Telangana State Council Higher Education

Notations:

- Options shown in green color and with vicon are correct.
- 2.Options shown in red color and with * icon are incorrect.

Question Paper Name: Metallurgical Engineering 11th May 2019 Shift1

Subject Name: Metallurgical Engineering **Creation Date:** 2019-05-11 13:35:20

Duration:180Total Marks:200Display Marks:NoShare Answer Key With DeliveryYes

Engine:

Actual Answer Key: Yes Calculator: None Magnifying Glass Required?: No Ruler Required?: No **Eraser Required?:** No **Scratch Pad Required?:** No Rough Sketch/Notepad Required?: No **Protractor Required?:** No **Show Watermark on Console?:** Yes **Highlighter:** No **Auto Save on Console?:** No

Metallurgical Engineering

(3roup Nui	mber :			l

Group Id: 89465823 **Group Maximum Duration:** 0

Group Minimum Duration :180Revisit allowed for view? :NoRevisit allowed for edit? :NoBreak time:0Group Marks:200

Mathematics

Section Id: 89465887

Section Number: 1

Section type : Online **Mandatory or Optional:** Mandatory

Number of Questions: 50
Number of Questions to be attempted: 50
Section Marks: 50
Display Number Panel: Yes
Group All Questions: No

Sub-Section Number:

Sub-Section Id: 89465897 **Question Shuffling Allowed:** Yes

Question Number: 1 Question Id: 8946584409 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes

Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Let $M = (a_{ij})$ be a 10×10 matrix such that $a_{ij} = \begin{cases} 1, & \text{if } i+j=11 \\ 0, & \text{otherwise} \end{cases}$. Then, the

determinant of M is _____.

Options:

- 4 * 11

Question Number: 2 Question Id: 8946584410 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Let A and B be two square matrices of order n. If AB = A, BA = B then $A^2 + B^2 =$ ____.

Options:

- 2. **≈** A-B
- A+B

Question Number: 3 Question Id: 8946584411 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Consider the system of linear equations x + y + z = 3, x - y - z = 4, $x - 5y + \alpha z = 6$. Then,

the value of α for which this system has an infinite number of solutions is _____.

Question Number: 4 Question Id: 8946584412 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

If
$$A(\alpha, \beta) = \begin{pmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & e^{\beta} \end{pmatrix}$$
, then the inverse of the matrix $A(\alpha, \beta)$ is ______.

Options:

$$A(\alpha,\beta)$$

$$_{2} \approx A(\alpha, -\beta)$$

3.
$$\checkmark$$
 $A(-\alpha, -\beta)$
4. \checkmark $A(-\alpha, \beta)$

$$A(-\alpha, \beta)$$

Question Number: 5 Question Id: 8946584413 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The rational fraction $\frac{x^2+1}{(x^2+4)(x-2)}$ is equal to _____

$$\frac{3x+6}{8(x^2+4)} + \frac{5}{4(x-2)}$$

$$\frac{3x+6}{4(x^2+4)} + \frac{5}{8(x-2)}$$

$$3x+6 \over 8(x^2+4) + \frac{5}{8(x-2)}$$

$$\frac{3x+6}{(x^2+4)} + \frac{5}{(x-2)}$$

Question Number : 6 Question Id : 8946584414 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

If
$$\log_2 3 = a, \log_3 5 = b, \log_7 2 = c$$
, then $\log_{140} 63 =$ _____.

Options:

$$\frac{1-2ac}{2c+abc+1}$$

$$\frac{1-2ac}{2c-abc-1}$$

$$\frac{1+2ac}{2c-abc-1}$$

$$\frac{1+2ac}{2c+abc+1}$$

Question Number : 7 Question Id : 8946584415 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

$$\cos\frac{2\pi}{7} + \cos\frac{4\pi}{7} + \cos\frac{6\pi}{7} = \underline{\hspace{1cm}}.$$

$$\frac{1}{2}$$

$$\frac{-1}{2}$$

Question Number: 8 Question Id: 8946584416 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

If the angles A, B and C of a triangle are in an arithmetic progression and if a, b and c denote the lengths of the sides opposite to A, B and C respectively, then the value of the expression $\frac{a}{c} \sin 2C + \frac{c}{a} \sin 2A$ is a.

C Options:

$$\sqrt{3}$$

$$\frac{\sqrt{3}}{2}$$

Question Number: 9 Question Id: 8946584417 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

If
$$\sin x + \sin y = \frac{1}{4}$$
 and $\cos x + \cos y = \frac{1}{3}$, then $\cot(x+y) = \underline{\hspace{1cm}}$.

$$\frac{3}{4}$$

Question Number: 10 Question Id: 8946584418 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

If $\sin(x^{\circ} + 28^{\circ}) = \cos(3x^{\circ} - 78^{\circ})$ and $0^{\circ} < x^{\circ} < 90^{\circ}$, then, which of the following is the

value of x° ?

Options:

Question Number: 11 Question Id: 8946584419 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

If
$$x = \tan\left(\operatorname{Cosec}^{-1}\frac{65}{63}\right)$$
 and $y = \sec^2\left(\operatorname{Cot}^{-1}\frac{1}{2}\right) + \cos ec^2\left(\operatorname{Tan}^{-1}\frac{1}{3}\right)$, then $(x, y) = \underline{\qquad}$.

Options:

$$\left(\frac{63}{16},15\right)$$

$$\left(\frac{16}{63},15\right)$$

$$\left(\frac{63}{16},5\right)$$

$$\left(\frac{16}{63},5\right)$$

Question Number: 12 Question Id: 8946584420 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The equation $Tan^{-1} \left(\frac{x+1}{x-1} \right) + Tan^{-1} \left(\frac{x-1}{x} \right) = Tan^{-1} \left(-7 \right)$ has ______.

Options:

unique solution
$$x = 2$$

- two solutions x = 1, 2
- no solution
- infinite number of solutions

 $\label{lem:question_Number: Yes Display Question Number: Yes Display Question Number: Yes Display Question Number: Yes Display Question Option: No Option Orientation: Vertical$

Correct Marks: 1 Wrong Marks: 0

In a triangle ABC, let a, b and c denote the lengths of the sides opposite to

A, B and C respectively. If $\frac{1}{a+c} + \frac{1}{b+c} = \frac{3}{a+b+c}$, then the angle C is _____.

Options:

- 1. * 30°
- 2 × 90°
- ≥ ✓ 60
- 4. × 45°

Question Number: 14 Question Id: 8946584422 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

If $\sin hx = 3$ then x =_____.

$$\log(3+\sqrt{10})$$

$$\log(3-\sqrt{10})$$

$$\log(6+\sqrt{10})$$

Question Number: 15 Question Id: 8946584423 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes

Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Which of the following is NOT true for the complex numbers z_1 and z_2 ?

Options:

$$\frac{z_1}{z_2} = \frac{z_1 \,\overline{z}_2}{\left|z_2\right|^2}$$

$$|z_1 + z_2| \le |z_1| + |z_2|$$

$$|z_1 + z_2| \le ||z_1| - |z_2||$$

$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2|z_1|^2 + 2|z_2|^2$$

Question Number: 16 Question Id: 8946584424 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

If a complex number $z = \frac{\sqrt{3}}{2} + i\frac{1}{2}$, then z^4 is ______.

$$2\sqrt{2} + 2i$$

$$\frac{-1}{2}+i\frac{\sqrt{3}}{2}$$

$$\frac{\sqrt{3}}{2} - i\frac{1}{2}$$

$$\frac{\sqrt{3}}{8} - i\frac{1}{8}$$

Question Number: 17 Question Id: 8946584425 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The equation of the straight line which makes intercepts r and s on the coordinate axes

such that r+s=5 and rs=6 is ax+by+c=0, then a+b+c=

Options:

- 1 * 11
- o × 5
- -7
- 4 -1

Question Number: 18 Question Id: 8946584426 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

If a straight line $ax + by + \sqrt{5} = 0$ touches the circle $x^2 + y^2 = 5$, then which of the

following is TRUE?

Options:

$$5(a^2+b^2)=1$$

$$a^2 + b^2 = \sqrt{5}$$

$$a^2 + b^2 = 1$$

$$\sqrt{a^2 + b^2} = 5$$

Question Number: 19 Question Id: 8946584427 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

If a chord of length 12 cm is at a distance of $4\sqrt{10}$ cm from the centre of the circle, then

the radius of the circle is ...

$$_{2} * \sqrt{304} \text{ cm}$$

$$\sqrt{124}$$
 cm

Question Number : 20 Question Id : 8946584428 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

The 2019th derivative of the function $(x-1)e^{-x}$ is _____

Options:

$$\frac{x-2019}{e^x}$$

$$\begin{array}{c}
2019 - x \\
e^x
\end{array}$$

$$\frac{x-2020}{e^x}$$

$$\frac{2020-x}{e^x}$$

Question Number : 21 Question Id : 8946584429 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

If
$$z = f(x+ct) + \varphi(x-ct)$$
, then $\frac{\partial^2 z}{\partial t^2} = \underline{\qquad}$.

$$c^2 \frac{\partial^2 z}{\partial x^2}$$

$$-c^2 \frac{\partial^2 z}{\partial x^2}$$

$$\frac{1}{c^2} \frac{\partial^2 z}{\partial x^2}$$

$$-\frac{1}{c^2}\frac{\partial^2 z}{\partial x^2}$$

Question Number : 22 Question Id : 8946584430 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

If
$$x = r \cos \theta$$
, $y = r \sin \theta$ and $U = \frac{f(\theta)}{r}$ then $x \frac{\partial U}{\partial x} + y \frac{\partial U}{\partial y} = \underline{\qquad}$.

Options:

Question Number: 23 Question Id: 8946584431 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Let
$$f(x+y) = f(x)f(y)$$
, $\forall x, y$ and $f'(0) = 5$, $f(2019) = 15$. Then the value of $f'(2019)$ is _____.

Question Number : 24 Question Id : 8946584432 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

The set of values of x for which the function $f(x) = 2x^3 - 9x^2 + 12x + 4$ is increasing

is .

Options:

all
$$x \in \mathbb{R}$$

$$\mathbb{R}$$
 -[1, 2]

$$x \ge 2$$

Question Number: 25 Question Id: 8946584433 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

$$\lim_{x \to \infty} x \left(\log \left(1 + \frac{x}{2} \right) - \log \left(\frac{x}{2} \right) \right) = \underline{\hspace{1cm}}.$$

Options:

$$e^2$$

Question Number : 26 Question Id : 8946584434 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

If
$$f(x, y, z) = x^3 + xz^2 + y^3 + xyz$$
, $x = e^t$, $y = \cos t$, $z = t^3$ then $\frac{df}{dt}$ at $t = 0$ is _____.

- 1 2 2
- . 4
- 2 × e
- 4 🗸 3

Question Number: 27 Question Id: 8946584435 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Which of the following is the value of $5050 \times \frac{\int_0^1 (1 - (1 - x)^{50})^{100} x^{49} dx}{\int_0^1 (1 - x^{50})^{101} x^{49} dx}$?

Options:

- 1. 🗸 5100
- 2 * 1
- 3. **\$** 5050
- 4 * 2

Question Number : 28 Question Id : 8946584436 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

$$\int_0^1 \max \left\{ x, \frac{1}{2} - x \right\} dx = \underline{\qquad}.$$

- 1. ** 0
- 2. * 2
- 3. **√** 16

Question Number: 29 Question Id: 8946584437 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

$$\lim_{n \to \infty} \frac{1}{n^6} \sum_{k=1}^{n} k^5 = \underline{\hspace{1cm}}.$$

Options:

$$\frac{1}{6}$$

Question Number : 30 Question Id : 8946584438 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

$$\int_{-1}^{1} \frac{x^{15} (1 - x^2)^{12}}{(1 + x^2)^8} dx = \underline{\hspace{1cm}}.$$

$$\frac{22}{7} - \pi$$

$$\frac{71}{15} - \frac{3\pi}{4}$$

The area of the region bounded by the curves $y = 2 - x^2$ and y = -x is _____.

Options:

$$\begin{array}{c} 27 \\ 4. \checkmark \end{array}$$

Question Number : 32 Question Id : 8946584440 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

The volume of the solid obtained by revolving the region bounded by the curves

 $y = x^3$, y = 8 and x = 0 about the y-axis is _____

Options:

$$96\pi$$
2. \checkmark 5

$$\frac{32\pi}{5}$$

 $Question\ Number: 33\ Question\ Id: 8946584441\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Correct Marks: 1 Wrong Marks: 0

The value of $\int_0^{\pi} \theta \sin^2 \theta \cos^4 \theta d\theta$ is _____.

$$\frac{\pi^2}{32}$$

- $\frac{\pi}{32}$
- $\frac{\pi^2}{16}$
- $\frac{\pi}{4. \approx 16}$

Question Number : 34 Question Id : 8946584442 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

The average value of the function $f(x) = 4 - x^2$ over the interval [-1, 3] is _____.

Options:

- 1 💥 5
- 20
- 5 ₃ **√** 3
- ₄ * 1

Question Number : 35 Question Id : 8946584443 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

The differential equation $x \frac{dy}{dx} = y + x^2$, x > 0 satisfying y(0) = 0 has ______.

- infinitely many solutions
- no solution
- a unique solution
- 4. * exactly two solutions

Question Number: 36 Question Id: 8946584444 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The differential equation $(axy^3 + y\cos x)dx + (x^2y^2 + b\sin x)dy = 0$ is an exact

differential equation for ______.

Options:

$$a = 1, b = \frac{3}{2}$$

$$a = \frac{3}{2}, b = 1$$

$$a = \frac{2}{3}, b = 1$$

$$a = 1, b = \frac{2}{3}$$

Question Number : 37 Question Id : 8946584445 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

If $\sin x$ is a solution of the differential equation $\frac{d^4y}{dx^4} + 2\frac{d^3y}{dx^3} + 6\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y = 0$,

then the general solution is ______.

Options:

$$y = c_1 \sin x + c_2 \cos x + e^{-x} (c_3 \sin 2x + c_4 \cos 2x)$$

$$y = c_1 \sin x + c_2 \cos x + c_3 \sin 2x + c_4 \cos 2x$$

$$y = c_1 \sin x + c_2 \cos x + c_3 e^{-3x} + c_4 e^{-2x}$$

$$y = c_1 \sin x + c_2 \cos x + c_3 e^{3x} + c_4 e^{2x}$$

Question Number: 38 Question Id: 8946584446 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

If
$$D = \frac{d}{dx}$$
, then $\frac{1}{D^2 - 4D + 13} (6e^{2x} \sin 3x)$ is _____.

Options:

$$-xe^{2x}\cos 3x$$

 $xe^{2x}\cos 3x$

 $= -xe^{2x} \sin 3x$

 $xe^{2x} \sin 3x$

Question Number: 39 Question Id: 8946584447 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The general solution of $\left(\frac{e^{-2\sqrt{x}}}{\sqrt{x}} - \frac{y}{\sqrt{x}}\right) \frac{dx}{dy} = 1$ is _____.

Options:

$$y = e^{2\sqrt{x}} (2\sqrt{x} + c)$$

$$y = 2\sqrt{x} e^{2\sqrt{x}} + c$$

$$y = 2\sqrt{x} e^{-2\sqrt{x}} + c$$

$$y = e^{-2\sqrt{x}} \left(2\sqrt{x} + c \right)$$

Question Number: 40 Question Id: 8946584448 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Let y be the solution of the differential equation $\frac{dy}{dx} + y = x$, $x \in \mathbb{R}$ and y(-1) = 0.

Then, y(1) is equal to _____.

$$\frac{2}{e} - \frac{2}{e^2}$$

$$2-\frac{2}{e}$$

$$_{4} \approx 2-2\epsilon$$

Question Number : 41 Question Id : 8946584449 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

If the substitution x = X + h, y = Y + k transforms the differential equation

(y-x+1)dy-(y+x+2)dx=0 into a homogeneous equation, then the

value of (h,k) is _____.

Options:

$$\left(\frac{1}{2},\frac{3}{2}\right)$$

$$\left(\frac{-1}{2}, \frac{-3}{2}\right)$$

$$\left(\frac{3}{2},\frac{1}{2}\right)$$

$$\left(\frac{-3}{2},\frac{-1}{2}\right)$$

Question Number : 42 Question Id : 8946584450 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

The general solution of $\frac{dy}{dx} - y = y^2(\sin x + \cos x)$ is _____.

$$y = \frac{1}{ce^x - \sin x}$$

$$y = ce^{-x} - e^x \sin x$$

$$y = ce^{-x} - \sin x$$

$$y = \frac{1}{ce^{-x} - \sin x}$$

Question Number: 43 Question Id: 8946584451 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The Laplace transform of the function $f(t) = \begin{cases} \sin t, & \text{for } 0 \le t \le \pi \\ 0, & \text{for } t > \pi \end{cases}$

is ______.

Options:

$$\frac{1}{(1+s^2)} \text{ for all } s > 0$$

$$\frac{1}{(1+s^2)} \text{ for all } s < \pi$$

$$\frac{(1+e^{-\pi s})}{(1+s^2)} \text{ for all } s > 0$$

$$\frac{e^{-\pi s}}{(1+s^2)} \text{ for all } s > 0$$

Question Number: 44 Question Id: 8946584452 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The inverse Laplace transform of $\frac{5}{s} - \frac{3e^{-3s}}{s} - \frac{2e^{-7s}}{s}$ is ______.

$$f(x) = \begin{cases} 5, & 0 < x < 3 \\ 0, & 3 < x < 7 \\ 2, & x > 7 \end{cases}$$

$$f(x) = \begin{cases} 5, & 0 < x < 7 \\ 2, & x > 7 \end{cases}$$

$$f(x) = \begin{cases} 5, & 0 < x < 3 \\ 2, & 3 < x < 7 \\ 0, & x > 7 \end{cases}$$

$$f(x) = \begin{cases} 5, & 0 < x < 7 \\ 0, & x > 7 \end{cases}$$

Question Number: 45 Question Id: 8946584453 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The Laplace transform of a function f(x) is $F(s) = \frac{1}{s^3 + 2s^2 + 2s}$ Then, $\lim_{x \to 0} f(x) = \frac{1}{s^3 + 2s^2 + 2s}$

Options:

$$\frac{1}{2}$$

Question Number: 46 Question Id: 8946584454 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The Laplace transform of the solution of the differential equation $\frac{dy}{dx} - 2y = e^{5x}$ with the

initial condition y(0) = 3 is _____.

Options:

$$\frac{1}{3(s-2)} + \frac{1}{3(s-5)}$$

$$\frac{8}{3(s-2)} + \frac{1}{s-5}$$

$$\frac{8}{3(s-2)} + \frac{1}{3(s-5)}$$

$$\frac{8}{s-2} + \frac{1}{3(s-5)}$$

Question Number: 47 Question Id: 8946584455 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

If
$$L(y(x)) = Y(s)$$
 and $y(x) = x^3 + \int_0^x \sin(x-t) y(t) dt$ then $\frac{1}{6}Y(s) =$ ______.

Options:

$$\left(\frac{1}{s^4} + \frac{1}{s^6}\right)$$

$$\left(\frac{1}{s^3} + \frac{1}{s^5}\right)$$

$$\left(\frac{1}{s^3} + \frac{1}{s^7}\right)$$

$$\left(\frac{1}{s} + \frac{1}{s^3}\right)$$

Question Number: 48 Question Id: 8946584456 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

For
$$x > 0$$
, $\int_0^\infty \frac{\sin xt}{t} dt$ is _____.

Options:

$$\frac{\pi}{2x}$$

$$\frac{1}{x}$$

$$\frac{\pi}{2}$$

Question Number : 49 Question Id : 8946584457 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

If
$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
 is the Fourier series of the function

$$f(x) = \begin{cases} 0, & -\pi \le x < 0 \\ \pi, & 0 \le x \le \pi \end{cases}$$
 then, which of the following is TURE?

Options:

$$a_n = 0$$
, for all $n \ge 0$

$$a_0 = \frac{\pi}{2}$$
 and $a_n = 0$, for all $n \ge 1$

$$b_n \neq 0$$
, for all $n \ge 1$

$$a_0 = \pi$$
 and $a_n = 0$, for all $n \ge 1$

Question Number: 50 Question Id: 8946584458 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

A function
$$f(x)$$
 is such that $f(x+2\pi)=f(x)$ and $f(x)=x, -\pi \le x \le \pi$. The Fourier series of $f(x)$ is ______.

$$2(\sin x - \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x - \dots)$$

$$2(\sin x + \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x + \dots)$$

$$2(\cos x - \frac{1}{2}\cos 2x + \frac{1}{3}\cos 3x - \dots)$$

$$2(\cos x + \frac{1}{2}\cos 2x + \frac{1}{3}\cos 3x + \dots)$$

Physics

Section Id: 89465888

Section Number: 2

Section type: Online
Mandatory or Optional: Mandatory

Number of Questions:25Number of Questions to be attempted:25

Section Marks: 25
Display Number Panel: Yes
Group All Questions: No

Sub-Section Number:

Sub-Section Id: 89465898 **Question Shuffling Allowed:** Yes

Question Number: 51 Question Id: 8946584459 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The dimensional formula for gravitational constant is .

Question Number: 52 Question Id: 8946584460 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The dimensions of the quantities in one of the following pairs are same. Identify the pairs.

Options:

1. v torque and work

angular momentum and work

energy and Young's modules

 $_{4}$ $_{4}$ light year and wavelength

Note: For this question, ambiguity is found in question/answer. Candidate will get full marks for this question if any of the correct options are chosen.

Question Number: 53 Question Id: 8946584461 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Which of the following is not correct?

Options:

$$j \times i = -k$$

$$k \times j = -i$$

Question Number: 54 Question Id: 8946584462 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

If 0.5 i + 0.8 j + c k is a unit vector then c is _____.

Question Number: 55 Question Id: 8946584463 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Which of the following is correct?

Options:

$$A.(B+C) = A.B+C.A$$

Question Number : 56 Question Id : 8946584464 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

The acceleration due to gravity on the surface of the earth is given by

Options:

- 1. * G
- GM/R
- ₄ ¥ GM

Question Number: 57 Question Id: 8946584465 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The value of g is maximum at .

- equator
- 2. Pole

higher altitudes
at the centre of the earth
Question Number: 58 Question Id: 8946584466 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
When the speed of rotation of earth increases your weight
Options:
increases
2. decreases
remains constant
4. * becomes zero
Question Number: 59 Question Id: 8946584467 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 The value of G is zero at
Options:
nowhere
the centre of the earth
3. surface of the earth
4. * pole
Question Number: 60 Question Id: 8946584468 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
If the linear momentum is increased by 50%, the kinetic energy will be increased
by
Options:

1. 🗱	50%
2. 🛎	100%
3. 🗸	125%
4. 🚜	25%
Single	ion Number: 61 Question Id: 8946584469 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Line Question Option: No Option Orientation: Vertical ct Marks: 1 Wrong Marks: 0
	netallic block slides down a smooth inclined plane when released from the top, while
the	other falls freely from the same point, then
Option	as:
1. 🗸	both will reach the ground with the same velocity
2. 🕷	both will reach the ground together
3. 🛎	both will reach the ground travelling with same acceleration
4. 🛎	the block sliding down the plane will strike earlier
Single	ion Number: 62 Question Id: 8946584470 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Line Question Option: No Option Orientation: Vertical ct Marks: 1 Wrong Marks: 0
Al	long spring is stretched by 2 cm and its potential energy is u. If the spring is stretched
by	10 cm, then the potential energy stored in it will be
Option	ns:
1. 🗱	u/24
2. 🛎	u/5
3. 🛎	5u
4. 🗸	25u

Question Number: 63 Question Id: 8946584471 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
Two masses of 1 gm and 4 gm are moving with equal kinetic energies. The ratio of the
magnitudes of their linear momentum is
Options:
1. * 4:1
$\sqrt{2}$:1
3. 1:2
4 * 1:16
Question Number: 64 Question Id: 8946584472 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
A body is dropped from rest at height 0.5 m. What will be its velocity when it just
strikes the ground?
Options:
1. * 7 m/s
2. * 9.8 m/s
3. 3 4.9 m/s
$_{4.}$ $\sqrt{9.8}$ m/s
Question Number: 65 Question Id: 8946584473 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
A particle moves such that its acceleration a is given by $a = -bx$ where x is the
displacement from equilibrium and b is a constant. The period of Oscillation is
Note: For this question, discrepancy is found in question/answer. Full Marks is being awarded to all candidates. Options:
1. $2\Pi b$

2.	$2\Pi\sqrt{b}$

з. 2П/b

4.
$$2\sqrt{\Pi}/b$$

Question Number: 66 Question Id: 8946584474 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

A particle is vibrating in simple harmonic motion with amplitude of 4 cm. At what

displacement from the equilibrium position is its energy half potential and half kinetic?

Options:

$$_{2} \approx \sqrt{2}$$
 cm

$$_{4.}$$
 \checkmark $2\sqrt{2}$ cm

Question Number: 67 Question Id: 8946584475 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes

Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

When a star approaches the earth, the waves are shifted towards

Options:

green colour

yellow colour

blue end

red end

Question Number: 68 Question Id: 8946584476 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

If a tuning fork of frequency 90 is sounded and moved towards an observer with a velocity
equal to one tenth the velocity of sound, then the note heard by the observer will have frequency
Options:
1. ✓ 100
2. * 90
3. * 80
4. * 900
Question Number: 69 Question Id: 8946584477 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
What is the most important factor which helps to recognise a person by his/her voice
alone
Options:
quality
2. * pitch
3. * intensity
quality, pitch and intensity
Question Number: 70 Question Id: 8946584478 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
The quality of tone
Options:
decreases with loudness
varies inversely as amplitude
varies directly as pitch

4. depends on the overtones present Question Number: 71 Question Id: 8946584479 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 The conduction of heat from hot body to cold body is an example of **Options:** reversible process irreversible process isothermal process isobaric process Question Number: 72 Question Id: 8946584480 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 From the isothermal drawn from Andrews experiment, it can be inferred that **Options:** CO2 is a perfect gas 2. w there is continuity of state there is discontinuity of state gases like CO2 and H2 cannot be liquefied Question Number: 73 Question Id: 8946584481 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 A diesel cycle works at **Options:** constant volume constant pressure

3. 🛎	constant temperature	
4. 🕷	both constant volume and constan	nt temperature
Single Corre	e Line Question Option : No Option Orientation ect Marks : 1 Wrong Marks : 0	estion Type: MCQ Option Shuffling: Yes Display Question Number: Yes a: Vertical t temperature superconducting elements is in the
-82	2.00 .	
	nge of	
Optio		
1. 🗸	, zero to 10 k	
2. 🚜	10 k to 20 k	
3. 🗱	20 k to 50 k	
4. 📽	50 k alone	
Single	tion Number: 75 Question Id: 8946584483 Que e Line Question Option: No Option Orientation ect Marks: 1 Wrong Marks: 0	estion Type : MCQ Option Shuffling : Yes Display Question Number : Yes a : Vertical
Pro	opagation of light through fiber core	e is due to
Optio	ons:	
1. 📽	diffraction	
2. 🚜	interference	
3. 🗸	total internal reflection	
4. 🗱	reflection	
		Chemistry
	Section Id:	89465889
	Section Number :	3
	Section type :	Online
	Mandatory or Optional:	Mandatory
	Number of Questions: Number of Questions to be attempted:	25 25
	ramper of Questions to be attempted:	ΔJ

Section Marks:	25
Display Number Panel:	Yes
Group All Questions:	No
Sub-Section Number:	1
Sub-Section Id:	89465899
Question Shuffling Allowed:	Yes
Question Number: 76 Question Id: 8946584484 Question Type: Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0	MCQ Option Shuffling: Yes Display Question Number: Yes
Which of the following energy orders is correct?	?
Options:	
-	
1.	
2. 4 f<5d<6s<6p	
2. ••	
HERENTE STATE OF THE STATE OF T	
4f<6s<6p<5d	
68/69/54/1f	
4. 8 6s<6p<5d<4f	
Question Number: 77 Question Id: 8946584485 Question Type: Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0	MCQ Option Shuffling: Yes Display Question Number: Yes
An element A of atomic number 11 combines w	rith an element B of atomic
mumber 17. The common different dis	
number 17. The compound formed is	
Options:	
Covalent AB	
1. **	
at and the Contract of the Con	
2. V Ionic AB	
Covalent AB ₂	
3. **	
4 * Ionic AB ₂	
4. Sonic AB ₂	
4. Solic AB ₂	
Question Number: 78 Question Id: 8946584486 Question Type:	MCQ Option Shuffling : Yes Display Question Number : Yes
Question Number: 78 Question Id: 8946584486 Question Type: Single Line Question Option: No Option Orientation: Vertical	MCQ Option Shuffling : Yes Display Question Number : Yes
Question Number: 78 Question Id: 8946584486 Question Type: Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0	
Question Number: 78 Question Id: 8946584486 Question Type: Single Line Question Option: No Option Orientation: Vertical	

 $Question\ Number: 79\ Question\ Id: 8946584487\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Correct Marks: 1 Wrong Marks: 0

The elements A, B, C and D have the following electronic configurations:

The elements that belong to same group are _____.

Options:

Question Number: 80 Question Id: 8946584488 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

4.9 gm of H2SO4 is present in 2 lit of its solution. The molarity of the solution is

1. 🛎	0.1 M
2. 🗸	0.025 M
3. 🗱	0.25 M
4. 🕱	0.01 M
Single	on Number: 81 Question Id: 8946584489 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Line Question Option: No Option Orientation: Vertical et Marks: 1 Wrong Marks: 0
The 1	molecular weight of H ₃ PO ₄ is 98. The equivalent weight is gram / equivalents.
Option	
1. 🗱	98
2. 🗱	49
3. 🗸	32.66
4. 🕷	24.5
Single	on Number: 82 Question Id: 8946584490 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Line Question Option: No Option Orientation: Vertical et Marks: 1 Wrong Marks: 0
Wh	ich of the following is the Bronsted acid?
Option	ıs:
1. 🗱	CI ⁻
2. 🚜	NH ₂ -
3. 🕷	CH ₃ COO ⁻
4. 🗸	NH ₄ ⁺

Question Number: 83 Question Id: 8946584491 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
The phof 1 M KOH is
Options:
1. * 12
2. * 11
3. 1 4
4. * 13
Question Number: 84 Question Id: 8946584492 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
Froth floatation process is used for the
Options:
1. * Oxide ores
2. Sulphide ores
3. Chloride ores
4. * Oxide ores and Chloride ores
Question Number: 85 Question Id: 8946584493 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
The composition of brass is
Options:
1. ✓ Cu and Zn
Cu and Ni
3. Cu and Mn
4. * Cu and Fe

Question Number: 86 Question Id: 8946584494 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
Which of the following statements is correct?
Options:
Cathode is positive terminal in an electrolytic cell
Cathode is negative terminal in a galvanic cell
Reduction occurs at cathode in either of cells
Oxidation occurs at cathode in either of cells
Question Number: 87 Question Id: 8946584495 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
In the electrolysis of CuCl2 solution using copper electrode, if 2.5 gm of Cu is
deposited at cathode, then at anode
Options:
1. ** 890 mL of Cl ₂ at STP is liberated
2. * 445 mL of O ₂ at STP is liberated
3. * 2.5 gm of copper is deposited
a decrease of 2.5 gm of mass takes place
Question Number: 88 Question Id: 8946584496 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
The unit of resistivity is
Options:
1. ** Ω
2. Δ m

$_{3.}$ $\stackrel{\mathbf{\Omega}}{\sim}$ $^{\prime}$ m
Ωm^2
Question Number: 89 Question Id: 8946584497 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
Which of the following metals provide cathodic protection to iron?
Options:
1. * Cu and Ni
2. Al and Zn
3. * Al and Cu
Co and Ni
Question Number: 90 Question Id: 8946584498 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
The chemical composition of rust is
Options:
1. ** Fe ₃ O ₄
2. * Fe ₃ O ₃
Fe_2O_3 . nH_2O
Fe ₃ O ₃ . xH ₂ O
Question Number: 91 Question Id: 8946584499 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
1 ppm of hardness of water is equal to
Options:
1 part of CaCO₃ hardness in 10 ⁶ parts of water

1 part of CaCO ₃ hardness in 10 ⁸ parts of water
1 part of CaCO ₃ hardness in 10 ⁷ parts of water
1 part of CaCO ₃ hardness in 10 ⁵ parts of water
Question Number: 92 Question Id: 8946584500 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
The temporary hardness of water is due to the presence of
Options:
1. * MgCl ₂ and CaCl ₂
2. \approx Ca(NO ₃) ₂ and Mg(NO ₃) ₂
CaSO ₄ and MgSO ₄
4. ✓ Ca(HCO ₃) ₂ and Mg(HCO ₃) ₂
Question Number: 93 Question Id: 8946584501 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
The basic buffer solution is a mixture of
Options:
1. V NH ₃ + NH ₄ Cl
2. * HCl +NH ₄ Cl
3. № NaCl + NH ₄ Cl
4. * KOH + NH ₄ Cl
Question Number: 94 Question Id: 8946584502 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
Which of the following polymers has amide linkage?
Options:

1 * Terylene
2. * Bakelite
3. Vylon
4. * PVC
Question Number: 95 Question Id: 8946584503 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
The monomer of natural rubber is
Options: 1. ** Butadiene
2. *Chloroprene
2-methyl 1,2 butadiene
2-methyl 1,3 butadiene
Question Number: 96 Question Id: 8946584504 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
Which of the following is a thermo setting?
Options:
1. Bakelite
2. ** Polyethylene
3. × Nylon-6
4. * Natural rubber
Question Number: 97 Question Id: 8946584505 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
The composition of water gas is
Options:

CO and H ₂ are combustible gases and CO ₂ and N ₂ are non-combustible gases
2. CO + CO ₂ are combustible gases and H ₂ O and N ₂ non-combustible gases
$_{3.}$ $\stackrel{\text{\tiny *}}{*}$ CO + N_2 are combustible gases and H_2 O and H_2 are non-combustible gases
$_{4.}$ \approx N_2+H_2 are combustible gases and $CO+H_2O$ are non-combustible gases
Question Number : 98 Question Id : 8946584506 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical Correct Marks : 1 Wrong Marks : 0
Earth is protected from UV radiation by
Options:
1. * Nitrogen layer
2. Ozone layer
3. * Carbon dioxide layer
4. * Oxygen layer
Question Number: 99 Question Id: 8946584507 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 Which of following statements is not correct?
Options:
CO is the main air pollutant
2. * All pollutants are not wastes
3. ✓ Water is polluted by dissolved Oxygen
Lichens are pollution indicators
O

 $Question\ Number: 100\ Question\ Id: 8946584508\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Minamata disease is caused due to the presence	of
Options:	
1. * Cd	
2. * Pb	
a. A s	
4. ✓ Hg	
Metallı	urgical Engineering
Section Id:	89465890
Section Number :	4
Section type:	Online
Mandatory or Optional:	Mandatory
Number of Questions:	100
Number of Questions to be attempted:	100
Section Marks:	100
Display Number Panel:	Yes
Group All Questions:	No
Sub-Section Number:	1
Sub-Section Id:	894658100
Question Shuffling Allowed :	Yes
Question Number: 101 Question Id: 8946584509 Question Type Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0	: MCQ Option Shuffling : Yes Display Question Number : Yes
Which of the following minerals of metal is a	dequately available in India?
Options:	
1. Aluminium	
2. Copper	
3. * Graphite	
4. * Uranium	
Question Number: 102 Question Id: 8946584510 Question Type Single Line Question Option: No Option Orientation: Vertical	: MCQ Option Shuffling : Yes Display Question Number : Yes

method is one of	f the principal mineral exploration methods.
Options :	
1. * Radioactive	
2. Seismic	
3. ✓ Magnetic	
4. * Gravitational	
Single Line Question Option: No Option Orie Correct Marks: 1 Wrong Marks: 0	IS11 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes entation: Vertical Group B and find the correct answer
The second of th	
Group A	Group B
a. Collector	I. Pine oil
b. Regulator	II. Copper sulphate
c. Activator	III. Sodium ethyl xanthate
d. Frother	IV. Lime
Options: 1. * a-II, b-III, c-IV, d-I	

2. **≈** a-IV, b-II, c-III, d-I

₃. ✔ a-III, b-IV, c-II, d-I

4. * a-I, b-III, c-II, d-IV

 $Question\ Number: 104\ Question\ Id: 8946584512\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Match the metals listed in Group A with the corresponding ores given in Group

B and find the correct answer.

Group A

a. Lead

b. Zinc

c. Uranium

d. Niobium

Group B

I. Columbite

II. Casseterite

III. Galena

IV. Pitchblende

V. Sphalerite

Options:

a-III, b-V, c-II, d-IV

a-III, b-II, c-V, d-IV

3. ✓ a-III, b-V, c-IV, d-I

a-III, b-IV, c-V, d-II

Question Number: 105 Question Id: 8946584513 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

metallurgical extraction methods are advantageous for lean and complex ores.

Options:

- 1. Pyro
- 2. * Electro
- 3. * Powder
- 4. / Hydro

Question Number: 106 Question Id: 8946584514 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes

Single Line Question Option: No Option Orientation: Vertical

Match the extraction methods listed in Group A with the metals given in Group

B and find the correct answer.

Group A	Group B
a. Roasting followed by carbothermic reduction	I. Ti
b. Electrolysis of fused salt	II. Pb
c. Roasting followed by controlled oxidation	III. Al
d. Halide process	IV. Cu
	V. Au

Options:

2. a-V, b-IV, c-III, d-I

3. * a-II, b-V, c-I, d-IV

a-III, b-II, c-V, d-I

 $Question\ Number: 107\ Question\ Id: 8946584515\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Correct Marks: 1 Wrong Marks: 0

Cyclones are primarily used for

Options:

- 1. Comminution
- 2 * Dewatering
- 3 Concentration
- 4 V Classification

Question Number: 108 Question Id: 8946584516 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Chalcopyrite is an ore of

Options:

1. Iron

2 × Zinc 3. Copper 4 🕱 Titanium Question Number: 109 Question Id: 8946584517 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 Heating of coal in absence of air at high temperature is called as **Options:** Gasification 2 * Coalification 3. Run-of-mine Carbonization $Question\ Number: 110\ Question\ Id: 8946584518\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$ Correct Marks: 1 Wrong Marks: 0 Which of the following fuels has high calorific value? **Options:** 1. Carbureted water gas Water gas Producer gas Blast furnace gas

Question Number: 111 Question Id: 8946584519 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes

Single Line Question Option: No Option Orientation: Vertical

Match Group A with Group B and find the correct answer	Match Group	A with	Group	B and	find	the	correct	answer
--	-------------	--------	-------	-------	------	-----	---------	--------

Group A

- a. Dulong formula
- b. Carbon
- c. Dwight-Lloyd machine
- d. Radiation

Group B

- I. Ultimate analysis
- II. Gray body
- III. Sintering
- IV. Refractory

Options:

- a-I, b-II, c-III, d-IV
- a-II, b-IV, c-III, d-I
- 3. ✔ a-I, b-IV, c-III, d-II
- 4. ¥ a-III, b-I, c-IV, d-II

Question Number: 112 Question Id: 8946584520 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Connect Monks 1 Wrong Monks 10

Correct Marks: 1 Wrong Marks: 0

An example for basic refractory is _____

Options:

- 1. * Quartz
- 2. Dolomite
- 3. Silica
- Fire clay

 $Question\ Number: 113\ Question\ Id: 8946584521\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Correct Marks: 1 Wrong Marks: 0

Fire clay refractory contains .

- 1. * Al₂O₃
- 2. SiO2

3. ✓ Al ₂ O ₃ and SiO ₂
4. ₩ MgO
Question Number: 114 Question Id: 8946584522 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
For blast furnace hearth walls refractories are used.
Options:
1. * Silica
2. Carbon
3. Magnesite
4. SiC
Question Number: 115 Question Id: 8946584523 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
Which thermocouple of the following is used for temperature measurement of 1100 °C in a
furnace?
Options:
1. ✓ Chromel-Alumel
2. * Copper-Constantan
3. * Iron-Constantan
4. * Chromel-Constantan
Question Number: 116 Question Id: 8946584524 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
IR pyrometers are very advantageous to measure the temperatures of and above.
Options:
1. ≈ 150 °C
2. ≈ -200 °C

 $Question\ Number: 117\ Question\ Id: 8946584525\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Correct Marks: 1 Wrong Marks: 0

Match the properties given in Group A with the units given in Group B and find

the correct answer

Group A	Group B		
a. Thermal conductivity	I. J/m^2 -s-K		
b. Heat transfer coefficient	II. J/m -s-K		
c. Specific heat	III. m^2/s		
d. Diffusivity	IV. J/mol-K		

Options:

Question Number: 118 Question Id: 8946584526 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Critical value of the Gibb's energy of nucleation at equilibrium temperature is _____

- 1. V Infinite
- 2 × Zero
- 3. Positive
- 4. * Negative

Question Number: 119 Question Id: 8946584527 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Which of the following can give information about the corrosion rate?

1. Ellingham diagram

2. * Pourbaix diagram

∃

✓ Tafel extrapolation

EMF series

Question Number: 120 Question Id: 8946584528 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Which of the following metals cannot be electroplated from aqueous electrolyte?

Options:

1. V Al

2. 🗶 Cu

4. * Zn

Question Number: 121 Question Id: 8946584529 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Which of the following partial derivatives is equal to $\left(\frac{\partial S}{\partial V}\right)_T$?

$$-\left(\frac{\partial S}{\partial V}\right)_T$$

$$-\left(\frac{\partial V}{\partial T}\right)_{P}$$
2. \checkmark

$$\left(\frac{\partial S}{\partial V}\right)_{P}$$

$$\left(\frac{\partial S}{\partial V}\right)_{P}$$

$$-\left(\frac{\partial V}{\partial T}\right)_{S}$$

 $Question\ Number: 122\ Question\ Id: 8946584530\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Correct Marks: 1 Wrong Marks: 0

One mole of element P is mixed with one mole of element Q. The entropy of

mixing at 0 Kelvin temperature is _____

Options:

2. * Infinity

3. Zero

4. ₩ - R ln2

Question Number: 123 Question Id: 8946584531 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

In Ellingham diagram, the slope of the line represent is

Options:

Question Number: 124 Question Id: 8946584532 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

During the paramagnetic to ferromagnetic transition of iron, which property

does abruptly change?

Options:

Entropy

- Enthalpy
- Beat capacity →
- Free energy

Question Number: 125 Question Id: 8946584533 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes

Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Driving force for grain growth after completion of recrystallization is

Options:

Grain boundary energy

- Dislocation density
- Vacancy concentration
- Stored energy

Question Number: 126 Question Id: 8946584534 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

Match the list in Group A with Group B and find the correct answer

Group A

- a. Iron-silicon alloy
- b. Ga. As
- c. Nichrome
- d. Quartz crystals

Options:

a-III, b-IV, c-I, d-II

- a-II, b-IV, c-I, d-III
- a-I, b-III, c-IV, d-II

Group B

- Heating element
- II. Ultrasonic generator
- III. Transformer core
- IV. Light emitting diode

4.

a-III, b-II, c-IV, d-I

Question Number: 127 Question Id: 8946584535 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The Miller indices of the common direction to (111) and (110) planes for a cubic

system is

Options:

_{1.} [110]

[110]

[101]

4. * [111]

Question Number: 128 Question Id: 8946584536 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

In continuous cooling of eutectoid steel, which phase of the following does not form?

Options:

- Fully bainitic
- **Fully Pearlitic**
- Pearlitic and bainitic
- 4 Martensitic

Question Number: 129 Question Id: 8946584537 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Match the alloy names listed in Group A with the main elements present in them listed in Group B and find the correct answer

Ni-Cr-Fe

IV. Sn-Sb-Cu

Group A	Group B
a. Babbit	I. Fe-Ni
b. Muntz metal	II. Ni-Cr-F
c. Invar	III. Cu-Zn

Options:

a-III, b-I, c-IV, d-II

d. Inconel

a-III, b-IV, c-I, d-II

a-IV, b-I, c-II, d-III

4 🕢 a-IV, b-III, c-I, d-II

Question Number: 130 Question Id: 8946584538 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

In heterogeneous nucleation, the critical radius of the nucleus does not depend on

Options:

Under cooling

Enthalpy change of product

Surface energy

4 V Contact angle

Question Number: 131 Question Id: 8946584539 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

For which of the following, the complete solid solubility is possible for the alloy system?

		The Property of the Parket of
		C 7
		Cu-Zn
-	- 500	

2. V Cu-Ni

4 × Pb-Sn

Question Number: 132 Question Id: 8946584540 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The self-diffusion in FCC metals occurs by one of the following mechanisms.

Options:

1 x Interstitial

Substitutional

3. * Interstitialcy

4 Vacancy

Question Number: 133 Question Id: 8946584541 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The eutectic reaction in a binary system is represented by_____

Options:

Question Number: 134 Question Id: 8946584542 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

For which unit cell of a crystal, $a = b \neq c$ and $\alpha = \beta = \gamma = 90^{\circ}$?

1. 3	Cubic
2. 🗱	Rhombohedral
3. 🗸	Tetragonal
4. 🕷	Orthorhombic
Single	on Number: 135 Question Id: 8946584543 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Line Question Option: No Option Orientation: Vertical et Marks: 1 Wrong Marks: 0
Nitr	iding is carried out in the region of
Option	
1. 🗸	Ferrite
2. 🚜	Ferrite and austenite
3. 🛎	Austenite
4. 🕊	Liquid
Single Correc	on Number: 136 Question Id: 8946584544 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Line Question Option: No Option Orientation: Vertical et Marks: 1 Wrong Marks: 0 malizing is carried out to obtain steels.
Option	ns:
1. 🛎	Soft
2. 🗱	Brittle
3. 🗸	Strong
4. 📽	Coarse grained

 $Question\ Number: 137\ Question\ Id: 8946584545\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Match the list in Group A with Group B and find the correct answer

Group A

- a. Quenching
- b. Maraging
- c. Tempering
- d. Austempering

Group B

- I. Bainite
- II. Martensite
- III. Intermetallic precipitates
- IV. Epsilon carbide

Options:

- a-II, b-III, c-I, d-IV
- a-I, b-III, c-II, d-IV
- a-II, b-III, c-IV, d-I
- 4. a-III, b-II, c-I, d-IV

Question Number: 138 Question Id: 8946584546 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Which coolant of the following is used in laser surface hardening?

Options:

- Water medium
- 2. * Oil medium
- 3. * Air medium
- 4. Vo medium

Question Number: 139 Question Id: 8946584547 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes

Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

For wire drawing of medium carbon steels, heat treatment is adopted.

- Quenching
- 2. * Austempering

Quenching and tempering
Patenting Patenting
Question Number: 140 Question Id: 8946584548 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 Agehardenable or precipitation hardenable alloys can be used Options: Below ageing temperature
2. * Above ageing temperature
3. * At solutionizing temperature
4. * Upto melting point
Question Number: 141 Question Id: 8946584549 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 Which of the following heat treatments is given to overcome stress corrosion cracking of brass?
Options:
1. * Tempering
2. * Thermo-mechanical treatment
3. Annealing
4. * Normalizing
Question Number: 142 Question Id: 8946584550 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
Decarburization can be avoided in high speed steels by
Options:
1. * Single stage heating
Two stage heating

- 3. * Single stage quenching
- 4. * Two stage quenching

Question Number: 143 Question Id: 8946584551 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes

Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Which of the following stainless steels cannot be heat treated?

Options:

- 1. Ferritic
- 2. * Austenitic
- 3. Martensitic
- Precipitation-hardened

 $Question\ Number: 144\ Question\ Id: 8946584552\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Correct Marks: 1 Wrong Marks: 0

Temper brittleness occurs during tempering in the range of

Options:

- 2 * 150-250 °C
- 3. **≈** 0-150 °C
- Sub-zero temperature

Question Number: 145 Question Id: 8946584553 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes

Single Line Question Option: No Option Orientation: Vertical

Options:

1. * Volume energy

Strain energy Stacking fault energy Surface energy Question Number: 148 Question Id: 8946584556 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 In continuous casting of liquid steel, the mould is made of **Options:** 1 * Refractory oxide Silicon carbide Water cooled copper Water cooled steel Question Number: 149 Question Id: 8946584557 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 For efficient performance of blast furnace, the extent of reduction of Wustite should be **Options:** 1. 50-60% indirect reduction 100% indirect reduction 100% direct reduction 50-60% direct reduction Question Number: 150 Question Id: 8946584558 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 In the acid Bessemer steel process, the hot metal should have the following composition (Where S is Sulphur and P is Phosphorus) **Options:**

- s < 0.05% and P < 1.5%
- S < 0.05% and P < 0.05%
- S < 0.05% and P > 1.5%
- S > 1.5% and P < 0.05%

 $Question\ Number: 151\ Question\ Id: 8946584559\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Correct Marks: 1 Wrong Marks: 0

Pellets are not as popular in burden as sinter in the iron blast furnace because of their

Options:

- Poor reducibility
- Low mechanical strength
- Swelling tendency
- Shape

Question Number: 152 Question Id: 8946584560 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Which of the following factors is not desirable for effective phosphorus removal in BOF steel making process?

Options:

- 1. W Higher temperature
- Lower temperature
- Higher basicity
- Higher FeO level in slag

Question Number: 153 Question Id: 8946584561 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

process is performed for inclusion modification in ladle metallurgy
of steel making.
Options:
Oxygen top blowing
Oxygen bottom blowing
Aluminium wire injection
4. Calcium wire injection
Question Number: 154 Question Id: 8946584562 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
In steel making, the addition of bauxite is done to
Options:
improve Phosphorus distribution ratio
decrease viscosity of slag
3. * increase the activity of FeO in slag
4. * improve Sulphur distribution ratio
Question Number: 155 Question Id: 8946584563 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
Which of the following statements regarding Kroll's process is not correct?
Options:
1. * Pure metal chlorides serve as raw material
2. Reduction chamber should be free of oxygen
3. We seful for the extraction of Ti and Zr
4. Reduction is done by Al

Question Number: 156 Question Id: 8946584564 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Match the metals listed in Group A with the process in Group B and find the

correct answer

Group A

- a. Nickel refining
- b. Copper
- c. Zinc
- d. Iron sponge

Options :

- a-I, b-II, c-III, d-IV
- a-II, b-I, c-IV, d-III
- a-IV, b-II, c-I, d-III
- a-III, b-IV, c-II, d-I

Group B

- I. Poling
- II. Carbonyl process
- III. Rotary kiln process
- IV. Distillation

 $Question\ Number: 157\ Question\ Id: 8946584565\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Correct Marks: 1 Wrong Marks: 0

A conventional copper converter is blown from _____

Options:

- 1 * top
- bottom
- ₃. ✓ side
- top and bottom

Question Number: 158 Question Id: 8946584566 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Which reducing agent is used in the extraction of magnesium from calcinated

dolomite via Pidgeon process?

Options	
ODUOUS	

Carbon

2. Ferrosilicon

3. Silicon

4 & Sodium

Question Number: 159 Question Id: 8946584567 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The Al₂O₃ content of cryolite in Hall-Heroult's cell is maintained between ______.

Options:

Question Number: 160 Question Id: 8946584568 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

In imperial smelting process for extraction of zinc, zinc vapor is quenched in

the external condenser by _____

Options:

Jet of water

Blast of air

Mix of water and air

4 / Molten lead

Monazite deposits constitute an important	source for
Options:	
1 * Titanium	
2. Thorium	
3. Molybdenum	
Niobium 4. *	
Question Number: 162 Question Id: 8946584570 Question T Single Line Question Option: No Option Orientation: Vertic Correct Marks: 1 Wrong Marks: 0	Type: MCQ Option Shuffling: Yes Display Question Number: Yes al
Copper can be reduced from copper sulpha	ate solution by .
Options:	
1. V Iron	
1.	
2. Silver	
3. * Lead	
4. Carbon	
Question Number: 163 Question Id: 8946584571 Question T Single Line Question Option: No Option Orientation: Vertice Correct Marks: 1 Wrong Marks: 0 Match the list in Group A with Group B as	
Group A	Group B
a. Penetrameter	I. Ultrasonic test
b. Differential coil probe	II. Dye-penetrant test
c. Piezo-electric probe	III. X-ray radiography
d. Developer	IV. Acoustic emission test
Options:	
a-III, b-IV, c-I, d-II	
a-II, b-I, c-III, d-IV	

a-I, b-II, c-IV, d-III a-IV, b-III, c-II, d-I Question Number: 164 Question Id: 8946584572 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 Subsurface defects and its location can be found by the following test **Options:** Ultrasonic pulse echo Penetrant Eddy current Magnetic particle Question Number: 165 Question Id: 8946584573 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 Generally brittle materials have % of elongation below . **Options:** 1. 🗸 5 3. * 20

Question Number: 166 Question Id: 8946584574 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes

4. * 40

Single Line Question Option: No Option Orientation: Vertical

Group A

Group B

a. Tensile

I. Barreling

b. Compressive

II. Intergranular cracking

c. Fatigue

III. Striations

d. Creep

- IV. Cup and cone
- V. Earing

Options:

a-IV, b-V, c-III, d-I

2. ✓ a-IV, b-I, c-III, d-II

a-V, b-I, c-IV, d-II

a-III, b-II, c-I, d-IV

 $Question\ Number: 167\ Question\ Id: 8946584575\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Correct Marks: 1 Wrong Marks: 0

Which test is commonly used to understand high temperature deformation behavior of materials?

Options:

Impact

2. * Fatigue

3. ✔ Creep

4. * Compression

Question Number: 168 Question Id: 8946584576 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Fatigue resistance of a steel is reduced by

Question Number: 170 Question Id: 8946584578 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The fracture toughness of lower strength ductile material is best measured by _____

Options:

J-integral method

2. * Kic evaluation	
3. * Impact test	
4. * Flexural test	
Question Number: 171 Question Id: 894658457 Single Line Question Option: No Option Orients Correct Marks: 1 Wrong Marks: 0	9 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes ation : Vertical
Tungsten filament for lamp is con	nmonly produced by
Options:	
 Powder metallurgy and metallurgy 	al forming
2. Powder metallurgy and weld	ling
3. Casting and metal forming	
4. * Casting and welding	
Question Number: 172 Question Id: 894658458 Single Line Question Option: No Option Orients Correct Marks: 1 Wrong Marks: 0	0 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes ation: Vertical
Match the list in Group A with G	roup B and find the correct answer
Group A	Group B
a. Drawing	I. Large curved disc
b. Forging	II. Tube
c. Rolling	III. Crank shaft
d. Stretch forming	IV. Plate
Options:	
1.	
2. a-I, b-IV, c-III, d-II	
3. ≈ a-III, b-II, c-I, d-IV	

4. * a-1V, b-1, c-11, d-111
Question Number: 173 Question Id: 8946584581 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
In metal forming, hot working and cold working is defined based on
Options:
1. * Solidus temperature
Recrystallization temperature
3. * Transformation temperature
4. * Eutectic temperature
Question Number: 174 Question Id: 8946584582 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
Thin foils of aluminium is produced by
Options:
1. * 2-High roll mill
2. * 4-High roll mill
Planetary mill
4. V Cluster/Sendzimir mill
Question Number: 175 Question Id: 8946584583 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
In sheet metal forming, stretcher strains occur in
Options:
1. ✓ Low carbon steel
2. * Duralumin
Austenitic stainless steels

Question Number: 176 Question Id: 8946584584 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 The respective units for dislocation density and stress intensity factor are **Options:** 1. * m² and MPa.m m² and MPa.m^{1/2} $_{\rm 3}$ $_{\rm w}$ m⁻² and MPa.m^{1/2} m⁻² and MPa.m Question Number: 177 Question Id: 8946584585 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 Number of slip systems in close packed hexagonal metal is . . **Options:** Question Number: 178 Question Id: 8946584586 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 A defect that is bounded by two mirror planes is ... **Options:** Stacking fault 2. * Grain boundary

4 * Ni-base alloy

- Edge dislocation
- 4. V Twin

Question Number: 179 Question Id: 8946584587 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Match the list in Group A with Group B and find the correct answer

Group A Group B a. Forging I. Alligator II. Cold shut b. Rolling c. Deep drawing III. Chevron cracks IV. Wrinkles d. Extrusion **Options:** a-I, b-II, c-III, d-IV 2. a-II, b-I, c-III, d-IV

- a-I, b-II, c-IV, d-III
- a -IV, b-III, c-II, d-I

Question Number: 180 Question Id: 8946584588 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes

Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Movement of jogs can produce

- 1. ✓ Vacancies
- Grain boundary sliding
- 3 * Screw dislocation
- 4. * Twin

Question Number: 181 Question Id: 89465845 Single Line Question Option: No Option Orien Correct Marks: 1 Wrong Marks: 0	589 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes ntation: Vertical
Low melting point metals/alloys	s are generally casted by
Options :	
Sand casting	
2. * Investment casting	
Die casting	
4. Centrifugal casting	
Question Number: 182 Question Id: 89465845 Single Line Question Option: No Option Orien Correct Marks: 1 Wrong Marks: 0	590 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes ntation: Vertical
Match the list in Group A with 0	Group B and find the correct answer
Group A	Group B
a. Hot tear	I. Insufficient melt super heat
b. Misrun	II. High residual stresses
c. Blister	III. Improper venting
d. Rat tail	IV. Expansion of sand
Options:	
a-I, b-II, c-III, d-IV	
a-III, b-IV, c-I, d-II	
a-IV, b-III, c-II, d-I	
4. ✓ a-II, b-I, c-III, d-IV	
Question Number: 183 Question Id: 89465845 Single Line Question Option: No Option Orien	591 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes nation: Vertical

Riser is not required for the casting of ______

Options:

1. * White cast iron
2. Grey cast iron
3. * Al alloys
4. Steel
Question Number: 184 Question Id: 8946584592 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 In a sound casting, the last liquid to solidify is in the
Options:
1. Riser
2. * Gate
3. * Runner
4. * Vent
Question Number: 185 Question Id: 8946584593 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0
Draft allowance is given to patterns for
Options:
Compensating liquid state shrinkage
Easy removal of pattern from the mould
3. * Providing support for core
Compensating solid state shrinkage

 $Question\ Number: 186\ Question\ Id: 8946584594\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Match the list in Group A with Group B and find the correct answer

Group A

Group B

a. Macro-segregation

I. Inoculation

b. Fine grained structure

II. Gas evolution and shrinkage

c. Porosity

III. Temperature gradient and super cooling

d. Dendrites

IV. Density difference and convection currents

Options:

a-I, b-III, c-II, d-IV

a-IV, b-I, c-II, d-III

a-II, b-IV, c-I, d-III

4. * a-IV, b-I, c-III, d-II

Question Number: 187 Question Id: 8946584595 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Which casting technique is used for obtaining close dimensional accuracy?

Options:

Centrifugal casting

Sand casting

Die casting

Investment casting

Question Number: 188 Question Id: 8946584596 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Mould coating material that helps in grain refinement of metal casting is ...

Options:

1. Cobalt aluminide

Zinc Zinc	
3. * Tellurium	
4. Boron	
Question Number: 189 Question Id: 8946584597 Question Type: MCQ Option Shuffling Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0	: Yes Display Question Number : Yes
For casting of cast iron, generally melting is done by using	
Options:	
1. Cupola	
2. * Muffle furnace	
Blast furnace	
4. * Convertor	
Question Number: 190 Question Id: 8946584598 Question Type: MCQ Option Shuffling Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0	: Yes Display Question Number : Yes
Single Line Question Option : No Option Orientation : Vertical	
Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0	
Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 Directional solidification is preferred for applications such as	
Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 Directional solidification is preferred for applications such as _ Options:	
Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 Directional solidification is preferred for applications such as _ Options: Engine blocks	
Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 Directional solidification is preferred for applications such as _ Options: Engine blocks Connecting rods	
Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 Directional solidification is preferred for applications such as _ Options: Engine blocks Connecting rods Permanent magnets	•
Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 Directional solidification is preferred for applications such as _ Options: Engine blocks Connecting rods Permanent magnets Gears Question Number: 191 Question Id: 8946584599 Question Type: MCQ Option Shuffling Single Line Question Option: No Option Orientation: Vertical	: Yes Display Question Number : Yes
Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 Directional solidification is preferred for applications such as _ Options: Engine blocks Connecting rods Permanent magnets Gears Question Number: 191 Question Id: 8946584599 Question Type: MCQ Option Shuffling Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0	: Yes Display Question Number : Yes

2. Sravity Pressure Vacuum Question Number: 192 Question Id: 8946584600 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 The nature of submerged arc welding flux with basicity index of 0.5 is **Options:** Neutral 2 / Acidic Basic Semi basic Question Number: 193 Question Id: 8946584601 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 Which of the following is not a solid state welding process? **Options:** Friction stir welding Ultrasonic welding Flux cored arc welding Explosive welding Question Number: 194 Question Id: 8946584602 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 How much carbon equivalent in steel is considered to be good for weldability? **Options:** 1.0

- 2. * 0.8
- 3. * 0.6
- 4. 0.4

Question Number: 195 Question Id: 8946584603 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The weld structure of a metal has similarity to that of the metal produced via _____.

Options:

- 1. Casting
- Powder metallurgy
- Rolling
- Forging 4. *

Question Number: 196 Question Id: 8946584604 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes

Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

Match the list in Group A with Group B and find the correct answer

Group A

- a. Ultrasonic welding
- b. Spot welding
- c. SMAW
- d. Thermit welding

Group B

- I. Thermochemical
- II. Electrical resistance
- III. Friction
- IV. Electrical arc

- a-III, b-II, c-I, d-IV
- a-IV, b-III, c-II, d-I
- a-I, b-III, c-IV, d-II

a-III, b-II, c-IV, d-I

Question Number: 197 Question Id: 8946584605 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 Weld decay in austenitic stainless steels can be avoided by **Options:** Reducing carbon content Increasing carbon content Eliminating strong carbide formers Decreasing chromium content Question Number: 198 Question Id: 8946584606 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct Marks: 1 Wrong Marks: 0 Non consumable electrode is used in process. **Options:** Gas metal arc welding Gas tungsten arc welding

Submerged arc welding

Laser welding

Question Number: 199 Question Id: 8946584607 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Single Eine Question Option : No Option Orientation : Ve

Match the list in Group A with Group B and find the correct answer

Group A

- a. Soldering
- b. Welding
- c. Brazing

Group B

- I. Silver-Titanium alloy
- II. Silver-Tin alloy
- III. Mild steel
- IV. Lead flouride

Options:

Question Number: 200 Question Id: 8946584608 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes

Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

Which region of weld does undergo heat treatment effect?

- Base metal
- 2. Weld metal
- 3. ✔ HAZ
- 4. * Centre of the weld