. ✓ 150 kg/m³
Question Number: 176 Question Id: 8946583784 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
Cant deficiency is the difference between the
Options :
theoretical cant and actual cant provided

equilibrium speed and permissible speed	
cant gradient and cant deficiency	
rate of change of cant and gradient	
Question Number: 177 Question Id: 8946583785 Question Type: MCQ Option Shuffling: Yes Display Question Number: Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0	Ye
A tongue rail is also called as	
Options:	
stock rail	
switch rail	
point rail	
4 * pull rail	
Question Number: 178 Question Id: 8946583786 Question Type: MCQ Option Shuffling: Yes Display Question Number: Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 The background colour of the informatory sign board is	Ye
Options: 1. ** red	
yellow 2.	
green green	
white	

 $Question\ Number: 179\ Question\ Id: 8946583787\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

AS per IRC, standard axle load is		
Options:		
1. ✓ 80 kN		
2. ≈ 90 kN		
86 kN 3. ≈		
4. ≈ 100 kN		
Question Number: 180 Question Id: 8946583788 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0		
In a rural area where the rain fall is light a water bound macadam road with bituminous		
surface dressing of 7.0 m wide is to be constructed. Select the appropriate camber		
recommended by Indian Road Congress for the above case and what will be the height		
of crown with respect to the edges?		
Options:		
1 in 20 and height of crown is 0.045 m		
1 in 40 and height of crown is 0.047 m 2. ✓		
1 in 50 and height of crown is 0.070 m		
1 in 30 and height of crown is 0.052 m		
Question Number: 181 Question Id: 8946583789 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0		
Vehicular live load of highway bridges is expressed in terms		
Options:		
design axles and lane loading		

2. 🗱	design pressure and lane loading
3, 🗸	design lanes and lane loading
4. 🗱	design width and lane loading
Single 1	on Number: 182 Question Id: 8946583790 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Line Question Option: No Option Orientation: Vertical t Marks: 1 Wrong Marks: 0
The	order of engineering surveys for road alignment is
Option	s:
1. 🗱	Reconnaissance, Detailed Study and Preliminary study and Map study
2. 🗱	Reconnaissance, Map study, Detailed Study and Preliminary study
3. *	Preliminary study Map study, Preliminary study and Map study
4. 🗸	Map Study, Reconnaissance, Preliminary study and Detailed Study
Single 1	on Number: 183 Question Id: 8946583791 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Line Question Option: No Option Orientation: Vertical t Marks: 1 Wrong Marks: 0
Whi	ch of the following pollutants will enhances the Eutrophication?
Option	s:
1. **	organic carbon
2. 🕷	pesticides
3. 🗸	nutrients
4. *	inorganic carbon

 $Question\ Number: 184\ Question\ Id: 8946583792\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Most stable ecosystem is
Options:
mountain
1. **
forest
2. *
desert
3, **
ocean
4. V
Question Number: 185 Question Id: 8946583793 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
In an office building water quantity of per person per day is to be provided as per
the standard.
Options:
1. 45 litres
1.
125 1:
125 litres
55 litres
3. *
75 litres
4. ** 13 Intes
Question Number: 186 Question Id: 8946583794 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes
Single Line Question Option : No Option Orientation : Vertical Correct Marks : 1 Wrong Marks : 0
The ratio of the maximum daily consumption to the average daily consumption is
The rado of the maximum daily consumption to the average daily consumption is
Options:
1.0
1. *
1.2
2. * 1.2
3. × 1.4
3. •

Options:

Question Number: 187 Question Id: 8946583795 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 Which of the following anaerobic treatment systems does not require inert media for operation? **Options:** Anaerobic Filter Fluidized Bed Reactor Up flow Anaerobic Sludge Blanket Anaerobic Fixed Film Reactors Question Number: 188 Question Id: 8946583796 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option : No Option Orientation : Vertical Correct Marks: 1 Wrong Marks: 0 Among the alternatives listed below, the most accepted reuse application of reclaimed water would be **Options:** drinking and cooking irrigating food crops swimming pool supplies watering non-food plants Question Number: 189 Question Id: 8946583797 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0

The better approach for increasing social acceptability of wastewater recycling is

1. 🛎	using the best treatment technology available
2. 🗸	
pub	lic awareness campaigns for demonstrating usability of recycled water and putting
rele	evant water quality information on public displays
3. 🗱	stopping water supply from conventional water sources
4. 🕷	regulatory enforcement for using recycled wastewater
Single 1	on Number: 190 Question Id: 8946583798 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Line Question Option: No Option Orientation: Vertical t Marks: 1 Wrong Marks: 0
The	settling velocity of a spherical particle in still water is given by
Option	s:
1. **	Lacey's formula
2. 🗱	Hazen William's formula
3. 💥	Darcy's law
4. 🗸	Stokes' law
Single 1	on Number: 191 Question Id: 8946583799 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Line Question Option: No Option Orientation: Vertical t Marks: 1 Wrong Marks: 0
In a	batch system, maximum growth rate is observed in
Option	s:
1. *	lag phase
2. 🗱	stationary phase
3. 🗱	decay phase

log phase 4. ✓
Question Number: 192 Question Id: 8946583800 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
The end products of Aerobic treatment of wastewater contains
Options:
Carbon dioxide and water
2. ** Methane
3. * Alcohol
Hydrogen sulfide
Question Number: 193 Question Id: 8946583801 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
Amount of weld metal is proportional (Where S is weld dimension) to
Options:
$1. \checkmark S^2$
2. * S
3. ▼ √S
$S\sqrt{S}$
Question Number: 194 Question Id: 8946583802 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
A large Value of percentage elongation of steel becomes meaningful in a structure at limit state
of collapse because it ensures that

differential settlement of support is accommodated excessive forces are resisted without snapping a high safety factor against collapse is available the desired rotation capacity is available at joints Question Number: 195 Question Id: 8946583803 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 In limit state method, which of the following formats is used? **Options:** single safety factor load factor wind factor multiple safety factors Question Number: 196 Question Id: 8946583804 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 In limit state method, which of the following criteria is to be satisfied in selection of member? **Options:** Factored Load > Factored Strength Factored Load ≥ Factored Strength Factored Load ≤ Factored Strength Sometimes Factored Load < Factored Strength (or) Factored Load > Factored Strength

Single 1	on Number: 197 Question Id: 8946583805 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Line Question Option: No Option Orientation: Vertical et Marks: 1 Wrong Marks: 0
Bar	rs and rods are not used as
Option	is:
1. 🗸	friction resistant members
2. 🗱	tension members in bracing systems
3. 🕊	sag rods to support purlin
4. 🗱	supporting girts in industrial buildings
Single 1	on Number: 198 Question Id: 8946583806 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Line Question Option: No Option Orientation: Vertical et Marks: 1 Wrong Marks: 0
Wh	nat is the yield point for high yield strength steel?
Option	is:
1. **	0.5% of offset load
2. 🕷	0.1% of offset load
3. 💥	1.5% of offset load
4. 🗸	0.2% of offset load
Single 1	on Number : 199 Question Id : 8946583807 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Line Question Option : No Option Orientation : Vertical et Marks : 1 Wrong Marks : 0
A ste	eel beam supporting loads from the floor slab as well as from wall is termed as
Option	ıs:
1. **	stringer beam
2. 🗸	spandrel beam

header beam

header beam

Question Number: 200 Question Id: 8946583808 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

If a truss consists of 8 joints, 10 members and 4 reaction components, then it is a ______.

Options:

cantilever truss

deficient truss

redundant truss

simply supported truss