	(C	SE) COMPUTER SCIENCE AND ENGINEERING
	-	INSTRUCTIONS TO CANDIDATES
	1.	Candidates should write their Hall Ticket Number only in the space provided at the top left hand corner of this page, on the leaflet attached to this booklet and also in the space provided on the OMR Response Sheet. BESIDES WRITING, THE CANDIDATE SHOULD ENSURE THAT THE APPROPRIATE CIRCLES PROVIDED FOR THE HALL TICKET NUMBERS ARE SHADED USING H.B. PENCIL ONLY ON THE OMR RESPONSE
,	-	SHEET. DO NOT WRITE HALL TICKET NUMBER ANY WHERE ELSE.
1	2.	 Immediately on opening this Question Paper Booklet, check: (a) Whether 200 multiple choice questions are printed (50 questions in Mathematics, 25 questions in Physics, 25 questions in Chemistry and 100 questions in Engineering)
		 (b) In case of any discrepancy immediately exchange the Question paper Booklet of same code by bringing the error to the notice of invigilator.
	3.	Use of Calculators, Mathematical Tables and Log books is not permitted.
	4.	Candidate must ensure that he/she has received the Correct Question Booklet, corresponding to his/her branch of Engineering.
	5.	Candidate should ensure that the booklet Code and the Booklet Serial Number, as it appears on this page is entered at the appropriate place on the OMR Response Sheet by shading the appropriate circles provided therein using H.B. pencil only. Candidate should note that if they fail to enter the Booklet Serial Number and the Booklet Code on the OMR Response Sheet, their Answer Sheet will not be valued.
	6.	Candidate shall shade one of the circles 1, 2, 3 or 4 corresponding question on the OMR Response Sheet using H.B. Pencil only. Candidate should note that their OMR Response Sheet will be invalidated if the circles against the question are shaded using Black / Blue ink pen / Ball pen / any other pencil other than H.B. Pencil or if more than one circle is shaded against any question.
•	7.	One mark will be awarded for every correct answer. There are no negative marks.
1	8.	The OMR Response Sheet will not be valued if the candidate :
1		(a) Writes the Hall Ticket Number in any part of the OMR Response Sheet except in the space provided for the purpose.
		(b) Writes any irrelevant matter including religious symbols, words, prayers or any communication whatsoever in any part of the OMR Response Sheet.
		(c) Adopts any other malpractice.
	9.	Rough work should be done only in the space provided in the Question Paper Booklet.
•	10. 11.	No loose sheets or papers will be allowed in the examination hall. Timings of Test: 10.00 A.M. to 1.00 P.M.
	12.	
	12.	Candidate should ensure that he / she enters his / her name and appends signature on the Question paper booklet, leaflet attached to this question paper booklet and also on the OMR Response Sheet in the space provided.
		Candidate should ensure that the invigilator puts his signature on this question paper booklet, leaflet attached to
20		the question paper booklet and also on the OMR Response Sheet.
	13.	Before leaving the examination hall candidate should return both the OMR Response Sheet and the leaflet attached to this question paper booklet to the invigilator. Failure to return any of the above shall be construed as malpractice in the examination. Question paper booklet may be retained by the candidate.
	14.	
	19.	This booklet contains a total of 32 pages including Cover page and the pages for Rough Work.
		1-A (CSE)

Note: (1) Answer all questions.

- (2) Each question carries 1 mark. There are no negative marks.
- (3) Answer to the questions must be entered only on OMR Response Sheet provided separately by completely shading with H.B. Pencil, only one of the circles 1, 2, 3 or 4 provided against each question, and which is most appropriate to the question.
- (4) The OMR Response Sheet will be invalidated if the circle is shaded using ink / ball pen or if more than one circle is shaded against each question.

MATHEMATICS 0 0 If $A = \begin{bmatrix} 0 & 3 & 0 \end{bmatrix}$, then $A^4 =$. 0 0 3 (1) 3I 81I (2) 9I 271 (4) 0 2 1 If $A = \begin{vmatrix} -2 & 0 & -2 \end{vmatrix}$ is a skew symmetric matrix, then the value of x is -1 x(3) 3 (4) 4 (2) 2 (1) 1 What is the number of all possible matrices with each entry as 0 or 1 if the order of matrices is 3×3 (4) 256 (1) 64 (2) 268 (3) 512 -i 1 If A =, then |A| =(4)(3) 3 2 (1) 1 (2)3-A

				Exc:		Set C Booklet Co	ode : T2 ode : A
5.	The solution of a s	system of linear eq	uations 2x	-y+3z=9,x	x + y + z	= 6, x - y + z	= 2 is
	(1) $x = -1, y = -$		•	x = 3, y = 2			
	(3) $x = 2, y = 1, z$	= 3		x = 1, y = 2,			
			()				
6.	If $\frac{1}{x^2 + a^2} = \frac{A}{x + ai}$	$+\frac{B}{x-ai}$ then A =		, B =		·	
	(1) $\frac{1}{2ai}, -\frac{1}{2ai}$	(2) $-\frac{1}{2ai},\frac{1}{2a}$	ai (3)	$\frac{1}{ai}$, $-\frac{1}{ai}$	(4)	$-\frac{1}{ai},\frac{1}{ai}$	
7.	If $\frac{2x+4}{(x-1)^3} = \frac{A_1}{(x-1)}$	$+\frac{A_2}{(x-1)^2}+\frac{A_3}{(x-1)^2}$	\overline{a} then $\sum_{i=1}^{3} A^{i}$	i_i is equal to	С. С		
	(1) A ₂	(2) 2A ₂	(3)	4A ₂	(4)	4A,	х (ж. 1
8.	The period of the fi	unction $f(x) = \sin x $	x is				
	(1) π	(2) 2π	12	3π	(4)	4π	
9.	If A+B=45°, then (1_cotA) (1_cotB	e) ie				
	(1) 1	(2) 0	(3)	2	(4)	-1	
e 1			(5)	-	(4)		
10.	The value of sin 78	° + cos 132° is					
	(1) $\frac{\sqrt{5}+1}{4}$	(2) $\frac{\sqrt{5}+1}{2}$	(3)	$\frac{\sqrt{5}-1}{2}$	(4)	$\frac{\sqrt{5}-1}{4}$	
11	If $A + B + C = \pi$ then	$\sin 2A \pm \sin 2D$ is			6. ¹⁰		
11.	If $A+B+C = \pi$, then (1) 4 cosA sinB co		(2)	4 sinA cosB	inC		
	(3) $4 \cos A \cos B c$		(2)	4 sinA cosb s			
	.,	1	(4)	, sur sun s	inc		1. 25
12.	The principal solution	on of Tan $x = 0$ is					
1	(1) $x = n\pi, n \in \mathbb{Z}$		(2)	<i>x</i> =0			
	(3) $x=(2n+1) \pi/2$,	n∈Z	(4)	$x = n\pi + \alpha, n \in$	Z		
			4-A				

			а 1				Set Cod Booklet Cod	
13.	The value of Ta	n ⁻¹ (2) + Tar	n-' (3) is					
	(1) $\frac{\pi}{4}$	(2)	$\frac{\pi}{2}$	(3)	$\frac{\pi}{3}$	(4)	$\frac{3\pi}{4}$	
14.	If the sides of a	right angle	triangle are i	n A.P., th	en the ratio	of its sides	is	
	(1) 1:2:3	(a) (a)	2:3:4		3:4:5	(4)	4:5:6	
15.	The value of r.	rr., is						
	 Δ² 		Δ-2	(3)	Δ-3	(4)	Δ^4	
16.	$\frac{1}{r1} + \frac{1}{r2} + \frac{1}{r3} =$							
	(1) $\frac{1}{r}$	(2)	$\frac{1}{2r}$	(3)	$\frac{1}{R}$	(4)	$\frac{1}{\Delta}$	
	n Shara							
17.	If $a=6, b=5, c=$ (1) $\cos^{-1}(2/9)$				$\cos^{-1}(7/9)$	(4)	cos ⁻¹ (1/3)	
	$(1) \cos^{-1}(2/9)$	(2)	COS (2/3)	(3)	003 (117)	(.,	()	
18.	The polar form	of complex	number 1-i	is			2	
	(1) $\sqrt{2}e^{-i\pi/4}$	(2)	$\sqrt{2} e^{i\pi/4}$	(3)	$\sqrt{2} e^{i\pi/2}$	(4)	$\sqrt{2} e^{-i\pi/2}$	
19	If $1, \omega, \omega^2$ be th	e cube roots	s of unity, the	n the valu	ue of $2^{\omega^3} \cdot 2^{\omega^5}$	⁵ .2 [∞] is	4	2
17.	(1) ω	(2)	ω ²	(3)	1	(4)	0	
20.	The intercept n	nade on X-a	xis by the cir	cle $x^2 + y^2$	+2gx+2fy+c	e = 0 is		
	(1) $\sqrt{g^2-c}$	(2)	$\sqrt{f^2-c}$	(3)	$2\sqrt{g^2-c}$	(4)	$2.\sqrt{f^2-c}$	
21.	If one end of the	ne diameter	of the circle :	$x^{2}+y^{2}-5x$	-8y+13 = 0	is (2, 7), tl	nen the other	end of the
	diameter is (1) $(3, 1)$	(2)	(1, 3)	(3)	(-3, -1)	(4)	(-1, -3)	
		23		5-A				

		δs π				Set Code : Booklet Code :	
	2						10.00
30.	$\frac{d}{dx}\left[\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)\right] =$						
	(1) $\frac{1}{1+x^2}$ (2)	$\frac{-1}{1+x^2}$	(3)	$\frac{2}{1+x^2}$	(4)	$\frac{-2}{1+x^2}$	
31.	If $x = at^2$, $y = 2at$, then $\frac{dy}{dx}$	=		n 94			-
	(1) $\sqrt{\frac{y}{x}}$ (2)	$\sqrt{\frac{x}{a}}$	(3)	$\sqrt{\frac{a}{x}}$	(4)	$\sqrt{\frac{x}{y}}$	12
32.	The derivative of e^x with r	espect to \sqrt{x} is				178 14 2	it.
	(1) $\frac{2\sqrt{x}}{e^x}$ (2)	$2\sqrt{x}e^{x}$	(3)	$\frac{e^x}{2\sqrt{x}}$	(4)	$\sqrt{x}.e^x$	•
		to the output u	= 5 4 9	t the point (1, 5)) is		
33.	The equation of the normal (1) $x + 20y = 99$ (2)	x + 20y = 101	(3)	x - 20y = 99	(4)	x - 20y = 101	
34.	The angle between the cu	rves $y^2 = 4x$ and y	$x^2 + y^2$	= 5 is			2
	(1) $\frac{\pi}{4}$ (2)	tan-1(2)	(3)	tan ⁻¹ (3)	(4)	tan ⁻¹ (4)	
	14 - F						3.3
35.	If $u = x^3 y^3$ then $\frac{\partial^3 u}{\partial x^3} + \frac{\partial^3 u}{\partial y^3}$	=					
	(1) $6(x^3+y^3)$ (2)	$6x^3y^3$	(3)	6x ³	(4)	6 <i>y</i> ³	
36.	$\int \operatorname{cosec} x dx =$					49 11	2 8
	(1) $\log(\operatorname{cosec} x + \cot x)$) + C	(2)	$\log(\cot x/2)$			
	(3) $\log(\tan x/2) + C$		(4)	-cosec x.cot :	x + C		
			7-A				

Set Code : T2 Booklet Code : A
37. $\int_0^{\frac{\pi}{2}} \cos^{11} x dx =$
(1) $\frac{256}{693}$ (2) $\frac{256\pi}{693}$ (3) $\frac{\pi}{4}$ (4) $\frac{128}{693}$
38. $\int f'(x) [f(x)]' dx =$
(1) $\frac{[f(x)]^{n-1}}{n-1} + C$ (2) $\frac{[f(x)]^{n+1}}{n+1} + C$ (3) $n[f(x)]^{n-1} + C$ (4) $(n+1)[f(x)]^{n+1} + C$
$39. \int \frac{dx}{(x+7)\sqrt{x+6}} =$
(1) $Tan^{-1}(\sqrt{x+6})+C$ (2) $2Tan^{-1}(\sqrt{x+6})+C$
(3) $Tan^{-1}(x+7)+C$ (4) $2Tan^{-1}(x+7)+C$
$40. \int \tan^{-1} x dx =$
(1) $x.Tan^{-1}x + \frac{1}{2}\log(1+x^2) + C$ (2) $\frac{1}{1+x^2} + C$
(3) $x^2 . Tan^{-1}x + C$ (4) $x . Tan^{-1}x - \log \sqrt{1 + x^2} + C$
$41. \int \frac{dx}{1+e^{-x}} =$
(1) $\log (1+e^{-x}) + C$ (2) $\log (1+e^{x}) + C$ (3) $e^{-x} + C$ (4) $e^{x} + C$
42. $\int_{-\pi}^{2} \sin x dx =$
$\frac{-\pi}{2}$
(1) 0 (2) 1 (3) 2 (4) -1 8-A

PHYSICS

51.		o quantities A and e. The dimensio		related by the rela 8 will be	ation	A/B = m where <i>n</i>	n is line	ear mass densi	ty and A is
	(1)	same as that of	latent	heat	(2)	same as that of	f press	ure	
	(3)	same as that of	work		(4)	same as that of	fmome	entum	
52.	The			of capacitance in					
	(1)	$[ML^2T^2I^2]$	(2)	[ML-2T412]	(3)	[M ⁻¹ L ³ T ³]	(4)	$[M^{-1}L^{-2}T^{4}I^{2}]$	
53.				on cosines of a ve					
2	(1)	l+m+n=1	(2)	$l^2 + m^2 + n^2 = 1$	(3)	$\frac{1}{l} + \frac{1}{m} + \frac{1}{n} = 1$	(4)	lmn = 1	
54.	The	angle between i-	+i and i	i+k is					
		0°.	(2)		(3)	45°	(4)	60°	
55.	-	-		ards with a veloc rage acceleration			conds	the velocity c	hanges to
	(1)	$\frac{1}{\sqrt{2}}$ ms ⁻² toward	ds nort	h-west	(2)	zero			ď,
	(3)	$\frac{1}{2}$ ms ⁻² towards	s north		(4)	$\frac{1}{\sqrt{2}}$ ms ⁻² towar	rds nor	th-east	
56.	The		mofa	particle varies w	ith tin	t as $p = a + bt$	$+ct^2$ w	hich of the fol	lowing is
	(1)	Force varies wi	th time	in a quadratic m	anner				
	(2)	Force is time-d	epende	ent.					34. 1
	(3)	The velocity of	the pa	rticle is proporti	onal t	to time.	82	· ·	
	(4)	The displaceme	ent of t	he particle is pro	porti	onal to t.			
57.				with a velocity v s			o two p	ieces. One par	rt of mass
	(1)		(2)				(4)	4v/3	
•			1.	10	-A				

Set Code : T2 Booklet Code : A

- 58. The velocity of a freely falling body after 2s is(1) 9.8 ms^{-1} (2) 10.2 ms^{-1} (3) 18.6 ms^{-1} (4) 19.6 ms^{-1}
- 59. A large number of bullets are fired in all directions with the same speed *u*. The maximum area on the ground on which these bullets will spread is
 - (1) $\frac{\pi u^2}{g^2}$ (2) $\frac{\pi u^4}{g^2}$ (3) $\frac{\pi u^2}{g^4}$ (4) $\frac{\pi u}{g^4}$
- 60. The minimum stopping distance for a car of mass m, moving with a speed v along a level road, if the coefficient of friction between the tyres and the road is μ , will be

(1) $\frac{v^2}{2\mu g}$ (2) $\frac{v^2}{\mu g}$ (3) $\frac{v^2}{4\mu g}$ (4) $\frac{v}{2\mu g}$

- 61. When a bicycle is in motion, the force of friction excreted by the ground on the two wheels is such that it acts
 - (1) In the backward direction on the front wheel and in the forward direction on the rear wheel
 - (2) In the forward direction on the front wheel and in the backward direction on the rear wheel
 - (3) In the backward direction on both the front and the rear wheels
 - (4) In the forward direction on both the front and the rear wheels
- 62. In a perfectly inelastic collision, the two bodies
 - (1) strike and explode (2) explode without striking
 - (3) implode and explode (4) combine and move together

63. Under the action of a constant force, a particle is experiencing a constant acceleration, then the power is

- (1) zero
- (3) negative

(2) positive

(4) increasing uniformly with time

11-A

2			8	2 280				2	Set Code : T2 Booklet Code : A
64.	Co	nsider the follow	ving tv	vo stater	ments:				
	A:	Linear mome	ntum o	of a syste	em of pa	articles	is zero.		
	B : The	Kinetic energ	y of a	system	of partic	les is a	zero.	2.	
	(1)	A implies B &	Bim	olies A		(2)	A does not in	nply B	& B does not imply A
	(3)	A implies B b	ut B do	bes not i	mply A	(4)			but B implies A
65.	An heig	engine develop: ght of 40 m? (Gi	s 10 k ven g	W of po = 10 ms	wer. Ho ⁻²)	w muc	h time will it t	ake to l	ift a mass of 200 kg to a
2	(1)	4s	.(2)	5s	2.1	(3)	8s	(4)	10s
66.		spring has time	°		s cut int	o n equ	al parts, then t	he time	period will be
	(1)	$T\sqrt{n}$	(2)	$\frac{1}{\sqrt{n}}$		(3)	nT	(4)	т.
67.	Whe	en temperature i	ncreas	es, the f	requenc	vofat	uning fork		
	(1)	increases		,		,	, given a	5 - ₁₄	
	(2)	decreases							
	(3)	remains same		3			(*)	×	
	(4)	increases or de	ecrease	es depen	ding on	the ma	aterials		4
					*				g (g (S
68.	lfa	simple harmonio	c moti	on is rep	oresented	d by $\frac{d}{d}$	$\frac{2^2x}{y^2} + \alpha x = 0$, its	time p	eriod is
	(1)	$2\pi\sqrt{\alpha}$	(2)	2πα	2 1	(3)	$\frac{2\pi}{\sqrt{\alpha}}$	(4)	$\frac{2\pi}{\alpha}$
69.		nema hall has ve total absorption				requir	ed to have reve	erberati	ion time of 1.5 seconds.
	(1)	850 w-m ²	(2)	82.50	w-m ²	(3)	8.250 w-m ²	(4)	0.825 w-m ²
				.*					

12.4

		⁴¹ 13						Set (Booklet (Code : T2 Code : A	
70.	To al	bsorb the sound in a	hall wh	ich of the fe	ollowi	ng are used				
70.	(1)	Glasses, stores			(2)		ains		2	
		Polished surfaces			(4)	Platforms				
~ 1	IGNI	represents avagadro	'e numl	her then the	numł	her of molecule	es in 6 gr	n of hydro	gen at NTP is	
71.) 3N	Joi, mon and	(3)	N	(4)	N/6		
	(1)	2N (2) 51		(5)					
72.	The	mean translational l	inetic	energy of a	perfec	t gas molecul	e at the te	emperatur	e T K is	
		$\frac{1}{2}kT$ (2)					(4)			
73.	The (1) (3)	amount of heat give water equivalent specific heat	n to a b	ody which	(2)	its temperatur thermal heat temperature	capacity	0	2 8 8	
74.	Dur	ing an adiabatic pro plute temperature. T	cess, th he ratic	e pressure Cp/Cv for	of a ga gas is	as is found to b	be propo	rtional to	the cube of its	
		$\frac{3}{2}$ (2					(4)	$\frac{5}{3}$	5 H K	
75.	Cla	dding in the optical	fiber is	mainly used	d to					
75.	(1)	to protect the fibe	r from	mechanical	stress	ses				
	(2)	to protect the fibe							a S	
	(2)				streng	gth				
	(4)		r from	electromag	netic g	guidance				
4									3 2	
		•: e^								

Set Code :	T2
Booklet Code :	A

	z			СН	EMIST	RY					
76.	The	valency electro	nic con	figuration of	Phospho	orous atom (At.)	No. 15) is			
	(1)	3s ² 3p ³	(2)	3s ¹ 3p ³ 3d ¹	(3)	3s ² 3p ² 3d ¹	(4)	3s' 3p ² 3d ²			
77.	And	element 'A' of A	t.No.12	2 combines wit	th an ele	ment 'B' of At.N	o.17.7	The compound formed	is		
	(1)	covalent AB	(2)	ionic AB ₂	(3)	covalent AB ₂	(4)	ionic AB			
78.	The	number of neut	rons pr	resent in the at	om of 56	Ba ¹³⁷ is					
	(1)	56	(2)	137	(3)	193	(4)	81			
79.	Hyd	rogen bonding i	in wate	r molecule is	responsi	ble for					
	(1)	decrease in its	freezi	ng point	(2)	increase in its	increase in its degree of ionization				
	(3)	increase in its	boiling	gpoint	(4)	decrease in its	boilin	g point			
80.	In th	e HCl molecule	, the bo	onding betwee	n hydro	gen and chlorine	is	•			
	(1)	purely covalen	t (2)	purely ionic	(3)	polar covalent	(4)	complex coordinate			
81.	Pota	ssium metal and	i potas	sium ions							
	(1)	both react with	water		(2)	have the same	numbe	er of protons			
	(3)	both react with	h chlori	ne gas	(4)	have the same	electro	onic configuration			
82.	stand	lard flask. 10 ml	ofthis	solution were j	pipetted		lask ar	made up to 100 ml in nd made up with distille solution now is			
	(1)	0.1 M	(2)	1.0 M	(3)	0.5 M	(4)	0.25 M			
83.	Con	centration of a 1	.0 M s	olution of pho	sphoric	acid in water is					
	(1)	0.33 N	(2)	1.0 N	(3)	2.0 N	(4)	3.0 N			
84.	Whi	ch of the follow	ing is a	Lewis acid?		÷., .					
		Ammonia	-		(2)	Berylium chlor	ride				
	(3)	Boron trifluori	ide		(4)	Magnesium ox	ide				
	100				14-A						

Set Code : T2

					Booklet Co	de : A
10121	Which of the following constitutes the com	noner	uts of a buffer s	olution	?	
85.	and the second sec	roxid	e			
		IUAIG	•			
		d				
	· · · · · · · · · · · · · · · · · · ·	-				
	(4) Calcium chloride and calcium acetate					
86.	Which of the following is an electrolyte?				5302	
00.	(1) Acetic acid (2) Glucose	(3)	Urea	(4)	Pyridine	
				d T		0.44V and
87.	Calculate the Standard emf of the cell, Cd	/Cd+2/	//Cu ⁺² /Cu give	n that E	° Ca/Ca	0.44 v and
	$E^0 Cu/Cu^{+2} = (-) 0.34 V.$	(2)	(-) 0.78 V	(4)	078 V	
	(1) $(-) 1.0 V$ (2) $1.0 V$	(3)	(-) 0.78 V	(4)	0.70 1	
	A solution of nickel chloride was electroly	sed us	sing Platinum	electrod	es. After ele	ctrolysis,
88.	 nickel will be deposited on the anode 	(2)	Cl. gas will b	e libera	ted at the cat	hode
	IIII III I-the enade	(4)	nickel will be	e deposi	ted on the ca	thode
	(3) H_2 gas will be liberated at the anode					
89.	Which of the following metals will underg	o oxid	lation fastest?			
	(1) Cu (2) Li	(3)	Zinc	(4)	Iron	
ж Т		j.			water?	1.86.051
90.	Which of the following cannot be used for	the st	colorism Ord	rinking	water:	
	(1) Ozone	(2)				8
	(3) Potassium Chloride	(4)	Chlorine wat	ler		
	A water sample showed it to contain 1.20 m	ng/litz	e of magnesiu	m sulph	ate. Then, its	hardness in
91.	terms of calcium carbonate equivalent is	ng na	e er meg			
	(2) 1.00	(3)	0.60 ppm	(4)	2.40 ppm	
	(I) III PP (I) II					
92	Soda used in the L-S process for softening	g of w	ater is, Chemic	ally.	8	
	(1) sodium bicarbonate	(2)	sodium carb	onale u		
	(3) sodium carbonate	(4)	sodium hydr	roxide (40%)	
						19 - F
93.	The process of cementation with zinc pow	der is	known as	na (4)	electrople	ting
	(1) sherardizing (2) zincing	(3)	metal claddi	ng (4)	electropia	ing
	64 82	15-A	11 M			
		13-A				

					Set Code : 1 Booklet Code : 4				
94.	Car	rosion of a metal is fastes	st in		12				
	(1)	rain-water (2) a	cidulated water (3)	distilled water (4)	de-ionised water				
95.	Wh	ich of the following is a th	hermoset polymer?						
	(1)	Polystyrene	(2)	PVC					
<i>x</i> .	(3)	Polythene	(4)	Urea-formaldehyde r	esin				
96.	Che	mically, neoprene is							
	(1)	polyvinyl benzene	(2)	polyacetylene					
	(3)	polychloroprene	(4)	poly-1,3-butadiene					
	1 10								
97.	Vulo	anization involves heating	g of raw rubber with	2. a.	1 C .				
	(1)	selenium element	(2)	elemental sulphur					
	(3)	a mixture of Se and elem	and all states and states	· · · · · · · · · · · · · · · · · · ·	and sulphur dioxide				
0.0	D		e: 025		•				
98.		ol largely contains		2					
	(1) a mixture of unsaturated hydrocarbons $C_s - C_s$								
	(2) a mixture of benzene, toluene and xylene								
	(3) a mixture of saturated hydrocarbons $C_{12} - C_{14}$								
	(4)	a mixture of saturated hy	drocarbons $C_6 - C_8$						
99.	Whie	ch of the following gases	is largely responsib	ble for acid-rain?	8 1				
	(1)	SO2 & NO2	(2)	CO2 & water vapour	×.				
	(3)	CO ₂ & N ₂	(4)	N2 & CO2					
100	BOD	stands for							
	(1)	Biogenetic Oxygen Dema	and (2)	Biometric Oxygen De	mand				
	(3)	Biological Oxygen Dema		Biospecific Oxygen De					
	()	Storogram Oxygen Denie	(4)	Diospecific Oxygen D					
				·	*				
	100								

								Set Cod Booklet Cod	
		СО	MPU	TER SCIE	NCE A	ND ENGI	NEERII	NG	
101.		ich of the follow ECL		the first integ TTL	rated log		(4)) MOS	
102.	Wh (1)	at is the approxim 400 mV	nate v (2)	•	se margi (3)		ic circuit? (4)		
103.		ich of the follow ECL		the fastest into TTL	egrated l (3)	100 M	(4)	CMOS	
105.	(1) (3) Wha	en is that the NA One input is se Inputs are left at logic function i	t to '0 open	,	(2) (4)	One input i Inputs are o	is set to '1 connected	together	fan AND
	gate	? NAND			(3)		(4)	NOR	
		t is the simplifie X + Y + Z		n of the given XY+YZ		expression: X+YZ		XY) (X + Z)? XZ + Y	
	(1)	the effective co An SR flip-flop A T flip-flop an	and a	D flip-flop	ster slave (2) (4)	e flip-flop: An SR flip- Two T flip-1		T flip-flop	
	How (1)	many flip-flops 4		quired to divid 5			y by 64? (4)	7	3
		ch is the first mic 2002	cropro		iced by t	-	ooration?	8080	X
	The 8 (1)	8086 microproce 8, 8	ssor h		bit	data bus and	10.00	bit address b	ous.
					17-A	200491 * 122980			(CSE)

								Set Cod Booklet Cod	
111	. 80	86 has a	ł	oytes queue.					
·.		4	(2)	3	(3)	8	(4)	16	
112	. The are	e registers wh	ich are u	used for the a	ddress c	alculations in	based ir	ndexed address	ing mode
	(1)	BP & SI	(2)	BP & DI	(3)	BX & SI	(4)	BX/BP & SI/	DI .
113	. Wh	ich of the foll	owing in	struction is us	sed for u	nconditional j	ump?		
	(1)		(2)			JZ	(4)	GO	
114.	Ho	w is the imple	mentatio	n of the conti	rol sectio	n of Intel 80	86 micro	processor done	,
	(1)	Using micro	program	ming			so meroj	processor done	22
	(2)	Using nanop							
	(3)	It is a combi	nation of	Microprogra	mming a	nd Hard-wire	d designs	5	
	(4)			ntrol in a rand			0	• • •	
115.	Hov	w many condit	ional flag	s are availabl	le in 8048	36?			
	(1)		(2)			10	· (4)	16	
116.	Wha	address inst	ructions a	re used by a s	Stack?				. 8
		Zero	(2)	One	(3)	Two	. (4)	Three	
117.	Whi	ch is the addre	essing mo	de where the	operand	is specified v	vithin the	instruction?	
2 2 12		Direct	(2)	Indirect		Immediate	(4)	Register	
118.	EDR	AM indicates							1.00
	(1)	Extended DR	AM		(2)	Enhanced DF	MAN		с.
	(3)	Electronic D	RAM		(4)	Electrical DI			
19.	Whic	h of the follow	ving mat	ches better wi	ith DMA	1/02			
		High Speed R				Printer	9-1 -	· · · ·	
		ALU		1) 2		Disk			
					18-A				(CSE)

Set Code :	T2
Booklet Code :	Α

120 W	/hich of the following is not a form of	memory?	2	
(1		(2)		le
(3		(4)	Instruction regist	
. (3) Instruction cable		10 C	
121. W	which of the following is an advantage	ofvirtual	memory?	
	 Processes can be given priority 		12	
(2	2) Programs larger than the physical	memory s	size can be run	8
(3	3) Faster access to memory on an ave			
(4	4) Linker can assign addresses independ	lent of whe	ere the program will	be loaded in physical memory.
				×
122. W	Which of the following is an advantage	of memor	y interlacing?	
S.,	1) A large memory is obtainted			
	2) A non-volalite memory is obtained			
26	3) The cost of the memory is reduced		ai Na	712
(4	Effective speed of the memory is	increased		1 B B
100 1	Which of the following devices should	he given h	higher priority in a	ssigning interrupts?
	 Printer (2) Floppy disk 		Keyboard	(4) Hard disk
((0)	110,000	
124.	addressing mode permits	relocation	without any chan	ge to the code.
Ū	1) Base register	(2)	Indexed register	ia.
	3) Relative	(4)	Indirect	
			1	
125. B	Between what components of a Comput	er does an	I/O processor con	trol the flow of information?
	1) I/O devices and Cache memory	(2)	I/O devices and M	Main memory
(3) Two I/O devices	(4)	Main memory an	d Cache memory
126. V	What 'C' command which is used to fre	e the allo	cated memory?	(1) Defrech
(1) Dispose (2) Free	(3)	Deallocate	(4) Refresh
107 1	n order to realize dynamic memory allo	cation by	using functions lik	e malloc, calloc and realloc,
127. 1	n order to realize dynamic memory and which header file should be included?	cation by		
	1) string.h (2) stdiomemo	ry.h (3)	stdio.h	(4) stdlib.h
(1) sumgin (2) statomento	·) (5)		1997. -

19-A

Set Code : T2 Bookiet Code : A
128. What does 'stderr' in C language stands for?
(1) Standard error streams (2) Standard error types
(3) Standard error definitions (4) Standard errors
129. What is the output of the following 'C' code?
main()
{
static char a[] = "ECET12";
char * b = "ECET12";
printf("\n%d %d", sizeof(a), sizeof(b));
(1) $a=7, b=2$ (2) $a=2, b=7$ (3) $a=7, b=6$ (4) $a=7, b=8$
130. What is the purpose rewind() function in C?
(1) file pointer repositions to the starting of the file
(2) file pointer repositions to the end of file
(3) file pointer repositions to the starting of the line
(4) file pointer repositions starting of the word
() pointer repositions starting of the word
131. The total number of nodes in a binary tree with 'n' leaves is
(1) n (2) $2n$ (3) $2n-1$ (4) $2n-2$
132. A tree is special case of a graph which consists of number of cycles.
(1) 0 (2) 1 (3) 2 (4) more than 2
133. A heap allows a very efficient implementation of a
(1) Stack (2) Queue (3) Priority queue (4) Tree
134. If the postorder traversing of a tree results in C F E D B J I H G A; then the preorder traversal would return what?
(1) ABDCEFGHIJ (2) ABCDEFGHIJ (3) ABCDEFHGIJ (4) ABCDFEGHIJ

20-A

•

							Set Code	: T2
	ā.	•	94. 10				Booklet Code	
135.	Which data	structure all	lows deletion at	both ends	of the list but	insertio	n at only one e	end?
		restricted de		(2)	Output-restri	icted deq	lue	
	(3) Priori	ty queue		(4)	Circular que	ue .		
126	•	lover is no	ot present in the	TCP/IP re	ference mod	el.		
130.		port (2) Session	(3)	Internet	· (4)	Application	
127		is the Prot	tocol Data Unit (PDU) use	d at the netw	ork laye	r of the OSI m	odel.
157.	(1) Segm		2) Frame	(3)	Packet	(4)	Bits	
120	Which lave	r in the OSI	reference mode	I takes the	responsibilit	y of flow	v control?	
150.		cation layer		(2)	Transport la	yer		
	(1) Appli (3) Netwo			(4)	Session laye			
	(5). Netwo	001 0020						
139.		are the dev	vices that operate	e at the ne	twork layer of	of the OS	SI model for fo	orwarding
	the packets	over WAN.						
	(1) Hubs		2) Bridges	(3)	Switches	(4)	Routers	
140.	What does	SMTP stand	I for?	59				
			e transfer protoco	ol (2)				
			sfer protocol	(4)	Simple mes	sage tran	sfer protocol	
141	Identity the	class of the	IP address give	n in the bi 100	nary represen	tation be	elow:	
			(2) B		С	(4)	D	
							n	
142	Which of t	he following	g statement is typ	ically FA	LSE about Et	hernets?		
	(1) Ether	mets use cir	cuit switching to	send mes	ssages			
AL ^{SS}	(2) Ether		d in providing pl	halad	dress			
		nets are use	u in providing pr	iysical au	ur 055			
	(3) Ether	net protocols	use a collision-detected by Ethernets	ection meth	nod to ensure th	at messag	ges are transmitt	ed properly.

									Set Code : T2 det Code : A
143.		acts	as security b	ouffer betw	een a compa	ny's private net	work a	nd all e	external networks.
	(1)	Firewall			(2)	Password			
	(3)	Disaster	recovery pla	an	(4)	Virus checker			а. Э
144.	How	v many byt	es are used	by the Clas	s 'B' IP add	resses to represe	ent the	Host a	and Network IDs?
	(1)	1,3	(2)	2,3	(3)	2,2	(4)	3,1	2

145. protocol is used for remote login purpose. (1) Telnet (2) HTTP (3) FTP (4) SMTP

146. What is meant by a Process?

- (1) A program written in high level language and stored on the disk
- (2) A program is execution

(3) A job stored in the secondary memory

(4) A job available in the main memory

147. A computer system cannot boot if the is not available on it.

- (1) Loader (2) Linker
- (3) Interpreter (4) Operating System
- 148. What is the use of Job Control Language (JCL) statements?
 - (1) Allocate the CPU to a job
 - (2) Read the input from one device to another device
 - (3) Inform the OS, the start and end of a job in a batch
 - (4) For managing the memory

149. Which strategy allows the processes that are logically runnable to be temporarily suspended?

- (1) Shortest Job First (2) First come First served
- (3) Non-preemptive scheduling (4) Round Robin
 - 22-A

								Se	t Code :	T2
								Booklet	Code :	Α
1.50		algorith	m exe	ecutes the sho	rtest job	first that has ent	ered t	he queu	e of jobs	
150.	(1)	FIFO		SJF		Round Robin		(4)	LIFO	
151	Eroo	gmentation of the	files	vstem can be t	temnorat	ilv avoided by		•••••		5 X
151.	(1)	Thrashing	, me s	·		CPU scheduling	z			
	(3)	Compaction		<u>6</u>		I/O devices sch		ng		64
150	117.	tion mage feult?								
152.		at is a page fault?		while a progra	macces	ses a page in the	memo	orv		
	(1) (2)	An access to a p	bage t	hat is currently	y not ava	ilable in the men	iory			
	(3)	A reference to	a page	e of another pr	ogram		5			
	(4)	An error which	is pag	ge specific	5					<u>_</u> 8
153.	Bela	ady's Anomaly is	a beh	aviour of	pa	ge replacement a	lgori	thm.	21	
		Optimal		LRU		Circular FIFO		FIFO		
154.	Wha	at is the special s	oftwa	re used to crea	te a job	queue?		8 20		
	(1)	"이것 못한 이가 있는 것 이 것 같아. 이가 가지?				Linker	(4)	Loader		
166	11.71-1	1 City Collocal		views has the h	ichest a	acess time?				×
155.		ich of the followi	ng de	vices has the h	(2)	Cache memory				
	 (1) (3) 	Floppy Disk Associative Me	mon		(4)	Main memory			2	
	(3)	Associative inc	inory		(.)					
156.	Rela	ational database	is a gr	oup of						
		Fields	(2)	Records	(3)	Tables	(4)	Packag	ges	
157	Th -	best way to class	.:	a data madala	ic by the	degree of				
157.		difficulty	(2)	abstraction	(3)	knowledge	(4)	 unifica	tion	
	(1)	announy	(2)	abstraction	. (5)	Kilowiedge	(1)		:	2
158.	Hier	rarchical databas	e is no	ot efficient wh	en handl	ling	6			80 - 20
		security			(2)	large amounts of	of data	a		
		large number o	ftran	sactions	(4)	1:M relationshi	ps			
		4			23-A	51				(CSE)

				61			Set C	ode: T2
							Booklet C	ode : A
159. Wh	ich of the fol	lowing is	a Date functi	ion in SO	L?		18 B	
(1)	SYSDATE	Ũ		(2)		ATE		
(3)	SYSTEM_I	DATE		(4)	-	INT_DATE		
160. What man	at needs to be ay employees	created are work	if Kishan is w king in India?	orking w	ith an emp	loyee table	and wants to	find out how
(1)	Create a new	w table		(2)	Create a	new query		
(3)	Create a new	w form		(4)	Utilize t	he database	wizard	
161. A n	ormal form	which is	sufficient fo	or the con	nsideration	n of a relat	ional databa	se design is
(1)	BCNF	(2)	5 NF	(3)	4 NF	(4)	3 NF	
162. Whi	ch of the foll	owing ty	pe of JOIN is	not used	in SOL?			
	Inner join		Outer join		Equi-join	n (4)	Non Equi-	join
163. Abb	reviate SQL:							
(1)	Systematic (Query La	nguage	(2)	Structure	ed Query La	nguage	
(3)	Structural Q	10 A		(4)		Juery Langu		
164. Wha	t is the comm	and used	in SQL to rea	move rov	v(s) from a	oiven table	-2	
(1)	DELETE	(2)	DROP	(3)	ERASE	(4)		
165. When	re is the 'HAV	VING' cl	ause of SQL u	sed for a	uervina?			9 ⁷
			than columns	-	uerying.			
			her than rows		- ° 8 - 8	0		
	Used for gro			а (ж.			÷	
	Used for row	-						
166. If dup	licate rows and be used	re to be a	voided in the q	ueried ou	tput using	a SELECT	statement, wh	at qualifier
	DEFINITE	(2)	DISTINCT	(3)	DISJOIN	Г (4)	UNIQUE	
	1			24-A	9 X			(CSE)

	ē .						Set Code :	T2
	2) ²³ 40		÷				Booklet Code :	Α
67. Sele	ect one equivalen	t SQL	statement for the	give	n query:			
	-	100	OMEMPLOYEE			YD'		
(1)	SELECTEMP	NAM	E FROM EMPLO	OYEI	E WHERE PLAC	EIN ('HYD');	
(2)			E IN EMPLOYE					
(3)	SELECT EMP	NAM	E IN EMPLOYE	EWI	HERE PLACE = '	H';		
(4)	SELECTEMP	NAM	E IN EMPLOYE	EW	HERE PLACE = '	HYD	');	
68. In S	QL what comma	and is	used to get sorted	outp	ut of a given quer	у	6	
. (1)	GROUPBY	(2)	ORDER BY	(3)	SORTBY	(4)	ARRANGEBY	
69 Mul	ti-valued depend	lencie	s should	b	e eliminated.	10 G		
	Never		Rarely			(4)	Frequency	
71	storage of	class i	DDL statement s not supported b	y C+	+ compiler.			
(1)	Dynamic	• (2)	Register	(3)	Auto	(4)	Mutable	
72.	feature i	s not a	at all supported by	y the	C++ compiler.			
(1)	Operate overloa	ading		(2)	Exception handl	ing		
(3)	Reflection			(4)	Namespaces		292. 25	
73.	keyayord	sunn	orts dynamic met	hod r	esolution in C++	2	· •	
	Abstract	Jupp	or to a grannie met	(2)	Virtual	2.2		×
(1)	Dynamic			(4)	Typeid			
	11							
74. Whi	ch of the followi	ing sh	ould be used to ac			in C-	-+?	
(1)	Dot operator			(2)	Member name			
(3)	An index numb	er	5 2	(4)	Function name			

		0						Set Code	: T2
								Booklet Code	: A
175. Wł	hat is meant by op	perator o	verloadir	ng in	C++?	÷.,			
(1)									
(2)	It is creating n	new funct	tions						a 8
(3)	It is giving new	w meanin	ngs to exi	sting	g C++	operators		×	
(4)	It is loading m	ultiple o	perators	into	a giver	function			
176. WI	hat is meant by C	++ pure	virtual fu	ncti	on?				
(1)									~
(2)				ie					
(3)					oase cla	ass			
(4)							0 2		÷ Ą
77. In C	C++ what does re	direction	n perform	ı.	3.2				
(1)	It redirects a fi	ile from a	a device	to a s	stream				
(2)	It redirects a st	tream fro	om a file	to a	consol	e			
(3)	It redirects a d	evice fro	m the sc	reen	to a fi	le			
(4)	It redirects the	screen f	rom a de	vice	to a st	ream	•		
78. To v	which class of str	ream doe	s 'cout' d	bjec	t in C-	++ belong to?			
(1)	stringstream	(2) is	stream		(3)	ostream	(4)	ifstream	
79. Whi	ich of the follow	ing is us	ed by an	obje	ct to re	efer to itself?			
1.1	this	(2) it	self	ŝ	(3)	self	(4)	own	
(1)									
80. In C	C++ when no account inheritance ty		ifier is e	cplic	itly m	entioned for th	ne base	class,	_ is the
80. In C defa		ype.	ifier is er rivate	cplic		entioned for th Internal	ne base (4)	class,	_ is the
80. In C defa (1)	ult inheritance ty Public	(2) P	rivate		(3)	Internal			_ is the
80. In C defa (1) 81. In C	ult inheritance ty	(2) P	rivate ed to sup	port	(3) the fea	Internal	(4)		_ is the

						Se	t Code : T2
						Bookle	t Code : A
82	Whi	ch of the following of	operators in C++	cannot	be overloaded?		
02.	(1)	Assignment	- =	(2)	Equality	. ==	
	(3)	Scope resolution	::	(4)	Arrow	>	2 R
183.		cannot be	declared as a ten	nplate i	n C++		5
	(1)	Classes	3	-	Member funct	ions	
	(3)	Global functions		(4)	Macros	10	
184.	Whi	ch of the following I	nheritance mecha	anisms	is not supported	in Java	
	(1)	Single level		(2)	Multiple level		
	(3)	Multi level ·		(4)	All the above		
185.	Ifcla	ass X is friend of clas	ss Y and if class Y	is frien	d of class Z, wh	ich of the follo	wing is correct?
	(1)	Class X is friend o	f Class Z				
	(2)	Class Z is friend of	f Class X				
	(3)	Class X and Class 2	Z do not have any	friend	relationships		
	(4)	Class Y is a mutual	friend to Class X	and Cl	ass Y	02	
					•		
186.	Wha	at is the output of the	following given.	Java co	de:		
		public class Ecet {				3	
3		public static void m){			
		new Ecet().go("hel					
		new Ecet().go("hell	lo", "word", 2);			S	
		}					
		public void go (stri					
		System.out.print(y	y.length - 1] +);			
		}		2			
	(1)	} h he (2) hello world	(3)	world world	(4) compi	lation fails
					24		
				27-A		12	(CSE)

187. Which one of the following statements is TRUE?

- (1) At once, more than two threads may possibly end up in deadlock.
- (2) The JVM implementation guarantees that multiple threads cannot enter into a deadlocked state.
- (3) Deadlocked threads release once their sleep() method's sleep duration has expired.
- (4) Deadlocking can occur only when the wait(), notify(), and notifyAll() methods are used incorrectly.
- 188. Fill up the blank with one of the following statements for the given Java code which allows Ecet class to compile:

class Navigation{

public enum Direction {North, South, East, West}

}

public class Ecet{

}

Direction d = North;

- (2) Navigation.Direction d = Navigation.Direction.North;
- (3) Direction d = Direction.North;
- Navigation.Direction d = North;
- 189. What is the output of the given Java code below?

interface TestA { String to String();}

public class Test {

public static void main (String[] args) {

System.out.println(new TestA() {

public String to String() { return "test";}

- });
- }

```
}
```

```
(1) test
```

```
(2) null
```

- (3) An exception is thrown at runtime
- (4) Compilation fails because of an error in line 1

28-A

Set Code :	T2
Booklet Code :	A

190. Given the following Java code, _____ can directly access and change the value of the variable name? package exam; class Ecet { public String name = "hello"; } (2) only the Ecet class (1) any class (4) any class that extends Ecet (3) any class in the exam package 191. What is the output of the following Java code? public class EcetString1 { public static void main(String[] args) { String str = "420"; str+=42; System.out.print(str); } } (4) 462 (3) 42042 (2) 420 (1) 42 192. Given the following Java code below, what is the output? int a = 0; int b = 10;do { b--; ++a; } while (a<5); symtem.out.print(+a "," +b); (3) 6,5 (4) 6,6 (1) 5,6 (2) 5,5 193. What is a Web Browser? (1) A compiler which compiles high level language programs (2) A compiler which compiles low level language programs (3) An interpreter which helps to view and navigate through web pages (4) A loader program which connects to the operating system

29-A

								Set Co Booklet Co				
194.	Whi	Which of the following is not a Web Brower?										
	(1)	Mozilla Firefo	-		(2)	Apple Safari						
	(3) Google Chrome				(4)	You Tube	1					
	. ,	·				•						
195.	Whi	Which protocol is used to connect to Internet?										
	(1)	нттр	(2)	FTP	(3)	ICMP	(4)	IP				
104					Ś.,							
196.		ch HTML tag is		-								
	(1)	title	(2)	blockquote	(3)	label	(4)	style				
197.	Whi (1) (2)	ch of the follow It is an applica It is client-side	tion-sp	becific program			SP	8	2			
	(3)	It is not a Web Browser firendly language										
	(4)	It is not an acti	ve scri	pting language		*1			×			
198.		ch VBscript buil		-	position	n of the occurre	nceofo	one string with	nin another,			
	(1)	InStr	(2)	String	(3)	InStrRev	(4)	StrComp	<u>*</u>			
	2003020							· .				
199.	99. Which of the following is an ASP object?											
	(1)	AdRotator	(2)	Server	(3)	BrowserCap	(4)	Content Lir	iking			
200.	Whi	ch of the follow	ing is a	an ASP compor	nent?			· · ·	1			
	(1)	Response	(2)	Request	(3)	Application	(4)	Content Ro	tator			
				13	20			÷				

30-A

1

ni. Filai