04/E-005

t,

1.000	CODE / पोस्ट कोड :						E	OOKLE	т NO. / पुनि	लेका संख्या
+1/12	2, 142/12, 181/14, 182/14	JDD-75/P Write here Roll यहाँ क्रमांक	numb	erand	Answei	-Sheel			7222	01
	B	oll No./ अनुक्रमांक					T	T		
	Answer-	Sheet No./ उत्तर-पति	का संर	ज्या				T		
1	OBJECTIVE	TYPE AND DE वस्तुनिष्ठ और	1992,000						INATIO	N
1.	Booklet. Firs Question-Cum the details of Ro wherever need Answer-Sheet	Booklets in Gree t Booklet is o Answer Booklet Number, etc., in ed, before he/sh will not be evalue	of Oi (Desc the C e actu ated a	ojecti oriptive MRA Jally s and 'Z	ve Ty e Exam nswer- tarts ar ERO' n	pe a inatio Sheet Isweri nark w	nd Se n). Cai as wel ng the vill be a	econo ndidat l as in quest award	i Book es must Question ions, fai ed.	let is of complete n Booklets ling which
	following mann						seals	shall	be oper	ned in the
	(b) Opening	of Green Seal of Yellow Seal of Pink Seal		10		n.				. 13
2.	A DOUBLE AND A DESCRIPTION OF A	red to first hande d afterwards Que								
1.	वस्तुनिष्ठ और दूसरी प्रश्न पुस्तिकाओं एवं	त दो पुस्तिकाएँ हैं एवं पुस्तिका प्रश्न-उत्तर पुरि ओ.एम.आर. उत्तर-प नहीं जायेगी और शून्य	स्तेका (त्रिका प	वर्णनात्म र आवश	क परीक्षा यकतानुस)की है	। अभ्यर्थ	को प्ररु	र्गे के उत्तर वि	लेखने से पहले
	2	-उत्तर पुस्तिका नमूना वं								
	(क) हरी सील खें (स) गीवर गीव	ोलने का समय खोलने का समय			0:15 = 0:20 =	100	8			
	1. C. P.	खालन का समय न खोलने का समय								
2.	आपसे अपेक्षा की ज	गती है कि सर्वप्रथम अ परीक्षा) दोफ्हर 1 : 3	पनी ओ	.एम.अ	तर. उत्तर-	पत्रिका	ठीक 12	: 30	बजे और ए	नः प्रश्न-उत्त
-	इस प	रस्तिका की सील	तव	तक न	खोलें	जब त	क का	त न ज	gn	1

DO NOT OPEN THE SEAL OF THE BOOKLET UNTIL YOU ARE TOLD TO DO SO इस पुस्तिका की सील तब तक न खोले जब तक कहा न जाए

POST CODE/ पोस्ट फोड : 141/12, 142/12, 181/14, 182/14

OBJECTIVE TYPE TIER - II EXAMINATION

वस्तुनिष्ठ टियर - ॥ परीक्षा

Time Allowed : 2 Hours निर्धारित समय : 2 घंटे

1Å

t. Thi

toN

JDD-75/PGT-MATH/ TIER-II/X-15

Maximum Marks : 200 अधिकतम अंक : 200

Read the following instructions carefully before you begin to answer the questions. प्रश्नों के उत्तर देने से पहले नीचे लिखे अनुदेशों को घ्यान से पढ़ लें ।

the

MPORTANT	INSTRUC	TIONS TO	CAND	IDATES	
is Booklet o owing Test 0			s in all	comprising	

5l. No	Test Component	No. af Questions
1)	Post Specific subject related questions	200

2. All questions are compulsory and carry equal marks.

- The paper carries negative markings. For each wrong answer 0.25 mark will be deducted.
- In case of any discrepancy between the English and Hindi versions of any question, the English version will be treated as final/authentic.
- 5. OMR Answer-Sheet is enclosed in this Booklet. You must complete the details of Roll Number, Question Booklet No., etc., on the Answer-Sheet and Answer-Sheet No. on the space provided above in this Question Booklet, before you actually start answering the questions, failing which your Answer-Sheet will not be evaluated and you will be awarded 'ZERO' mark.
- You must not tear off or remove any sheet from this Booklet. The Answer-Sheet must be handed over to the Invigilator before you leave the Examination Hall.
- Use of Calculator/Palmtop/Laptop/Other Digital Instrument/Mobile/Cell Phone/Pager is not allowed.
- Candidates found guilty of misconduct/using unfair means in the Examination Hall will be liable for appropriate penal/legal action.
- The manner in which different questions are to be answered has been explained at the back of this Booklet, which you should read carefully before actually answering the questions.
- 10. No Rough Work is to be done on the Answer-Sheet.

उम्मीदवारों के लिए महत्त्वपूर्ण अनुदेश

 इस पुस्लिका में कुल 200 प्रक्ष है, जिनमें निम्न्यतिखिल परीक्षण विषय गामिल है।

∉.स.	परीक्षण विषय	प्रश्नों की संख्या
1)	पोस्ट स्पेसिफिक विषय-संबंधी प्रहन	200

- 2. सभी प्रश्न अनिवार्य है तथा सबके चरावर अंक है ।
- प्रक्ष्म पत्र में नकारात्मक अंग्रेज होगा । हर गलत उत्तर के लिए
 0.25 अंक बाटा जायेगा ।
- यदि किसी प्राप्त के हिन्दी तथा अंग्रेजी अनुवाद में कोई अंतुर है, की अंग्रेड़ी अनुवाद को ही सही समझा जायेगा ।
- 5. इस पुस्लिका में ओ.एम.आर. उत्तर-पत्रिका संतम्म है । प्रश्नों के उत्तर वास्तव में शुरू करने से पहले आप उत्तर-पत्रिका में अपना रोल नम्बर, प्रष्टन पुस्लिका संख्वा, इल्यादि तथा इस प्रश्न पुस्लिका में उपरोक्त दिए गए स्थान पर उत्तर-पत्रिका की संख्या लिखों । अन्यथा आपकी उत्तर-पत्रिका को जॉना नहीं कायेगा और शुम्ब अंक दिया जायेगा ।
- इस पुस्तिका से कोई पत्रा काइना या अलग काना प्रता है । परीक्षा-भवन छोडने से पहले उत्तर-पत्रिका निरीक्षन के इवाले कर दें ।
- कैलकुलेटर/पामटॉप/लैपटॉप/अन्य डिजिटल उपकरग/मोबाइल/ सेल फोन/पेजर का उपयोग बर्जित है ।
- परीक्षा-भवन में अनुनित व्यवहार एवं कार्य के लिए दोषी पांचे गमे अच्यर्थी युक्तिसंगत दंडनीय/वैधानिक कार्यवाही के पांत्र होंगे ।
- 9. विभिन्न प्रश्नों के उत्तर देने की विधि इस पुस्तिका के पीछे छपे हुए निर्देशों में दे दी गई है, इसे आप प्रश्नों के उत्तर देने से पहले ज्यानपूर्वक पढ़ हों।

10. कोई रफ कार्य उत्तर-पत्रिका पर नहीं करना है ।

Go through instructions given in Page No. 48 (Back Cover Page)

A*

-3-

- Given that xy-plane and yz-plane in R³ are the subspaces of R³. The dimension of the intersection of these subspaces is
 - (A) 0 (B) 1 (C) 2 (D) none of these
- Let U be a 3 x 3 complex Hermitian matrix which is unitary. Then the distinct eigen values of U are
 - (A) ±1 (B) 1±1

(C)
$$\pm 1$$
 (D) $\frac{1}{2}(1\pm i)$

 The eigen values of a 3 x 3 real matrix P are 1, -2, 3. Then

(A)
$$P^{-1} = \frac{1}{6} (5I + 2P - P^2)$$

(B)
$$P^{-1} = \frac{1}{6} (5I - 2P + P^2)$$

(C)
$$P^{-1} = \frac{1}{6} (5I - 2P - P^2)$$

(D)
$$P^{-1} = \frac{1}{6} (5I + 2P + P^2)$$

- Let T : V → V be a linear operator on V.
 If W is a subspace of V, then W is invariant subspace under T if
 - (A) $T(W) \subset W$ (B) T(W) = W
 - (C) $W \subset T(W)$ (D) None of these
- Eigen values of a real symmetric matrix are always
 - (A) positive (B) negative
 - (C) real (D) complex

6. The following set of 3 vectors

and $\begin{bmatrix} 4 \\ 2 \end{bmatrix}$ in \mathbb{R}^3 are linearly dependent

6

2

when x is equal to

3

(A)	0	(B)	1
(C)	2	(D)	00

- Choose the correct set of function which are linearly dependent.
 - (A) {sinx, sin²x, cos²x}
 - (B) {cosx, sinx, tanx}
 - (C) {cos2x, sin2x, cos2x}
 - (D) {cos2x, sinx, cosx}
- The matrix representation of the line transformation T : ℝ² → ℝ³ defined T(x, y) = (3x - y, 2x + 4y, 5x - 6y) w respect to standard basis is

(A)
$$\begin{bmatrix} -1 & 3 \\ 4 & 2 \\ 6 & 5 \end{bmatrix}$$

(B) $\begin{bmatrix} 3 & -1 \\ 2 & 4 \\ 5 & 6 \end{bmatrix}$
(C) $\begin{bmatrix} 3 & 2 & 5 \\ -1 & 4 & -6 \end{bmatrix}$
(D) none of these

A*

- यह दिया गया है कि, R³ में xy-समतल और yz-समतल यह R³के उपअन्तर हैं। इन उपअन्तर के परिच्छेदन का घात है
 - (A) 0 (B) 1
 - (C) 2 (D) इनमें से कोई नहीं

 यह मानिए कि U एक 3 × 3 मिश्र हर्मिशियन मैट्रिक्स है जो एकात्मक है। ऐसे में U का निश्चित आयगेन मुल्य है

- (A) $\pm i$ (B) $1 \pm i$ (C) ± 1 (D) $\frac{1}{2}(1 \pm i)$
- 3 × 3 वास्तविक मैट्रिक्स P का वास्तविक आयगेन मूल्य 1, -2, 3 है, तो
 - (A) $P^{-1} = \frac{1}{6} \left(5I + 2P P^2 \right)$ (B) $P^{-1} = \frac{1}{6} \left(5I - 2P + P^2 \right)$
 - (C) $P^{-1} = \frac{1}{6} (5I 2P P^2)$
 - (D) $P^{-1} = \frac{1}{6} (5I + 2P + P^2)$
- मान लीजिए कि T : V → V यह V पर एक रेखीय संकारक है। यदि W यह V का उपअन्तर है, तो W यह T के अन्तर्गत निश्चर उपअन्तर है, यदि
 - (A) T(W) ⊂ W (B) T(W) = W
 - (C) W ⊂ T(W) (D) इनमें से कोई नहीं
- वास्तविक सममित मैट्रिक्स का आयगेन मूल्य हमेशा होता है

(A)	धनात्मक	(B)	कृणात्मक
(C)	वास्तविक	(D)	মিশ্ব

JDD-75/PGT-MATH/ TIER-II/X-15

Δ

- R³ में बेक्टर (सदिश) के निम्न 3 सेट

 ¹
 ²
 ¹
 ⁶
 ³
 ³
 ⁴
 ²
 ¹
 ⁴
 ²
 ¹
 ¹
 ⁴
 ²
 ¹
 ¹
 ⁴
 ²
 ¹
 ¹
- एकघाती पराश्रित फलनों के सही सेट का चयन कीजिए
 - (A) {sinx, sin²x, cos²x}
 - (B) {cosx, sinx, tanx}
 - (C) {cos2x, sin²x, cos²x}
 - (D) {cos2x, sinx, cosx}
- 8. T: ℝ² → ℝ³यह रेखीय रूपांतरण जो T(x, y) = (3x - y, 2x + 4y, 5x - 6y) से मानक आधार के संबंध में परिभाषित किया गया है, का मैट्रिक्स निरूपण है

	[-1	3]	
(A)	4	2	
V-V	6	5	
	3	-1]	
(B)	2	4	
(0)	5	6	
-	3	2	5
(C)	-1	4	-6
(D)	इनमें र	से को	ई नही

A*

- P₃ is a vector space of polynomials in x of degree three or less and D(p(x)) is the derivative of p(x) is a transformation from P₃ to P₂, then
 - (A) the polynomial 2x + 1 is the Kernel of D
 - (B) the rank of D is 3
 - (C) the Kernel of D is all those constant polynomials in P₃

(D) none of these

- If scalar λ is a characteristic root of the matrix A then the matrix (A – λ.l) is
 - (A) Non singular
 - (B) Diagonal
 - (C) Singular
 - (D) None of these
- The null space of A is the solution set of the equation
 - (A) Ax = 0 (B) Ax = b
 - (C) Ax ≥ 0 (D) None of these
- 12. Two vectors u and v are orthogonal if
 - (A) U.V ≠ 0
 - (B) U.V=0
 - (C) u.v = 1
 - (D) None of these

13. The largest eigen value of the matrix

(B)

(D) 11

2	3	6	
0	5	5	ie
0	0	4	13

- (A) 5
- (C) 4
- A*

- Which of the following is not a line transformation from R³ to R³ ?
 - (A) T(x, y, z) = (x, 2y, 3x y)
 - (B) T(x, y, z) = (x y, 0, y z)
 - (C) T(x, y, z) = (0, 0, 0)
 - (D) T(x, y, z) = (1, x, z)
- Let V be a 3-dimensional vectors space over the field F₃= Z²/_{3Z}
 3 elements. The number of distinct 1-dimensional subspaces of V is
 - (A) 26 (B) 9
 - (C) 13 (D) 15
- Which of the following is a subspace the vector space R³ ?
 - (A) $\{(x, y, z) \in \mathbb{R}^3 : x 1 = 0, y = 0\}$
 - (B) $\{(x, y, z) \in \mathbb{R}^3 : x \ge 0, y \ge 0\}$
 - (C) $\{(x, y, z) \in \mathbb{R}^3 : 2x + 3y + 4z 3 = 1 \\ z=0\}$
 - (D) $((x, y, z) \in \mathbb{R}^3 : x + 2y = 0, 2x + 3z = 0$

17. Let $A = \begin{bmatrix} a & -1 & 4 \\ 0 & b & 7 \\ 0 & 0 & 3 \end{bmatrix}$ be a matrix with

real entries. If the sum and the produ of all the eigen values of A are 10 an 30 respectively, then a² + b² equals.

- (A) 29
- (B) 40
- (C) 58
- (D) 65

J

	JDD-75/PGT-MATH/ TIER-II/X-15
 थदि P₃ यह तीन या कम डिग्री के x में बहुपद का वेक्टर अन्तर है और D(p(x)) यह P₃ से P₂ तक रूपांतरण p(x) का अवकलज है, तो (A) 2x + 1 यह बहुपद D का कर्नेल (Kernel) है 	 14. ℝ³ से ℝ³ तक निम्न में से कौनसा रेखीय रूपांतरण नहीं है ? (A) T(x, y, z) = (x, 2y, 3x - y) (B) T(x, y, z) = (x - y, 0, y - z)
 (B) D का क्रम 3 है (C) D का कर्नेल P₃ में सभी स्थिर बहुपद है (D) इनमें से कोई नहीं 	 (C) T(x, y, z) = (0, 0, 0) (D) T(x, y, z) = (1, x, z) 15. 3 घटकोंवाले क्षेत्र F₃=^{ZZ}/_{3ZZ} पर V यह
 10. यदि मैट्रिक्स A का विशिष्ट मूल λ स्केलर (अदिश) है, तो मैट्रिक्स (A – λl) है (A) अपृथक् (B) विकर्णी 	3 घातीय वेक्टर अन्तर है। V के विशिष्ट 1-घातीय उपअन्तरों की संख्या है (A) 26 (B) 9 (C) 13 (D) 15
(C) पृथक् (D) इनमें से कोई नहीं	16. वेक्टर अंन्तर R ³ का निम्न में से कौनसा उपअन्तर है ?
 A का अकृत अंतर यह इस समीकरण का साधन सेट है (A) Ax = 0 (B) Ax = b (C) Ax ≥ 0 (D) इनमें से कोई नहीं 	(A) { $(x, y, z) \in \mathbb{R}^3 : x - 1 = 0, y = 0$ } (B) { $(x, y, z) \in \mathbb{R}^3 : x \ge 0, y \ge 0$ } (C) { $(x, y, z) \in \mathbb{R}^3 : 2x + 3y + 4z - 3 = 0, z = 0$ }
 12. u और v यह दो वेक्टर लम्बकोणीय होते है जब (A) u.v ≠ 0 (B) u.v = 0 (C) u.v = 1 (D) इनमें से कोई नहीं 	 (D) {(x, y, z) ∈ ℝ³: x+2y=0, 2x+3z=0} 17. मान लीजिए कि А =
(D) राग व सर्प का 13. मैट्रिक्स $\begin{bmatrix} 2 & 3 & 6 \\ 0 & 5 & 5 \\ 0 & 0 & 4 \end{bmatrix}$ का अधिकतम आयगन मूल्य है (A) 5 (B) 6 (C) 4 (D) 11	वास्तविक प्रविष्टिवाला है। A के सभी आयगन मूल्यों का जोड और गुणनफल क्रमश: 10 और 30 है, तो a ² + b ² इसके बराबर है (A) 29 (B) 40 (C) 58 (D) 65
A* -7	(U) 65

T-MATH/ TIER-II/X-15

18. Let T : $\mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by T(x, y, z) = (x + y, y + z, z + x) for all $(x, y, z) \in \mathbb{R}^3$. Then (A) rank (T) = 0, nullity (T) = 3 (B) rank (T) = 1, nullity (T) = 2 (C) rank (T) = 2, nullity (T) = 1 (D) rank (T) = 3, nullity (T) = 0 19. Consider the subspace W = {(x1, x2, ..., $x_{20} \in \mathbb{R}^{20}$: $x_n = x_{n-1} + x_{n-2}$ for 3≤n≤20} of the vector space R²⁰. The dimension of W is (A) 2 (B) 3 (C) 9 (D) 10 20. The value of $\sqrt[3]{5+2} = \sqrt[3]{5-2}$ is (A) 1 (B) 2 (C) 3 (D) 4 21. If $4^x = 8^y$, then the value of $\left(\frac{x}{y} - 1\right)$ is

(A) 0 (B) $\frac{1}{2}$ (C) 1 (D) None of these

- 22. The value of $\sqrt{a\sqrt[3]{b}\sqrt{a\sqrt[3]{b}\dots\infty}}$ is
 - (A) ∜a³b
 - (B) ∜ab³
 - (C) a3b
 - (D) None of these

23.	If 5 ⁿ + 5 ⁿ -	1 = 30, the	in the value
	(2n) ^{1/2} is		
	(A) 12	(B)	4 1
	(C) 6	(D)	8
24.	How many 2^{17} × 3^2 × 5	digits are the $^{14} \times 7$?	are in
	(A) 14	(B)	16
	(C) 15	(D)	17
25,	The least no 2 ¹⁰⁰ is divide	n-negative n ed by 5 is	emainder whe
	(A) 0	(B)	1
	(C) 2	(D)	3
26.	The last digi	t of 6500 is	
	(A) 2	(B)	4
	(C) 6	(D)	None of the
27.	The average 2 to 198 is	of all multip	oles of 10 fro
	(A) 90	(B)	100
	(C) 110	(D)	120
28.	The sum of t	he expressi	on
	$\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}}$	$\frac{1}{2+\sqrt{3}}$ +	
	1	1	- ie
	$\sqrt{3} + \sqrt{4}^+$	+ 180 + 18	
	(A) 7	(B)	
	(C) 9	(D)	10
29.	If 14 = 172 (r value	nod x), then	x can take th
	(A) 38	(B)	54
	6.0 00		

A*

8

				JDD-75/I	PGT-MATH/T	IER-II/X-15
	18.	मान लीजिए कि T : $\mathbb{R}^3 \to \mathbb{R}^3$ यह रेखीय रूपांतरण है जो T(x, y, z) = (x + y, y + z, z + x) सभी (x, y, z) $\in \mathbb{R}^3$ के लिए परिभाषित किया गया है, तो	23.	यदि 5 ⁿ + 5 ⁿ⁻ (A) 12 (C) 6	¹ = 30 है, तो (2n (B) 4 (D) 8) ^{%2} का मूल्य है
	· · · · · · · · · ·	(A) rank (T) = 0, nullity (T) = 3 (B) rank (T) = 1, nullity (T) = 2 (C) rank (T) = 2, nullity (T) = 1 (D) rank (T) = 3, nullity (T) = 0	24. 25.	(A) 14 (C) 15	¹⁴ × 7 में कितने अ (B) 16 (D) 17 से भाग दिया जात	5
	19.	R ²⁰ वेक्टर अन्तर के लिए W = {(x ₁ , x ₂ ,, x ₂₀) ∈ R ²⁰ : x _n = x _{n-1} + x _{n-2} के 3 ≤ n ≤ 20} यह वेक्टर अन्तर है ऐसा मानिए । W का घात है (A) 2 (B) 3 (C) 9 (D) 10	26.	(A) 0 (C) 2	(B) 1 (D) 3	
	20.	∛√5+2-∛√5-2 का मूल्य है (A) 1 (B) 2 (C) 3 (D) 4	27.	2 से 198 में 10 (A) 90 (C) 110) के सभी गुणजों व (B) 1((D) 12	00
	21.	u [$d x = 8^y$ g , d] $\left(\frac{x}{y} - 1\right)$ का मूल्य g (A) 0 (B) $\frac{1}{2}$ (C) 1 (D) इनमें से कोई नहीं	28.	$\frac{1}{\sqrt{1+\sqrt{2}}} + \frac{1}{\sqrt{3}}$ $\frac{1}{\sqrt{3}+\sqrt{4}} + \dots$ जोड है	$\frac{1}{2+\sqrt{3}}^{+}$ + $\frac{1}{\sqrt{80}+\sqrt{81}}$	इस व्यंजक का
	22.	√a∛b√a∛b∞ का मूल्य है	21	(A) 7 (C) 9	(B) 8 (D) 10	
		 (A) ∜a³b (B) √ab³ (C) a³b (D) इनमें से कोई नहीं 	29.	यदि 14 ≡ 17 सकता है (A) 38 (C) 66	2 (mod x) है, तो (B) 54 (D) 79	4
	A		100			

A

....

A*

30. The least positive integer to which 79 x 101 x 125 is congruent mod 11 is (A) 5 (B) 6 (C) 4 (D) 8 If 7x = 13 (mod 11), then the value of x is (A) 3 (B) -2 (C) 5 (D) None of these The decimal number 2.357357357. . is 32. equal to the rational number 2355 2355 (A) (B) 1001 999 2355 2359 (C) (D) 10001 9999 33. If $x + \frac{1}{x} = 2\cos\frac{\pi}{10}$, then $x^5 + \frac{1}{x^5}$ is equal to (A) 2 (B) 0 (C) 32° (D) None of these 34. If $\sin^{-1}x + \sin^{-1}y + \sin^{-1}z = \frac{3\pi}{2}$, then x1000 + y1000 + z1000 is equal to (A) 0 (B) 1 (C) 3 (D) Cannot be determined The acute angle in radians between the minute and hour hands of a clock when the time is 4 hours 20 minutes is (B) (C) $\frac{\pi}{18}$ (D) None of these

36. If $\sin \theta = \frac{15}{17}$, then the value of $\cos \theta$ tan θ are

165	-8 15	100	8 15
(A)	15 8	(B)	8 15 17 8
	0.45	(D)	<u>15</u> <u>15</u> <u>15</u> <u>8</u>
(C)	17'8	(D)	17'8

- 37. The angle of elevation of the top tower from the top and bottom building of height 'a' are 30° and respectively. If the tower and build stand at the same level, the heigh the tower is
 - (A) 3a (B) $\sqrt{3}a$ (C) $\frac{3a}{2}$ (D) $\frac{a}{2}(\sqrt{3}+3)$

38. The value of tan-1x + cot-1x is

(A)	$\frac{\pi}{3}$	1	(B)	$\frac{\pi}{6}$
(C)	$\frac{\pi}{4}$		(D)	π 2

39. If cos²A + cos²C = sin²B then triat ABC is
 (A) right angled (B) equilateral

(C) isosceles (D) none of th

40. $\cos\left(2\sin^{-1}\frac{1}{3}\right)$ is equal to (A) $\frac{7}{9}$ (B) $\frac{1}{3}$

-10-

(C) $\frac{2}{3}$ (D) none of th

A*

70

JDD-75/PGT-MATH/ TIER-II/X-15

30.	79 × 101 × 125 से संगत मापांक 11 वाला न्यूनतम धनात्मक पूर्णांक है (A) 5 (B) 6	36.	यति । मूल्य		तो cosθ	और tane का	1
	(C) 4 (D) 8		(A)	$\frac{-8}{15}, \frac{15}{8}$	(B)	8 15 17'8	1
31.	यदि 7x ≡ 13 (mod 11) है, तो x का मान है (A) 3 (B) -2 (C) 5 (D) इनमें से कोई नहीं	37	185	<u>8 – 15</u> 17 [–] 8 ज्वाई की इमारत		<u>15</u> <u>15</u> 17 <u>8</u> और तल से एक	
32,	2.357357357 यह दशमिक संख्या इस पारंमेय संख्या के बराबर है (A) <u>2355</u> (B) <u>2355</u> <u>999</u>		रावर 45°	के शिखर का उँ	त्वाई कोण रत और टा	क्रमश: 30° और वर एक ही समतल	
	(C) $\frac{2355}{9999}$ (D) $\frac{2359}{10001}$			3a 3a 2		$\frac{\sqrt{3}a}{2}\left(\sqrt{3}+3\right)$	
33.	यदि x + ¹ / _x = 2 cos ^π / ₁₀ है, तो x ⁵ + ¹ / _{x⁵} इसके बराबर है	38.	tan	⁻¹ x + cot ⁻¹ x ³	हा मान है		
	(A) 2 (B) 0 (C) 32 (D) इनमें से कोई नहीं			π 3		$\frac{\pi}{6}$	
34.	यदि sin ⁻¹ x + sin ⁻¹ y + sin ⁻¹ z = $\frac{3\pi}{2}$ है, ती		(C)		(D)		
	x ¹⁰⁰⁰ + y ¹⁰⁰⁰ + z ¹⁰⁰⁰ इसके बराबर है (A) 0	39.	1.	cos ² A + cos तेण है	s²C = si	n ² B है, तो ABC	
	(B) 1 (C) 3 (D) निर्धारित किया नहीं जा सकता	6		समकोणीय समद्रिभुज		समभुज इनमें से कोई नहीं	
35	4 बजकर 20 मिनिट के समय पर घडी की मिनट सूई और घण्टा सूई के बीच के रेडियन (त्रिज्या– कोण) में न्यून कोण होता है	40	co	$s\left(2\sin^{-1}\frac{1}{3}\right)$	इनके बराव	बर है	
	(A) $\frac{\pi}{2}$ (B) $\frac{\pi}{8}$		(A)	$\frac{7}{9}$	(B)	3	
	 (C) π/18 (D) इनमें से कोई नहीं 		(C) 2/3	(D)	इनमें से कोई नहीं	

A

A*

-11-

J

	In a triangle	ABC, a = 13, b = 14, c = 15.
	Then $\sin \frac{A}{2}$ is	is equal to
	(A) $\frac{1}{\sqrt{5}}$	(B) <u>2</u> <u>√5</u>
	(C) $\frac{3}{\sqrt{5}}$	(D) $\frac{4}{\sqrt{5}}$
42.	$\frac{\text{If } \cos A}{\text{ABC is}} = \frac{\cos A}{2}$	$\frac{\cos B}{b} = \frac{\cos C}{c}$, then triangle
	(A) isoscele	es (B) right angled
		ral (D) no conclusion
43.	The value of	tanθ sec θ is equal to
	(A) 0	(B) tan ² 0
	(C) 1	(D) 2
14.	man on senter	A is such that $A = \begin{bmatrix} 2 \\ -4 \\ 7 \end{bmatrix}$ on the determinant of A is
	(A) 0	(B) 1
	(C) 5	(D) none of these
15.	Consider th equations	ne following system of
	$2x_1 + x_2 + x_3 =$	= 0
	$x_2 - x_3 = 0$	
	$x_1 + x_2 = 0$	
	This system h	
		olution
	(A) unique se	
	(B) no solutio	
	(B) no solutio	umber of solutions

4 -31 46. For a given matrix where $i = \sqrt{-1}$. The inverse of the mat is -4 3 (A) 24 4 + 3i31 1 (B) 25 4 + 3i1 4 + 3i(C) 24 4-31 1 4+3i (D) 25 4-3i 47. Given 2x - y + 2z = 2, x - 2y + z = $x + y + \lambda z = 4$, then the value of λ such that $\lambda = 4$ and $\lambda = 4$. that the given system of equation ha no solution is (A) 3 (日) -3 (C) 0 (D) 1 2 α If A = 48. and |A3| = 125, then the 2 α value of a is (A) ±1 (B) ±2 (C) ±3 (D) ±5 0 -1 1 -1, then the top row If P = 249. 1 2 3 2 P⁻¹ is (A) 2 0 2 (B) -1 2 (C) 5 6 5 -3 4 (D) 1

A*

-12-

	JDD-75/PGT-MATH/ TIER-II/X-15
41. ABC त्रिकोण में a = 13, b = 14 और c = 15 है, तो $\sin \frac{A}{2}$ इसके बराबर है (A) $\frac{1}{\sqrt{5}}$ (B) $\frac{2}{\sqrt{5}}$ (C) $\frac{3}{\sqrt{5}}$ (D) $\frac{4}{\sqrt{5}}$	46. $\begin{bmatrix} 4-3i & i \\ -i & 4+3i \end{bmatrix} $ इस मैट्रिक्स में जहाँ $i = \sqrt{-1}$ है, तो मैट्रिक्स का प्रतिलोम है (A) $\frac{1}{24} \begin{bmatrix} 4-3i & i \\ -i & 4+3i \end{bmatrix}$ (B) $\frac{1}{25} \begin{bmatrix} i & 4-3i \\ 4+3i & -i \end{bmatrix}$
42. $\overline{a} = \frac{\cos B}{b} = \frac{\cos C}{c}$ है, तो ABC त्रिकोण है (A) समद्विभुज (B) समकोणीय (C) समभुज (D) कोई निष्कर्ष नहीं	(C) $\frac{1}{24}\begin{bmatrix} 4+3i & -i \\ i & 4-3i \end{bmatrix}$ (D) $\frac{1}{25}\begin{bmatrix} 4+3i & -i \\ i & 4-3i \end{bmatrix}$
43. cosθ cotθ tanθ secθ mi मान इसके बराबर है (A) 0 (B) tan²θ (C) 1 (D) 2 	 47. यदि 2x - y + 2z = 2, x - 2y + z = -4, x + y + λz = 4 दिया गया है, तो यदि दिये गये समीकरणों की पद्धति का कोई साधन नहीं है, तो λ का मूल्य है (A) 3 (B) -3
44. मैट्रिक A ऐसा है कि A = $\begin{bmatrix} 2 \\ -4 \\ 7 \end{bmatrix} \begin{bmatrix} 1 & 9 & 5 \end{bmatrix} है, 7 \end{bmatrix}$ तो A का निर्धारक है (A) 0 (B) 1 (C) 5 (D) इनमें से कोई नहीं	(A) 3 (B) -3 (C) 0 (D) 1 48. $u f c A = \begin{bmatrix} \alpha & 2 \\ 2 & \alpha \end{bmatrix}$ और $ A^3 = 125$ है, तो α का मूल्य है (A) ± 1 (B) ± 2
 45. निम्न पद्धति के समीकरण पर ध्यान दीजिए 2x₁ + x₂ + x₃ = 0 x₂ - x₃ = 0 x₁ + x₂ = 0 इस पद्धति का है (A) विशेष साधन (B) कोई साघन नहीं (C) अनंत संख्या में साघन 	(C) ± 3 (D) ± 5 49. a d $P = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & -1 \\ 2 & 3 & 2 \end{bmatrix}^{2}$, d P^{-1} a h a h
(D) इनमें से कोई नहीं	(C) [5 6 4] (D) [5 -3 1]

A+

-13-

- 50. If $A = \begin{bmatrix} 1 & 4 \\ b & a \end{bmatrix}$, the eigen values of this matrix are -1 and 7, what are the values of a and b ? (A) a = 6, b = 4
 - (B) a = 4, b = 6
 - (C) a = 3, b = 5
 - (D) a = 5, b = 3

51. If
$$A + B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
 and $A - 2B = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$,
then A is equal to

(A)
$$\begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$
 (B) $\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$
(C) $\begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$ (D) none of these

52. The value of the determinant 43 44 45 44 45 46 45 46 46 (A) 0 (B) -1

(A) 0 (B) -1 (C) 1 (D) 2

53. If order of matrix A = 4 × 3, order of matrix B = 4 × 5 and order of matrix C = 7 × 3, then the order of (A^t × B)^t × C^t is

(A)	4×5	(B)	3×7	
(C)	4×3	(D)	5×7	

- The average of the squares of numbers 0, 1, 2, 3, ..., n is
 - (A) $\frac{1}{2}n(n+1)$
 - (B) $\frac{1}{6}n(2n+1)$
 - (C) $\frac{1}{6}(n+1)(2n+1)$
 - (D) none of these
- Let S_n denote the sum of the cube the first n natural numbers and denotes the sum of first n nat

numbers, then
$$\sum_{k=1}^{n} \frac{S_k}{s_k}$$
 is equal to
(A) $\frac{n(n+1)(n+2)}{6}$
(B) $\frac{n(n+1)}{2}$
(C) $\frac{n(n+1)(n+2)}{3}$
(D) $\frac{n(n+1)(n+2)}{3}$

 If log 2, log (2^x – 1) and log (2^x + 3) in arithmetic progression, then x is eq to

(A)	5/2	(B)	3/2
(C)	log ₂ 5		log ₂ 3

57. For what values of m, $\frac{a^{m+1} + b^{m+1}}{a^m + b^m}$ is arithmetic mean of a and b? (A) 1 (B) 0 (C) 2 (D) none of the

A*

-14-

50. यदि A = 1 4 b a मैट्रिक्स का आयगन मूल्य –1 और 7 है, तो a और b का मूल्य क्या है ? (A) a=6, b=4 (B) a=4, b=6 (C) a=3, b=5 (D) a = 5, b = 3 51: यदि A + B = $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ और $A - 2B = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix} \hat{g}, \text{ th } A \text{ strak at at } \hat{g}$ (A) $\begin{array}{c} 1/3 & 1/3 \\ 2/3 & 1/3 \\ 2/3 & 1/3 \end{array}$ (B) $\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$ (C) $\begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$ (D) इनमें से कोई नहीं 43 44 45 44 45 46 इस निर्धारक का मुल्य इसके 52. 45 46 46 बराबर है (A) 0 (B) -1 (C) 1 (D) 2 53. यदि मैट्रिक्स A का घात A = 4 × 3 है, मैट्रिक्स B का घात B = 4 × 5 और मैट्रिक्स C का घात C = 7 × 3 है, तो (A^t × B)^t × C^t का घात है (A) 4 × 5 (B) 3×7

(D) 5×7

-15-

54. 0, 1, 2, 3, ..., n संख्याओं के वर्ग का औसत है
(A) ¹/₂n(n + 1)
(B) ¹/₆n(2n + 1)
(C) ¹/₆(n + 1) (2n + 1)
(D) इनमें से कोई नहीं

JDD-75/PGT-MATH/ TIER-II/X-15

55. मान लीजिए कि S_n यह पहले n स्वाभाविक संख्याओं के घन का जोड़ दर्शाता है और s_n यह पहले n स्वाभाविक संख्याओं का जोड़ दर्शाता है,

तो 2	<u></u>	
(A)	$\frac{n(n+1)(n+2)}{6}$	
(B)	<u>n(n + 1)</u> 2	and the second
(C)	$\frac{n(n+1)(n+2)}{3}$	10
(D)	$\frac{n(n+1)(n+2)}{2}$	

 यदि log 2, log (2^x – 1) और log (2^x + 3) यह समान्तर श्रेढी में है, तो x इसके बराबर है

(A)	5/2	(B)	3/2
(C)	log ₂ 5	(D)	log_3

 57. a और b के योगात्मक माध्य
 $\frac{a^{m+1} + b^{m+1}}{a^m + b^m} = a^m + b^m$

 fett m का मूल्य क्या होगा ?

 (A) 1
 (B) 0

 (C) 2
 (D) इनमें से कोई नहीं

A*

(C) 4×3

- 58. The sum of the first p terms of A.P. is q 64. If Z is a complex number, then and sum of the first q terms is p. Then the sum of (p + q) terms of the series is (A) p+q (B) -(p+q)(C) $\frac{p+q}{2}$ (D) none of these 59. If a, b, c are in A.P., then 3ª, 3b, 3c are (A) AP (B) GP (C) HP (D) none of these 60. If N = n! (n! = 1, 2, ..., n) where n > 2 is a natural number then the value of $\left(\frac{1}{\log_2 N} + \frac{1}{\log_3 N} + \dots + \frac{1}{\log_n N}\right)$ is equal to (A) 1 (B) 0 (C) n! (D) none of these 61. If z = x + iy and $w = \frac{1 - iz}{z - i}$, if |w| = 1, then z lies on (A) circle with unit radius (B) imaginary axis (C) real axis (D) none of these 62. If $|z + 2| + |z - 2| \le 6$, then the greatest value of |z| is (A) 3 (B) 6 (C) 4 (D) 8 63. If $i = \sqrt{-1}$ and n is positive integer, then in + in+1 + in+2 + in+3 is equal to
 - (A) 1 (B) i (C) iⁿ (D) 0
- A*

-16-

	minimum value d	of Z +	Z-1 is
	(A) 0		
		1.4	none of th
65.	If $(x + iy)^5 = a + ib$,	then (y	+ ix) ⁵ is equ
	(A) a + bi	(B)	a – bi
	(C) b + ai	(D)	b – ai
66.	If 1, w, w ² are cu	be root	ts of unity, I
	$\begin{vmatrix} 1 & w^n & w^{2n} \\ w^{2n} & 1 & w^n \\ w^n & w^{2n} & 1 \end{vmatrix}$	has v	value
		(B)	
67.	If $a < 0$ and $b > 0$	then J	a.√b is equ
	(A) –√[a]b	(B)	i√[a].b
	(C) √[a].b	(D)	none of th
68.	The reflection of	the co	mplex num
	$\frac{4+3i}{1+2i}$ in the strait	ght line	e iz = z is
	(A) 1-2i		4-3i
	(C) 2 + i	(D)	none of th
69.	If $ z + 4 = 3$ then $ z + 1 $ is	the ma	ximum valu
	(A) 4	(B)	0
	(C) 6	(D)	none of th
		100.0	

JDD-75/PGT-MATH/ TIER-II/X-15

A

58.	A.P. के पहले p पदों के p पदों p पदों p पदों के p पदों p पदों के p पदों p पदों p प p पदों के p प	का जोड़ q है और पहले q श्रृंखला के (p + q) पदों का	64.	यदि Z य न्यूनतम म	- C1	त है, तो 2	Z + Z – 1 का
	जोड़ होगा	Sam a Dandy in m		- 10 C - 10 C	West 20	(B)	1. 1/1
	(A) p+q	(B) -(p + q)		(A) 0 (C) 2			' इनमें से कोई नहीं
	(C) $\frac{p+q}{2}$	(D) इनमें से कोई नहीं	65.			Hb है, तो	(y + ix) ⁵ इसके
59	यदि a, b, c यह A.P.	है, तो 3ª, 3 ^b , 3° है		बराबर है			diama j
	(A) AP	(B) GP		(A) a			a – bi
2	(C) HP	(D) इनमें से कोई नहीं		(C) b	+ai	(D)	b – ai
60.	यदि N = n! (n! = 1, स्वाभाविक संख्या है,	2,n) जहाँ n>2 यह तो	66.		w, w ² यह w ⁿ w ^{2r}		घनमूल हैं, तो
	$\left(\frac{1}{\log_2 N} + \frac{1}{\log_3 N} + \frac{1}{\log_3 N}\right)$ at lat \hat{g}	+ <u>1</u> log _n N)इसके	Te		1 w ⁿ w ²ⁿ 1		1 B
	(A) 1 (C) n!	(B) 0 (D) इनमें से कोई नहीं	2.0	(A) 0 (C) w		(B) (D)	w w + w ²
61.	यदि z = x + iy और है, तो z इसपर है	$w = \frac{1-iz}{z-i}$, यदि $ w = 1$	67.	यदि a - बराबर ई		o > 0 8, i	तो √a.√6 इसके
	(A) वृत्त जिसकी त्रिज	या इकाई है	-	(A) -	√a b	(B)	i√ a b
	(B) काल्पनिक अक्ष(C) वास्तविक अक्ष		1.22	(C) ,	alb		इनमें से कोई नहीं
	(D) इनमें से कोई नर्ह		68.	$\frac{4+3i}{1+2i}$		ज्या का iz	= 🛛 सरल रेखा में
62.		≤6 है, तो z का अधिकतम		प्रतिबिग	ब है		
	मूल्य है	(17) 0		(A) 1	- 2i	(8)	4 - 3i
	(A) 3 (C) 4	(D) 8	-	(C) 2	+ i	(D)	इनमें से कोई नहीं
63.		n यह धनात्मक पूर्णांक है, + i ⁿ⁺³ इसके बराबर है	69.	मूल्य है	- 2		1 का अधिकतम
	(A) 1	(B) i	-	(A) 4		(B)	
	(C) in	(D) 0		(C) 6	ì	(D)	इनमें से कोई नहीं
114-1-	11000/02/24		1221				

A*

-17-

70. Common roots of the equations If z⁴ = i, then the value of z is $z^3+2z^2+2z+1=0$ and $z^{1985}+z^{100}+1=0$ (A) - 1 are (B) $\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}$ (A) W, W² (B) 1, w (C) 1, w² (D) 1, w, w² (C) $\cos\frac{\pi}{8} + i\sin\frac{\pi}{8}$ 71. If Z1, Z2 are complex numbers such (D) none of these that $|Z_1 + Z_2| = |Z_1| + |Z_2|$ then arg(Z1) - arg(Z2) is equal to (A) 1 (B) 0 77. $(1+i\sqrt{3})^6 + (1-i\sqrt{3})^6 =$ (D) $-\pi$ (C) π (A) 16 (C) 128 72. Value of $\sqrt{1+\sqrt{-1}}$ is (A) √2 (B) 0 78. If $x = \cos\theta - i\sin\theta$, then $x^3 - \frac{1}{x^3}$ (C) i (D) -i equal to 73. The value of $\int_C \frac{z^2 - z + 1}{z - 1} dz$, where C (A) 2i sin 30 (B) -2i sin 30 is the circle |z| = 1 is (C) 2 cos 30 (A) 0 (B) 2πi (D) none of these (C) -2πi (D) none of these 74. For the function $f(z) = \frac{z - \sin z}{z^2}$, at the The amplitude of $\frac{1+i}{1+\sqrt{3}}$ 79. point z = 0 is (A) a pole of order 2 (B) an essential singularity (C) $\frac{\pi}{4}$ (D) $\frac{-\pi}{4}$ (C) a removable singularity (D) none of these The modulus of $\frac{(1+2i)(2-i)}{3+4i}$ is equal 80. 75. The value of $\int_C \tan z \, dz$ where C is the (A) 5 circle |z| = 2 is (A) 2πi (B) 4πi (C) -4πi (D) none of these

A*

-18-

(B) 128i

(D) 64

(B) √5

(D)

۰.

76. यदि z⁴ = i है, तो z का मूल्य है 70. $z^3 + 2z^2 + 2z + 1 = 0$ 3414 $z^{1985} + z^{100} + 1 = 0$ (A) i इन दो समीकरणों का उभय मूल है (A) w, w² (B) $\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}$ (B) 1, w (C) 1, w² (D) 1, w, w² (C) $\cos\frac{\pi}{8} + 1\sin\frac{\pi}{8}$ 71. यदि Z1, Z2 यह मिश्र संख्याएँ है जिसमें (D) इनमें से कोई नहीं $|Z_1 + Z_2| = |Z_1| + |Z_2|$ है, तो $\arg(Z_1)$ arg(Z2) इसके बराबर है (B) 0 77. $(1+i\sqrt{3})^6 + (1-i\sqrt{3})^6 =$ (A) 1 (D) -π (C) π (A) 16 (B) 128i (C) 128 (D) 64 72. √i + √-i का मूल्य है (A) √2 (B) 0 78. यदि x = cos 0 - isin 0 है, तो x³ - 1/(x³) इसके (D) -i (C) i बराबर है 73. $\int_C \frac{z^2 - z + 1}{z - 1} dz$ का मूल्य जहाँ C यह वृत्त (A) 2i sin 30 (B) -2i sin 30 |z| = 1 8 (C) 2 cos 30 (B) 2πi (A) 0 (D) इनमें से कोई नहीं (D) इनमें से कोई नहीं (C) -2πi 79. <u>1+i</u> का आयाम है 74. $f(z) = \frac{z - \sin z}{z^2}$ फलन के लिए, z = 0 बिन्दु है (A) $\frac{\pi}{12}$ (B) $\frac{-\pi}{12}$ (A) श्रेणी 2 का छोर (B) एक अनिवार्य विशिष्टता (C) $\frac{\pi}{4}$ (D) $\frac{-\pi}{4}$ (C) एक स्थानान्तरणीय विशिष्टता (D) इनमें से कोई नहीं <u>(1+2i)(2-i)</u> 3+4i का मापांक इसके बराबर है 80. ∫_C tan z dz का मूल्य जहाँ C वृत्त |z| = 2 है 75. (A) 5 (B) √5 (C) 1 (D) $\frac{1}{\sqrt{5}}$ (B) 4πi (A) 2πi (D) इनमें से कोई नहीं (C) -4πi A* -19-

JDD-75/PGT-MATH/ TIER-II/X-15

- The sum of $n+1C_1 + n+1C_2 + ...$ 81. n+1Cn+1 is equal to (A) 2n+1 (B) 2n+1-1 (C) 2ⁿ (D) none of these 82. There are 10 lamps in a hall. Each of them can be switched on independently. The number of ways in which the hall can be illuminated is (A) 10² (B) 210 (C) 1023 (D) none of these 83. How many diagonals can be drawn in a polygon of n sides ? n(n - 1) (B) $\frac{n(n+1)}{2}$ (A) (C) $\frac{n(n-3)}{2}$ n(n+3) (D) If the number of diagonals of a n sided 84. polygon is equal to twice of its sides, then the value of n is equal to
 - (A) 7 (B) 10
 - (C) 5 (D) ' none of these
- B5. Given that, number of points on a circle is n. The number of triangles joining these points is 84; then n is equal to
 - (A) 7 (B) 8
 - (C) 9 (D) none of these
- 86. If the coefficients of x^7 and x^8 in $\left(2 + \frac{x}{3}\right)^n$ are equal, then n is equal to (A) 56 (B) 55
 - (C) 45 (D) none of these
- A٠

- - 87. The 10th common term between the s 3+7+11+...and 1+6+11+...is (A) 193 (B) 211 (C) 191 (D) mone of th The minimum value of the expres 88. 3x+31-x, x ER is (A) 0 2/3 (C) 3 (D) The inclination of the line x - y + 3 with the positive direction of x-axis (A) 45° (B) 135° (C) 100° (D) none of the 90. The supremum of the set $A = \{P \in Q : P^2 < 2\}$ in Q is (A) 2 (B) \sqrt{2}
 - (C) exists, but not v2
 - (D) does not exist
 - 91. If |x + 3| ≥10, then
 - (A) x∈(-13,7)
 - (B) x∈[-13, 7]
 - (C) X∈ (-∞, -13] ∪ [7, ∞)
 - (D) none of these
 - Let A = {x∈ ℝ : x² 5x + 6<0}. The infimum and supremum of A are
 - (A) 1 and 2
 - (B) 2 and 3
 - (C) 2 and 5
 - (D) none of these

-20-

			u	J	D-75/PG	T-MATH/	TIER-II/X-15	5
81.	इसके बराबर है	+ ⁿ⁺¹ C _{n+1} का जोड़		बीच मे	र्ग 10 वां उभय	–पद है	+श्रृंखलाओं वे	
	(A) 2 ⁿ⁺¹	(B) 2 ⁿ⁺¹ -1		5.1S	193			
	(C) 2 ⁿ	(D) इनमें से कोई नहीं	1.12	(C)	191	(D)	इनमें से कोई नहीं	
82	एक हॉल में 10 दीप जलाया जा सकता	र है। हर दीप अलग अलग से है। उस हॉल को कितने प्रकार					। न्यूनतम मूल्य है 1	
	से प्रदीप्त किया जा	सकता है ?		(A)	0	(B)	3	Ű.
- 2	(A) 10 ²	(B) 2 ¹⁰		(C)	3	(D)	2√3	
	(C) 1023	(D) इनमें से कोई नहीं			NUN LAND	0	0	
		ज में किन्दों किन्दर्श सीचे जा				। का x-अक्ष	की धनात्मक दिश	11
83.	n बाजुआ क बहुभ् सकते है ?	ज में कितने विकर्ण खींचे जा			थ आनति है ४८०	(B)	135°	
		0(0+1)			45°	11111111	इनमें से कोई नह	R.
	(A) $\frac{n(n-1)}{2}$	(B) $\frac{n(n+1)}{2}$	-	Mar -	100°			
	(C) $\frac{n(n-3)}{2}$	(D) $\frac{n(n+3)}{2}$	90.	A =	(P∈Q:P ²	< 2} सेट का	Q में परममूल्य	<u>ह</u> ै
	(C) 2	(0) 2		(A)	16			
84	यटि n बाजओं के ब	बहुभुज के विकर्ण उसके बाजुओं			√2		- 55	100
04.	से दगने के बराबर है	, तो n का मूल्य इसके बराबर है			होता है लेबि		10 C	
	(A) 7	(B) 10 *		(D)	नहीं होता है			
	(C) 5	(D) इनमें से कोई नहीं	- 01	सति	14 4 31 - 11	1 है नो		
		10.01.18	31,		xe(-13,7			
85.		छ्या के बिन्दु दिये गये हैं। इन		(B)	x∈[-13,7			
		ने वाले 84 त्रिकोण हैं, तो n			X∈(-∞,-	Contract of the second second	(so	
	इसके बराबर है		1	(D)	इनमें से कोष	- नहीं		
	(A) 7	(B) 8						
	(C) 9	(D) इनमें से कोई नहीं	92.				$x^2 - 5x + 6 <$	
			1	8,3	तो A का परम	न्यूनतम मूल्य	। और परममूल्य	ह
86	$\left(2+\frac{x}{a}\right)^{\prime\prime}$ में यदि	x ⁷ और x ⁸ के गुणांक एक समान	1.5		1 914 2			
	(3) है, तो n इसके बर			10.01	2 और 3			
	(A) 56	(B) 55			2 और 5	r 17		
	(C) 45	(D) इनमें से कोई नहीं		(D)	इनमें से को	इ.नही		
A*		APACA .	21-					

A

93. If
$$A = \left\{ x \in \mathbb{R} : \frac{x+2}{x-1} < 4 \right\}$$
, then
(A) $x \in (-\infty, 1) \cup (2, \infty)$
(B) $x \in (-\infty, \infty)$
(C) $x \in (-\infty, 2) \cup (2, \infty)$
(D) none of these
94. The limit points of the following subset
of $\mathbb{R} \left\{ 1 + (-1)^n \frac{1}{n} : n \in \mathbb{N} \right\}$ is
(A) 0
(B) 1
(C) infinitely many points
(D) none of these
95. Which of the following define a metric
on \mathbb{R} ?
(A) $d(x, y) = |x^2 - y^2|$
(B) $d(x, y) = |x^2 - y^2|$
(C) $d(x, y) = \frac{|x - y|}{1 + |x - y|}$
(D) none of these
96. For a continuous function $f : \mathbb{R} \to \mathbb{R}$, let
 $Z(f) = \{x \in \mathbb{R} : f(x) = 0\}$. Then $\mathbb{Z}(f)$ is
always
(A) compact (B) closed
(C) open (D) connected
97. Which of the following is uncountable
set?
(A) The set of all algebraic numbers
(B) The set of all subsets of natural
numbers
(D) Every subset of a countable set

If the set A and B are defined by $A = \{(x, y) : y = e^x, x \in \mathbb{R}\}$ and $B = \{(x, y) : y = x, x \in \mathbb{R}\}$ then (A) A⊆B (B) B⊆A (C) $A \cup B = A$ (D) $A \cap B = \phi$ Every non empty set of real num which is bounded below has (A) a supremum (B) an infimum (C) neither infimum nor supremut (D) none of these If x and y are real numbers with x then there exists a positive integr such that nx is (A) <y (B) >y (C) = y (D) none of these The union of any collection of open se (A) closed only (B) both open and closed (C) open only (D) neither open nor closed Any countable set of R has (A) no measure (B) measure zero (C) measure one (D) none of these

A×

-22-

J

93.
$$\overline{u}$$
 R $A = \left\{ x \in \mathbb{R} : \frac{x+2}{x-1} < 4 \right\} \overline{e}, \overline{n}$
(A) $x \in (-\infty, 1) \cup (2, \infty)$
(B) $x \in (-\infty, \infty)$
(C) $x \in (-\infty, 2) \cup (2, \infty)$
(D) $\overline{s} = \overline{n} \overline{i} + \overline{n} = \overline{n} = \overline{n}$
(D) $\overline{s} = \overline{n} \overline{i} + \overline{n} = \overline{n} = \overline{n}$
(D) $\overline{s} = \overline{n} \overline{i} + \overline{n} = \overline{n} = \overline{n}$
(C) $\overline{s} = \overline{n} \overline{i} + \overline{n} = \overline{n} = \overline{n}$
(D) $\overline{s} = \overline{n} \overline{i} + \overline{n} = \overline{n} = \overline{n}$
(D) $\overline{s} = \overline{n} \overline{i} + \overline{n} = \overline{n} = \overline{n} = \overline{n}$
(D) $\overline{s} = \overline{n} \overline{i} + \overline{n} = \overline{n} = \overline{n} = \overline{n}$
(D) $\overline{s} = \overline{n} \overline{i} + \overline{n} = \overline{n} = \overline{n} = \overline{n}$
(D) $\overline{s} = \overline{n} \overline{i} + \overline{n} = \overline{n} = \overline{n} = \overline{n} = \overline{n}$
(D) $\overline{s} = \overline{n} \overline{i} + \overline{n} = \overline{n} = \overline{n} = \overline{n} = \overline{n}$
(D) $\overline{s} = \overline{n} \overline{i} + \overline{n} = \overline{n} = \overline{n} = \overline{n} = \overline{n} = \overline{n}$
(C) $d(x, y) = |x^2 - y^2|$
(B) $d(x, y) = |x^2 - y^2|$
(C) $d(x, y) = |x^2 - y^2|$
(D) $\overline{s} = \overline{n} \overline{i} + \overline{n} = \overline{n} = \overline{n} = \overline{n}$
(C) $\overline{n} = \overline{n} = \overline{n} = \overline{n} = \overline{n}$
(D) $\overline{s} = \overline{n} \overline{i} + \overline{n} = \overline{n}$

JDD-75/PGT-MATH/ TIER-II/X-15

यदि A और B सेटों को इस प्रकार परिभाषित 98. किया जाता है A = {(x, y) : y = e^x, x ∈ ℝ } और B = {(x, y) : y = x, x ∈ ℝ }, तो (A) A⊆B (B) B⊆A (C) $A \cup B = A$ (D) $A \cap B = \phi$ Π 99. वास्तविक संख्या का प्रत्येक अरिक्त सेट जो नीचे बंधा होता है, उसका होता है (A) परममूल्य (B) परमन्यूनतम मूल्य (C) ना तो परममूल्य ना ही परमन्यूनतम मूल्य (D) इनमें से कोई नहीं 100. यदि x और y यह वास्तविक संख्याएँ हैं जहाँ x > 0 2 है, तो वहाँ एक धनात्मक पूर्णांक n उपस्थित रहता है जिसमें nx होता है (A) <y (B) >y ٢ (C) =y (D) इनमें से कोई नहीं 101. खुले सेटों का संयोजन होता है)} (A) केवल बन्द (B) खुला और बन्द दोनों (C) केवल खुला (D) ना तो खुला या बन्द R के कोई भी गणनीय सेट का 102. (A) माप नहीं होता (B) माप शून्य होता है 5 (C) माप एक होता है (D) इनमें से कोई नहीं

Δ*

- The total number of injective functions 103. from a set having m elements to a set having n elements where m>n, is equal to (B) $\frac{n!}{(n-m)!}$ (A) 0
 - (C) $\frac{m!}{(m-n)!}$ (D) none of these
- 104. $\lim_{n \to \infty} \frac{1}{n} \left[1 + 2^{\frac{1}{2}} + 3^{\frac{1}{3}} + \ldots + n^{\frac{1}{n}} \right]$ is equal to (A) 0 (B) 1 (C) 1/2
 - (D) none of these
 - $\lim_{x\to 0} \left(\frac{1}{x^2} \frac{1}{\sin^2 x} \right)$ is equal to (A) 0 (B) 3 (D) -1/3 (C) 3/5

106. Let {an}, {bn} be sequences of real numbers satisfying $|a_n| \le |b_n|$ for all $n \ge 1$. Then

- (A) ∑a_n converges whenever ∑b_n converges
- (B) ∑an converges absolutely whenever $\sum b_n$ converges absolutely
- (C) 2bn converges absolutely whenever $\sum a_n$ converges

(D) none of these

The series $\sum \frac{1}{n^p}$ is divergent if (A) p>1 (B) p<1 (C) 1 < p < 2 (D) none of these 108. The Laplace transform of e^{-3t} (2 cos5t - 3 sin5t) is (A) $\frac{s-9}{(s+3)^2+5}$ (B) $\frac{2s-9}{(s+3)^2+25}$ (C) $\frac{s+9}{(s+3)^2-5}$ (D) $\frac{2s-9}{(s-3)^2-25}$

107.

109. If $L{f(t)} = F(s)$ then $\frac{Ld^2(t)}{dt}$ (A) sF(s)-f(0)-f'(0) (B) s²F(s) - sf(0) - f'(0) (C) s²f(0) - sf'(0) - F(s) (D) s²f'(0) - sf(0) - F(s)

110. L(√t) is

(A) $\frac{\Gamma(3/2)}{3/2}$ (B) $\frac{\Gamma(V_2)}{V}$ (C) T(5/2)

(D) none of the

103. m घटकवाले सेट से n घटकवाले सेट (जहाँ m >n) को इतनी संख्या में अन्त:क्षेपी फलन होते हैं (B) n! (n-m)! (A) 0 (C) ml (m-n)! (D) इनमें से कोई नहीं 104. $\lim_{n \to \infty} \frac{1}{n} \left[1 + 2^{\frac{1}{2}} + 3^{\frac{1}{3}} + \ldots + n^{\frac{1}{n}} \right]$ इसके बराबर है (B) 1 (A) 0 (C) 1/2 (D) इनमें से कोई नहीं 105. $\lim_{x \to 0} \left(\frac{1}{x^2} - \frac{1}{\sin^2 x} \right)$ इसके बराबर है (A) 0 (B) 3 (C) 3/2 (D) -1/3 106. (an), (bn) यह वास्तविक संख्याओं की श्रृंखलाएँ 10 है ऐसे मानिए जो सभी n≥1 के लिए |a_n|≤|b_n| पुरा करती है, तो तब (A) जब $\sum b_n$ अभिमुख होता है तब $\sum a_n$

- (A) जब ८८०० आममुख होता ह तब ८८७० अभिमुख होता है
- (B) जब ∑^bn पूर्णत: अभिमुख होता है तब ∑a_n पूर्णत: अभिमुख होता है
- (C) जब ∑an अभिमुख होता है तब ∑bn पूर्णत: अभिमुख होता है
- (D) इनमें से कोई नहीं

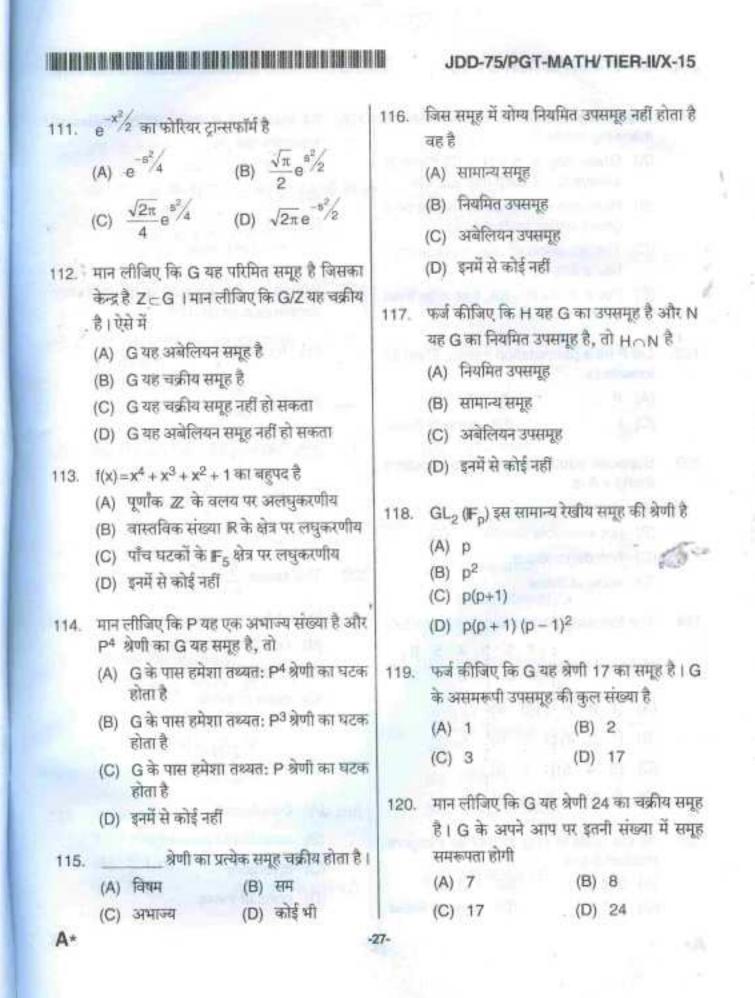
107. $\sum \frac{1}{n^p}$ श्रृंखला भिन्न होती है जब (A) p > 1(B) $p \le 1$ (C) 1(D) इनमें से कोई नहीं

 e^{-3t} (2 cos5t – 3 sin5t) का लॅपलेस ट्रान्सफॉर्म (विपक्षरूप) है

JDD-75/PGT-MATH/ TIER-II/X-15

(A) $\frac{s-9}{(s+3)^2+5}$ (B) $\frac{2s-9}{(s+3)^2+25}$ (C) $\frac{s+9}{(s+3)^2-5}$ (D) $\frac{2s-9}{(s-3)^2-25}$

09.
$$\overline{u}$$
[$f(t)$] = $F(s)$ \overline{t} , \overline{d}] $\frac{Ld^2(f(t))}{d+2}$ \overline{t}
(A) $sF(s) - f(0) - f'(0)$
(B) $s^2F(s) - sf(0) - f'(0)$
(C) $s^2f(0) - sf'(0) - F(s)$
(D) $s^2f'(0) - sf(0) - F(s)$


110. L(√t) है

https://www.freshersnow.com/previous-year-question-papers/

- (A) $\frac{\Gamma(3/2)}{s^{3/2}}$ (C) $\frac{\Gamma(5/2)}{s^{5/2}}$
- (B) $\frac{\Gamma(\frac{1}{2})}{s^{\frac{1}{2}}}$ (D) इनमें से कोई नहीं

A*

111.	The Fourier transform of $e^{-x^2/2}$ is	116.		group having bgroup is	no	prope	ər
	(A) $e^{-s^2/4}$ (B) $\frac{\sqrt{\pi}}{2}e^{s^2/2}$		(A)	Simple group)		
	2		(B)	Normal subg	roup	- 8	
	(C) $\frac{\sqrt{2\pi}}{4}e^{s^2/4}$ (D) $\sqrt{2\pi}e^{-s^2/2}$	-	(C)	Abelian subg	roup		
	4 (-) vene		(D)	None of these	9		
112.	Let G be a finite group and $Z \subset G$ be its center. Assume G/Z is cyclic. Then	117.		H be a subg			
	(A) G is abelian group		nor	mal subgroup (of G t	hen F	tr
	(B) G is a cyclic group		(A)	Normal subgr	oup		
	(C) G cannot be a cyclic group		(B)	Simple group			
	(D) G cannot be an abelian group	101	(C)	Abelian subg	roup		
113.	The polynomial $f(x)=x^4 + x^3 + x^2 + 1$ is		(D)	None of these	9		
	(A) irreducible over ring of integers Z	118.	The	anaral linoa	areu	n Cl	
	(B) reducible over the field of real numbers R	110.	ord		grou	p GL	2
	(C) reducible over the field \mathbb{F}_5 of five		(A)				
	elements		(B)	p ² -	:5	18	
	(D) none of these	200	(C)	p(p+1)			
114.	Let P be a prime number and G be a group of order P ⁴ . Then			p(p + 1) (p - 1			
	 (A) G always has an element of order exactly P⁴ 	119.	nun	G be group of nbers of non-ise			
	(B) G always has an element of order		of G	à is			
	exactly P ³ (C) G always has an element of order		(A)	1	(B)	2	
	(C) G always has an element of order exactly P	2	(C)	3	(D)	17	
	(D) none of these	120.	Let	G be a cyclic gr	oupo	forde	ar
115.	Every group of order is cyclic.		tota	I number of gro			
	(A) odd (B) even		(A)	7	(B)	8	
	(C) prime (D) any		(C)	17	(D)	24	

300	-75/PGT-MATH/ TIER-II/X-15	
121.	In an integral domain R, which are the following holds ?	126. All the units in the ring of integers are
	(A) Given any a, b ∈ R - {0} there is always C∈ R such that a.c = b	(A) ± 1
	(B) Non-zero elements can never be a group under multiplication	(B) ± i (C) ±1, ±i
	(C) The equation x ² = a, a∈ R always has a solution	(D) none of these
	(D) For a, b, c∈ R - {0}, if ac = bc then a = b	127. Which of the following is continuous on (0, 1)?
122.	Let P be a permutation matrix. Then its inverse is	(A) $f(x) = sin\frac{1}{x}$
	(A) P (B) P ^t	(B) $f(x) = \frac{1}{x}$
	(C) I (D) none of these	1
123.	Suppose square matrix A is nilpotent then I + A is	(C) $f(x) = \frac{1}{x^2}$
	(A) invertible (B) not invertible	(D) $f(x) = x \sin \frac{1}{x}$
	(C) non degenerate(D) none of these	128. The series $\sum_{n=1}^{\infty} (-1)^n \frac{1}{2n+3}$
124.	The following permutation as a product	(A) absolutely convergent
	of disjoint cycles $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 3 & 1 & 2 \end{pmatrix}$ is	(B) conditional convergent
	(6 5 4 3 1 2) ¹⁵	(C) divergent
	(A) (1 6 2 5)(3 4)	(D) none of these
	(B) $(1 \ 2 \ 4)(3 \ 5 \ 6)$	129. The series $\sum_{n=1}^{\infty} \frac{n!2^n}{n^n}$ is
	(C) (3 4 5)(1 2 3) (D) (1 5 6 2)(4 3)	n=1 n ⁿ is
		(A) convergent
125.	All the units in ring Z 8 of all integers modulo 8 are	(B) conditional convergent
	(A) 2, 4, 6 (B) 1, 3, 5, 7	(C) divergent
	(C) 0,1 (D) none of these	(D) none of these

https://www.freshersnow.com/previous-year-question-papers/

-28-

A*

121. P समय प्राप्त में निम्म में से कौर लागू होता है ?
(A) a, b
$$\in P - \{0\}$$
 सो, तो वहाँ हमेशा C $\in P$
संता है जब a.c = b होता है
(B) गुणन में अ-गूट्य घटक का समुह कभी भी
साधन रहता है
(D) a, b, c.c $P - \{0\}$ से लिए यदि a.c = bc है,
तो a = b होता है
122. भानिए कि P यह एक क्रमचय मैट्रिस है | उसका
प्रतिलोम होगा
(A) P (B) P¹
(C) 1 (D) इनमें से कोई नहीं
123. मानिए कि A वर्ग मैट्रिस निलापोर्टट, है, तो I + A है
(A) व्युक्तमणी
(C) अविकृत
(D) इनमें से कोई नहीं
124. $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 3 & 1 & 2 \end{pmatrix}$ किसंधी चक्र का
गुणनफल निमन क्रमचय है
(A) (1 & 6 & 2 & 5)(3 & 4)
(B) (1 & 2 & 4)(3 & 5 & 6)
(C) (3 & 4 & 5)(1 & 2 & 3)
(D) (1 & 5 & 6 & 2)(4 & 3)
125. मापांक 8 के समी पूर्णोक के Z.g वलय के सभी
एकक होते हैं
(A) 2.4, 6 (B) 1, 3, 5, 7
(C) 0, 1 (D) इनमें से कोई नहीं
125. मापांक 8 के समी पूर्णोक के Z.g वलय के सभी
एकक होते हैं
(A) 2.4, 6 (B) 1, 3, 5, 7
(C) 0, 1 (D) इनमें से कोई नहीं
125. मापांक 8 के समी पूर्णोक के Z.g वलय के सभी
एकक होते हैं
(A) 2.4, 6 (B) 1, 3, 5, 7
(C) 0, 1 (D) इनमें से कोई नहीं
125. मापांक 8 के समी पूर्णोक के Z.g वलय के सभी
एकक होते हैं
(A) 2.4, 6 (B) 1, 3, 5, 7
(C) 0, 1 (D) इनमें से कोई नहीं
126. मोसियन पूर्णोक के द्वार 8
(A) अभिसारी
(B) शर्तबद्ध अभिसारी
(C) अपसारी
(D) इनमें से कोई नहीं
(A) अभिसारी
(B) शर्तबद्ध अभिसारी
(C) अपसारी
(D) इनमें से कोई नहीं
(A) अभिसारी
(D) इनमें से कोई नहीं
(D) इनमें से कोई नहीं

JDD-75/PGT-MATH/ TIER-II/X-15

130. Which of the following is convergent 134. Value of the integral [[xy(x+y)d series ? over the area between the curves (A) $1 + \frac{1}{2^2} + \frac{2^2}{3^3} + \frac{3^3}{4^4} + \dots$ and y = x is (A) 56 (B) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \tan(\frac{1}{\sqrt{n}})$ (B) 65 (C) $\sum_{n=1}^{\infty} \frac{\frac{1}{2} + (-1)^n}{n}$ (C) 35 (D) none of these (D) none of these 135. The value of div(curl F) i.e. v.v. 131. Value of the integral $\iint e^{-(x^2+y^2)} dx dy$ is equal to (A) 0 (B) 1 (B) $\frac{\pi}{2}$ (A) $\frac{\pi}{4}$ (C) V²F (C) $\sqrt{\pi}$ (D) none of these (D) none of these Divergence of the vector 136. 132. $\beta(m, n) =$ x²zi+xyj-yz²k at (1,-1,1) is (A) $\frac{\Gamma(m) + \Gamma(n)}{\Gamma(m n)}$ (B) $\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$ (A) 0 (B) 3 (C) 5 (D) 6 $\Gamma(m) \cdot \Gamma(n)$ (C) <u>Γ(m-n)</u> (D) none of these 137. For any two real numbers, an operation defined by a * b = 1 + ab is (A) neither commutative Value of the integral $\int \frac{e^{-st}}{\sqrt{t}} dt$ is 133. associative (B) commutative but not associative (A) 1/s (C) both commutative and associa (D) associative but not commutative (B) √π 138. In the multiplicative group (1, -1, i (C) where $i^2 = -1$, the inverse of i^5 is (A) 1 (B) i (D) none of these (C) -1 (D) -i A* -30-

MANUS DE LA INCO INC. INCO ES	ING TO TRAD THE OF	TRANSPORT	

130. निम्न में से कौनसी श्रृंखला अभिसारी है ? (A) $1 + \frac{1}{2^2} + \frac{2^2}{3^3} + \frac{3^3}{4^4} + \dots$ (B) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \tan(\frac{1}{\sqrt{n}})$ (C) $\sum_{n=1}^{\infty} \frac{\frac{1}{2} + (-1)^n}{n}$ (D) इनमें से कोई नहीं	134. $y = x^2$ और $y = x$ इन वक्रों के उपर $\iint xy(x + y) dy dx $ पूर्णसांख्यिक का मूल्य है (A) $\frac{3}{56}$ (B) $\frac{3}{65}$ (C) $\frac{6}{35}$ (D) इनमें से कोई नहीं
131. $\int_{0}^{\infty \infty} e^{-(x^2+y^2)} dx dy $$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	135. div(curl \vec{F}) i.e. $\nabla \cdot \nabla \times \vec{F}$ का मूल्य इसके बराबर है (A) 0 (B) 1 (C) $\nabla^2 \vec{F}$ (D) इनमें से कोई नहीं 136. $x^2 z \vec{i} + x y \vec{j} - y z^2 \vec{k}$ वेक्टर क्षेत्र का $(1, -1, 1)$ पर अपसरण है (A) 0 (B) 3 (C) 5 (D) 6
(C) $\frac{\Gamma(m) \cdot \Gamma(n)}{\Gamma(m-n)}$ (D) इनमें से कोई नहीं 133. $\int_{0}^{\infty} \frac{e^{-st}}{\sqrt{t}} dt$ इस पूर्णसांख्यिक का मूल्य है (A) $\sqrt{\pi/s}$ (B) $\sqrt{\pi}$ (C) $\frac{s}{\pi}$ (D) इनमें से कोई नहीं	 137. किसी भी दो वास्तविक संख्याओं के लिए a*b = 1 + ab से परिभाषित की गई संक्रिया • है (A) ना तो संचयी है या सहचारी है (B) संचयी है लेकिन सहचारी नहीं (C) संचयी और सहचारी दोनों है (D) सहचारी है लेकिन संचयी नहीं 138. {1, -1, i, -i} गुणन समूह में जहाँ i² = -1 है, i⁵ का प्रतिलोम है (A) 1 (B) i (C) -1 (D) -i
A* -3	31- ·

'139.	numbers. If $*$ is a binary operation defined on G by $a * b = \frac{ab}{3} \forall a, b \in G$,	144. If $g(x) = 1 - x$ and $h(x) = \frac{x}{x-1}$ the
	Then identity element of G is(A) 1(B) 2(C) 3(D) 4	(A) $\frac{h(x)}{g(x)}$ (B) $-\frac{1}{2}x$
140.	Which of the following is the empty set ? (A) $\{x x \text{ is a real number and } x^2 - 1 = 0\}$ (B) $\{x x \text{ is a real number and } x^2 + 1 = 0\}$ (C) $\{x x \text{ is a real number and } x^2 - 9 = 0\}$ (D) $\{x x \text{ is a real number and } x^2 = x+2\}$	(C) $\frac{g(x)}{h(x)}$ (D) $\frac{x}{(1-x)^2}$ 145. A function f(x) is linear and has a value of 29 at x = -2 and 39 at x = 3. There value of f(x) at x = 5 is
141.	The sides of a triangle are in the ratio $1:\sqrt{3}:2$, then the angles of the triangle are in the ratio	value of f(x) at x = 5 is (A) 59 (B) 45 (C) 43 (D) 35
142.	(A) 1:3:5 (B) 2:3:4 (C) 3:2:1 (D) 1:2:3 The contour on the xy-plane, where the partial derivative of $x^2 + y^2$ with respect to y is equal to the partial derivative of $6y + 4x$ with respect to x, is	 146. Let function f: R → R be defined by f(x) = 2x + sinx for all x ∈ R. Then f is (A) bijective (B) one-one but not onto (C) onto but not one-one (D) neither one-one nor onto
	(A) $y = 2$ (B) $x = 2$ (C) $x + y = 4$ (D) $x - y = 4$	147. The domain of $f(x) = \sqrt{16 - x^2}$ is (A) ℝ (B) [-4, 4] (C) [0, ∞) (D) [0, 4] 148. If f : ℝ → ℝ is defined by $f(x) = x $, then
143.	If $f(x) = sinx + cosx$, $g(x) = x^2 - 1$ then $g(f(x))$ is invertible in the domain	(A) $t^{-1}(x) = \frac{1}{ x }$
	(A) $\left[0, \frac{\pi}{2}\right]$ (B) $\left[\frac{-\pi}{4}, \frac{\pi}{4}\right]$ (C) $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ (D) $\left[0, \pi\right]$	(B) $f^{-1}(x) = -x$ (C) $f^{-1}(x) = \frac{1}{x}$ (D) the function $f^{-1}(x)$ does not exist
A*	-32	2-

JDD-75/PGT-MATH/ TIER-II/X-15

100

139.	मानिए कि G यह सभी धनात्मक परिमेय संख्याओं का सेट है। यदि • बाइनरी संक्रिया a • b = $\frac{ab}{3} \forall a$, b \in G से परिभाषित की जाती है, तो G का तादात्म्य घटक है (A) 1 (B) 2 (C) 3 (D) 4 निम्न में से कौनसा रिक्त सेट है? (A) {x x यह वास्तविक संख्या है और $x^2 - 1 = 0$ } (B) {x x यह वास्तविक संख्या है और $x^2 - 1 = 0$ } (C) {x x यह वास्तविक संख्या है और $x^2 - 9 = 0$ }	144. $\overline{u}[\overline{d} g(x) = 1 - x \text{sht} h(x) = \frac{x}{x-1} \text{s, n} \ \frac{g(h(x))}{h(g(x))} = \frac{1}{2}$ (A) $\frac{h(x)}{g(x)}$ (B) $-\frac{1}{2}$ (C) $\frac{g(x)}{h(x)}$ (D) $\frac{x}{(1-x)^2}$ 145. $f(x)$ therefted at \overline{s} shit states are -2 tr (29 shit $x = 3 \text{ tr}$ 39 \overline{s} i that \overline{t} f(x) as a area
141	(D) {x x यह वास्तविक संख्या है और x ² = x+2} यदि एक त्रिकोण की भुजाएँ 1: √3 : 2 अनुपात में	x = 5 पर है (A) 59 (B) 45 (C) 43 (D) 35
141.	पाद एक उनकाल का मुजाए 1:√3:2 अनुपात म है, तो त्रिकोण के कोण इस अनुपात में है (A) 1:3:5 (B) 2:3:4 (C) 3:2:1 (D) 1:2:3	146. मानिए कि फलन f: R → R को f(x) = 2x + sinx for all x ∈ R से परिभाषित किया जाता है, तो f है
142.	जहाँ x ² + y ² का y के सम्बन्ध में आंशिक अवकलज 6y + 4x के x के सम्बन्ध के आंशिक अवकलज के बराबर रहता है वहाँ xy समतल पर परिरेखा होती है	 (A) बाईबेक्टीव (B) एक-एक लेकिन सात्त्विक नहीं '(C) सात्त्विक लेकिन एक-एक नहीं (D) ना तो सात्त्विक ना ही एक-एक
	(A) $y = 2$ (B) $x = 2$ (C) $x + y = 4$ (D) $x - y = 4$	147. f(x) = √16 - x ² का प्रान्त है (A) ℝ (B) [-4, 4] (C) [0, ∞) (D) [0, 4]
143.	यदि f(x) = sinx + cosx, g(x) = x ² – 1 है, तब इस क्षेत्र में g(f(x)) व्युत्क्रमी होता है	148. $f(x) = x $ से परिभाषित किया गया f : ℝ → ℝ है, तो (A) $f^{-1}(x) = \frac{1}{ x }$
	(A) $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ (B) $\begin{bmatrix} -\pi, \frac{\pi}{4} \end{bmatrix}$ (C) $\begin{bmatrix} -\pi, \frac{\pi}{2} \end{bmatrix}$ (D) $[0, \pi]$	(A) $f^{-1}(x) = -x$ (B) $f^{-1}(x) = -x$ (C) $f^{-1}(x) = \frac{1}{x}$ (D) $f^{-1}(x)$ फलन अस्तित्व में नहीं है
A*	-3	3-

149. In the set A = {1, 2, 3, 4, 5}, a relation R is defined by R = {(x, y) : x, y ∈ A and x < y}. Then R is</p>

- (A) reflexive
- (B) symmetric
- (C) transitive
- (D) none of these
- 150. Let A = {p, q, r, s} B = {1, 2, 3}. Then which of the following relations from A to B is not a function ?
 - (A) $R_1 = \{(p, 1), (q, 2), (r, 1), (s, 2)\}$
 - (B) $R_2 = \{(p, 1), (q, 1), (r, 1), (s, 1)\}$
 - (C) R₃ = {(p, 1), (q, 2), (p, 2), (s, 3)}
 - (D) $H_4 = \{(p, 2), (q, 3), (r, 2), (s, 2)\}$
- 151. The function y = x⁴ 6x² + 8x + 11 has a minimum at x equal to
 - (A) 1 ·
 - (B) -2
 - (C) 3
 - (D) 4

152. xx has a stationary point at

- (A) x = e
- (B) $x = \frac{1}{2}$
- (C) x = 1
- (D) $x = \sqrt{e}$

A٠

153. The absolute maximum of $y=x^3-3x+2$ in $0 \le x \le 2$ is (A) 4 (B) 6

(C) 2 (D) 0

	1 =	instativity is
154	If $f(x) = \begin{cases} \frac{x^{\circ} - 32}{x - 32} \end{cases}$	2 , x≠2 is
	If $f(x) = \begin{cases} \frac{x^5 - 32}{x - 2} \\ k \end{cases}$, x=2
	continuous at x	= 2, then k is equal to
	(A) 16	(B) 80
	(C) 32	(D) 8
155.	The function	attains its maximum
	at the point	
	(A) x = e	(B) $x = \frac{1}{e}$
	(C) $x = \sqrt{\Theta}$	(D) none of these
156.	$\tilde{i}.(\hat{j} \times \hat{k}) + \hat{j}.(\hat{k} \times \hat{i})$	$+\hat{k}.(\hat{i}\times\hat{j})$ is equal to
	(A) 1	(B) 0
	(C) 3	(D) -3
157.	If a and b are to	wo unit veetors inclined
	at an angle 7/3.1	then the value of $\vec{a} + \vec{b}$
	is	WINT'S STATE
	(A) =0	I CENTROLE
	(B) >1	5 y 2 1
	(C) <1	THEY DI
	(D) none of the	se le la la la la
158.	The area of the	parallelogram whose
	adjacent sides a	are $\hat{i} + \hat{k}$ and $2\hat{i} + \hat{j} + \hat{k}$
	is	1 5 0 W
	(A) 3	(B) √2
		10 No. 10 Aug.

-24

JDD-75/PGT-MATH/ TIER-II/X-15

149.	A = {1, 2, 3, 4, 5} सेंट में R का सम्बन्ध	downer of		5 40 000
100	R = {(x, y) : x, y ∈ A और x < y} से परिभाषित किया जाता है, तो R है	154.	x = 2 पर यदि f(x) =	$\frac{x^{5} - 32}{x - 2}, x \neq 2$ k k k k k k k k k k k k k k k k k k k
	(A) निजवाचक किंग	0	निरंतर है, तो k इसके बर	ावर है
	(B) सममित		(A) 16	(B) 80
	(C) संकर्मक		(C) 32	(D) 8
	(D) इनमें से कोई नहीं	155.	log x x फलन इस बिन्दु	पर अधिकतम पाता है
150.	मानिए कि A = {p, q, r, s} B = {1, 2, 3} है। निम्न में से कौनसा A से B तक का सम्बन्ध नहीं है ?		(A) x = e	(B) $x = \frac{1}{e}$
	(A) $R_1 = \{(p, 1), (q, 2), (r, 1), (s, 2)\}$ (B) $R_2 = \{(p, 1), (q, 1), (r, 1), (s, 1)\}$		(C) x = √e	(D) इनमें से कोई नहीं
1911 1912	(C) $R_3 = \{(p, 1), (q, 2), (p, 2), (s, 3)\}$ (D) $R_4 = \{(p, 2), (q, 3), (r, 2), (s, 2)\}$	156.	$\hat{i}.(\hat{j} \times \hat{k}) + \hat{j}.(\hat{k} \times \hat{i}) + \hat{k}$ (A) 1	.(î × ĵ) इसके बराबर है (B) 0
151.	y = x ⁴ – 6x ² + 8x + 11 फलन न्यूनतम होता है जब x इसके बराबर होता है		(C) 3	(D) -3
	(A) 1 (B) -2 (C) 3	157.	⁷¹ ∕3 कोण पर a और आनत हैं, तो a+b व	
	(D) 4		(A) =0	
152.	x ^x का स्थिर बिन्दु यहाँ होता है		(B) >1	
	(A) $x = \theta$ (B) $x = \frac{1}{\theta}$		(C) <1 (D) इनमें से कोई नहीं	
	(C) x = 1		(D) इनम स काइ नहा	
	(D) $x = \sqrt{e}$		सन्निकट भुजा î+k औ	
153	y=x ³ -3x+2का 0≤x≤2में चरम अत्यधिक है		समान्तरचतुर्भुज का क्षेत्रप	In the investories
12120	(A) 4 (B) 6		(A) 3	
	(C) 2 (D) 0		(C) 4	(D) √3
A*	-30 (D) -30	5-		

https://www.freshersnow.com/previous-year-question-papers/

36

JDD-75/PGT-MATH/TIER-II/X-15

159. The order and degree of the differential

- equation $y = x \frac{dy}{dx} + \frac{2}{\frac{dy}{dx}}$ is
 - (A) 1,2 (C) 2,1 (B) 1,3 (D) 1,1
- 160. If y = y(x) and $\frac{2 + \sin x}{y+1} \left(\frac{dy}{dx}\right) = -\cos x$,
 - y(0) = 1, then $y(\pi/2)$ equals

(A) $\frac{1}{3}$ (B) $\frac{2}{3}$ (C) $-\frac{1}{3}$ (D) 1

- 161. If $f(x) = x^3$ and $g(x) = x^3 4x$ in $-2 \le x \le 2$, then consider the statements
 - f(x) and g(x) satisfy mean value theorem
 - f(x) and g(x) both satisfy Rolle's theorem
 - only g(x) satisfies Rolle's theorem Of these statements
 - (A) (1) and (2) are correct
 - (B) (1) alone is correct
 - (C) None is correct
 - (D) (1) and (3) are correct
- 162. A stone is dropped into a quiet lake and waves move in circles at the speed of 5 cm/sec. At that instant, when the radius of circular wave is 8 cm, how fast is the enclosed area increasing ?

(A) 6πcm²/s (B) 8πcm²/s

(C) $\frac{8}{5} \pi \text{cm}^2/\text{s}$ (D) $80 \pi \text{cm}^2/\text{s}$

163. Given set A = {2, 3, 4, 5} and set B = {11, 12, 13, 14, 15}. Two numbers randomly selected are from each set. What is probability that the sum of the numbers equal 16 ?

(A)	0.2	(B)	0.25
(C)	0.3	(D)	0.35

164. An unbiased coin is tossed five times. The outcome of each toss is either a head or a tail. The probability of getting atleast one head is

(A)	1	(B)	13 32	
	32		32	
(C)	15	(5)	31 32	
	32	(D)	32	

 The probability that a student knows the correct answer to a multiple choice

question is $\frac{2}{3}$. If the student does not know the answer, then the student guesses the answer. The probability of

the guessed answer being correct is -

Given that the student has answered the question correctly, the conditional probability that the student known the correct answer is

(A) ²/₃ (B) ³/₄

(C) 5/6 (D) 8/9

- 166. Two events A and B occur with probabilities 0.25 and 0.50. The probability that they occur simultaneously is 0.14. What is the probability that neither of them occurs ?
 - (A) 0.39 (B) 0.61
 - (C) 0.72 (D) 0.28

A*

159.	$y = x \frac{dy}{dx} + \frac{2}{dy} \xi \xi$	। अवकल र	समीकर	ण की श्रेणी	16
	dx और घात है			(Å)	
	(A) 1,2 (C) 2,1	(B) (D)	1,3 1,1		
160.	यदि y = y(x) और				16
100	y(0) = 1 है, तो y	$\frac{\pi}{2}$ इसके	बराबर	8	
	(A) 1/3	(B)	2/3	A.L.	
10	(C) -1/3	(D)	1	121	
161.	यदि –2≤x≤2में 1	(x) = x ³ औ	R g(x)	$=x^{3}-4x$	

- 161. चाद -∠≤x≤∠+1(x) = x² अ(t g(x) = x² 4x है, तो इन कथनों पर विचार कीजिए।
 - f(x) और g(x) दोनों माध्य मूल्य सिद्धान्त का पालन करते हैं
 - f(x) और g(x) दोनों रोल के सिद्धान्त का पालन करते हैं
 - 3) इन कथनों में केवल g(x) रोल के सिद्धान्त का पालन करता है
 - (A) (1) और (2) सही हैं
 - (B) केवल (1) सही है
 - (C) कोई भी सही नहीं है
 - (D) (1) और (3) सही हैं

A*

- 162. एक शान्त तालाब में एक पत्थर फेंका जाता है, उससे 5 cm/sec. गति की वृत्ताकार लहरें उत्पन्न होती हैं। उस क्षण में जब वृत्ताकार लहर की त्रिज्या 8 cm होती है, तब किस गति से परिबद्ध विस्तार बढ़ता है ?
 - (A) 6πcm²/s (B) 8πcm²/s
 - (C) $\frac{8}{5}\pi \text{cm}^2/\text{s}$ (D) $80\pi \text{cm}^2/\text{s}$

63. A = {2, 3, 4, 5} और B = {11, 12, 13, 14, 15} यह दो सेट दिये गये हैं। दो संख्याएँ यादृच्छिक प्रत्येक सेट से चुनी जाती है। क्या संभाव्यता है कि संख्याओं का जोड़ 16 होगा ?

JDD-75/PGT-MATH/ TIER-II/X-15

(A)	0.2	(B)	0.25
(C)	0.3	(D)	0.35

64. एक निष्पक्ष सिक्के को पाँच बार उछाला जाता है। हर उछाल का नतीजा या तो चित या पट होता है। कम से कम एक चित पाने की संभाव्यता है

(A)	1.00	(17)	13	
	32	(B)	32	
(C)	15	(D)	31	
	32	(D)	32	

165. बहुविकल्पी प्रश्न का उत्तर सही जानने की एक विद्यार्थी की संभाव्यता ²/₃ है। जब विद्यार्थी को उत्तर मालूम नहीं होता तब वह अनुमान लगाता है।

वह अनुमानवाला उत्तर सही होने की संभाव्यता $\frac{1}{4}$ है। मान लीजिए कि विद्यार्थी ने प्रश्न का उत्तर सही दिया है, तो विद्यार्थी को सही उत्तर पता होने की शर्तबद्ध संभाव्यता है

(A)	2/3	(B)	3/4
(C)	5/6	(D)	%

166. A और B यह दो घटनाएँ 0.25 और 0.50 संभाव्यता से घटती है। उनके एक साथ घटने की संभाव्यता 0.14 है। क्या संभाव्यता है कि दोनों में से कोई भी नहीं घटेगी ?

(A)	0.39	(B)	0.61
(C)	0.72	(D)	0.28

https://www.freshersnow.com/previous-year-question-papers/

.37.

167.	From a group of 5 boys and 3 girls, three persons are chosen at random. Find the	171.	The area enclosed within the curve $ x + y = 1$ is
19	probability that there are more girls than	1	(A) √2 (B) 2
	boys		(C) 2√2 (D) 4
168.	(A) $\frac{2}{7}$ (B) $\frac{5}{8}$ (C) $\frac{4}{7}$ (D) $\frac{3}{8}$ If e and e' are the eccentricities of a hyperbola and its conjugate, then $\frac{1}{e^2} + \frac{1}{(e')^2}$ is equal to	24.75	The distance s moved by a particle in time t is given by $s = t^3 - 6t^2 - 15t + 12$. The velocity of the particle when the acceleration becomes zero is (A) 15 (B) -27 (C) $\frac{6}{5}$ (D) none of these
	(A) 2 (B) 3 (C) 4 (D) 1	173.	The value of $\lim_{x\to 0} \left(\frac{e^{2x} - 1}{\sin(4x)} \right)$ is equal to
169.	log tan1° + log tan2° + +log tan 89° is equal to (A) 1 .	aria	(A) 0 (B) 0.5 (C) 1 (D) 2
	(B) 0 (C) tan 1° (D) tan 89°		If α , β , γ are the angles that a line makes with positive direction of x, y, z axis respectively, then the direction cosines
170.	If $\int_{0}^{\infty} \frac{x^{2} dx}{(x^{2} + a^{2})(x^{2} + b^{2})(x^{2} + c^{2})} = \frac{\pi}{2(a + b)(b + c)(c + a)}$, then the value of		of the line are (A) $\sin \alpha$, $\sin \beta$, $\sin \gamma$ (B) $\cos \alpha$, $\cos \beta$, $\cos \gamma$ (C) $\tan \alpha$, $\tan \beta$, $\tan \gamma$ (D) $\sin^2 \alpha$, $\cos^2 \alpha$, $\cos^2 \alpha$
	$\int_{0}^{\infty} \frac{dx}{(x^{2}+4)(x^{2}+9)} \text{ is}$ (A) $\frac{\pi}{60}$ (B) $\frac{\pi}{20}$	175.	(D) $\cos^2 \alpha$, $\cos^2 \beta$, $\cos^2 \gamma$ The distance of a point P(a, b, c) from x-axis is
	(A) $\frac{\pi}{60}$ (B) $\frac{\pi}{20}$ (C) $\frac{\pi}{40}$ (D) $\frac{\pi}{80}$		(A) $\sqrt{a^2 + c^2}$ (B) $\sqrt{a^2 + b^2}$ (C) $\sqrt{b^2 + c^2}$ (D) $b^2 + c^2$
A+	-36		

167. 5 लडके और 3 लडकियों के एक समूह से तीन 171. |x| + |y| = 1 वक्र अधीन व्यापित क्षेत्र है लोगों को यादच्छिक चुना जाता है। ऐसी संभाव्यता पता कीजिए जिसमें लड़कों से अधिक लड़कियाँ हो (C) 2√2 (A) $\frac{2}{7}$ (B) $\frac{5}{8}$ (C) $\frac{4}{7}$ (D) $\frac{3}{8}$ (A) 15 168. यदि e और e' यह एक अतिपरवलय की उत्केन्द्रता और संयुग्मी है, तो $\frac{1}{e^2} + \frac{1}{(e')^2}$ इसके बराबर है (A) 2 (B) 3 (C) 4 (D) 1 log tan1° + log tan 2° + . . . +log tan 89° 169. (C) 1 इसके बराजर है (A) 1 (B) 0 (C) tan 1° (D) tan 89° विशा कोरिज्य है 170. \overline{u} $\operatorname{de} \int_{0}^{\infty} \frac{x^2 \, dx}{(x^2 + a^2) (x^2 + b^2) (x^2 + c^2)} =$ <u>π</u> 2(a+b) (b+c) (c+a) है, तो $\int_{0}^{\infty} \frac{dx}{(x^{2}+4)(x^{2}+9)}$ का मान है 175. x अक्ष से P(a, b, c) बिन्दु की दूरी है (A) $\frac{\pi}{60}$ (B) $\frac{\pi}{20}$ (D) $\frac{\pi}{80}$ (C) $\frac{\pi}{40}$

JDD-75/PGT-MATH/ TIER-II/X-15

(A) √2 (B) 2 (D) 4 172. एक कण द्वारा t समय में पार की गई दुरी s इस प्रकार दिखाते है : s = t³ - 6t² - 15t + 12 उस कण का वेग, जब प्रवेग शुन्य होता है तब है (B) -27 (C) ⁶/₅ (D) इनमें से कोई नहीं 173. lim _{x→0} $\left(\frac{e^{2x} - 1}{\sin(4x)} \right)$ का मूल्य इसके बराबर है (A) 0 (B) 0.5 (D) 2 174. यदि x, y, z अक्षों के धनात्मक दिशा में क्रमश: एक रेखा α, β, γ कोण बनाती है, तो उस रेखा की (A) $\sin\alpha$, $\sin\beta$, $\sin\gamma$ (B) cosα, cosβ, cosγ (C) tanα, tanβ, tanγ

(D) $\cos^2 \alpha$, $\cos^2 \beta$, $\cos^2 \gamma$

(A) $\sqrt{a^2 + c^2}$ (B) $\sqrt{a^2 + b^2}$ (C) $\sqrt{b^2 + c^2}$ (D) $b^2 + c^2$

A*

-39

176. The solution of the differential equation $x\frac{dy}{dx} + 2y = x^2$ is (A) $y = \frac{x^2 + c}{4x^2}$ (B) $y = \frac{x^2}{4} + c$ (C) $y = \frac{x^4 + c}{x^2}$ 181. (D) $y = \frac{x^4 + c}{4x^2}$ 177. The value of the integral $\int \frac{x^3 + |x| + 1}{x^2 + 2|x| + 1} dx$ is equal to (B) 2 log 2 (A) log 2 (C) $\frac{1}{2} \log 2$ (D) $4 \log 2$ 182. 178. The two curves $x^3 - 3xy^2 + 2 = 0$ and $3x^2y - y^3 = 2$ are (A) touch each other (B) cut at right angle (C) cut at an angle $\frac{\pi}{4}$ (D) none of these 179. The value of x for which the points (x, -1), (2, 1) and (4, 5) are collinear is (A) -1 (B) 2 (C) 1 (D) 0

180. In a class of 60 students, 25 students play cricket and 20 students play tennis and 10 students play both the games. then the number of students who play neither is

(A)	45	(B)	0
(C)	25	(D)	35

The line $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ is parallel to the plane

- (A) 2x + 3y + 4z = 0
- (B) 2x + y 2z = 0
- (C) 3x + 4y + 5z = 7
- (D) x + y + z = 2
- The angle between two diagonals of a cube is
 - (A) $\cos^{-1}(\frac{1}{3})$ (B) 30°
 - (C) $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$ (D) 45°
- 183. Lines $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-3}{-k}$ and $\frac{x-1}{k} = \frac{y-4}{2} = \frac{z-5}{1}$ are coplanar if (A) k=2 (B) k=0 (C) k=3 (D) k = -1

Δ*

See.

41-

A+

- 184. A box contains 100 bulbs, out of which 10 are defective. A sample of 5 bulbs is drawn. The probability that none is defective is
 - (A) $\frac{9}{10}$ (B) $\left(\frac{1}{10}\right)^5$ (C) $\left(\frac{9}{10}\right)^5$ (D) $\left(\frac{1}{2}\right)^5$
- 185.

 If the coefficient of variation and standard deviation are 60 and 21 respectively, the arithmetic mean of distribution is

(A)	60	(8)	30	
(C)	35	(D)	21	

186. The area of the circle having its centre at (3, 4) and touching the line 5x + 2y - 11 = 0 is

- (A) 16 π sq. units
- (B) 4π sq. units
- (C) 12π sq. units
- (D) 25π sq. units

187. The slope of the normal to the curve $y = x^2 + 3x + 2$ at the point (-2, 0) is (A) -1 (B) 1

- (C) $\frac{1}{2}$ (D) $\frac{-1}{2}$
- 188. The value of $\lim_{x \to 0} \frac{\sqrt{1+x^2} \sqrt{1-x^2}}{x}$ is equal to
 - (A) 0 (B) $\frac{1}{2}$

(C) 2 (D) none of these

- 189. The value of the intergral $\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{\sin x + \cos x} dx \text{ is}$ (A) $\frac{1}{2}$ (B) $\frac{\pi}{2}$ (C) $\frac{1}{4}$ (D) $\frac{\pi}{4}$ (B) $\frac{\pi}{2}$
- 190. If the circles $x^2 + y^2 + 2x y 2 = 0$ and $x^2 + y^2 - x + 4y + k = 0$ cut orthogonally, then k is equal to
 - (A) -2
 - (B) -3
 - (C) -1
 - (D) none of these

191. The value of the integral

- $\int_{0}^{1} \frac{(\sin^{-1}x)^{2}}{\sqrt{1-x^{2}}} dx \text{ is}$
- (A) $\frac{\pi^3}{24}$ (B) $\frac{\pi^2}{24}$ (C) $\frac{\pi^3}{12}$ (D) $\frac{\pi^2}{12}$
- is 192. If $y = 3^x$, then $\frac{d^2y}{dx^2}$ is (A) $x(x - 1) 3^{x-2}$
 - (B) 1 (C) log 3

 - (D) y(log3)2

A*

JDD-75/PGT-MATH/ TIER-II/X-15 184. एक बक्से में 100 बल्ब हैं और उसमें से 10 दोषपूर्ण 189. $\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{\sin x + \cos x} \, dx \quad \text{set } \Psi \psi \quad \text{trivere and }$ 🖁 । 5 बल्बों का नमूना लिया गया । उनमें से कोई भी दोषपूर्ण न होने की संभाव्यता है मल्य है (A) $\frac{9}{10}$ (B) $\left(\frac{1}{10}\right)^5$ (A) $\frac{1}{2}$ (B) $\frac{\pi}{2}$ (C) $\left(\frac{9}{10}\right)^5$ (D) $\left(\frac{1}{2}\right)^6$ (C) $\frac{1}{4}$ (D) $\frac{\pi}{4}$ 190. यदि x² + y² + 2x - y - 2 = 0 और यदि विचलन गुणांक और मान विचलन क्रमश: 60 185. $x^{2} + y^{2} - x + 4y + k = 0$ यह दो वृत्त और 21 है, तो बंटन का योगात्मक माध्य है लम्बकोणीय कटते है, तो k इसके बराबर है (A) 60 (B) 30 (A) -2 (C) 35 (D) 21 (B) -3 186. (3, 4) केन्द्रवाला वृत्त और जो 5x + 2y - 11 = 0 (C) -1 रेखा को छूता है, उसका क्षेत्रफल है (D) इनमें से कोई नहीं (A) 16π sq. एकक (B) 4π sq. एकक $\int_{0}^{1} \frac{(\sin^{-1}x)^2}{\sqrt{1-x^2}} dx$ इस पूर्णसांख्यिक का मूल्य है 191. (C) 12π sq. एकक (D) 25π sq. एकक (A) $\frac{\pi^3}{24}$ (B) $\frac{\pi^2}{24}$ 187. (-2, 0) बिन्दु पर सामान्य से y = x² + 3x + 2 वक्र (C) $\frac{\pi^3}{12}$ (D) $\frac{\pi^2}{12}$ तक की ढलान है (A) -1 (B) 1 (C) $\frac{1}{2}$ (D) $\frac{-1}{2}$ 192. यदि y = 3^{x} है, तो $\frac{d^{2}y}{dx^{2}}$ है $\lim_{x\to 0} \frac{\sqrt{1+x^2} - \sqrt{1-x^2}}{x}$ का मूल्य इसके इतना है (A) x(x − 1) 3^{x − 2} 188. (B) 1 (A) 0 (B) $\frac{1}{2}$ (C) log 3 (C) 2 (D) इनमें से कोई नहीं (D) y(log 3)2 A+

(See

A+

197. The points of discontinuity of the function 193. If sin $(x + y) = \log (x + y)$, then $\frac{dy}{dx}$ is $f(x) = \frac{1}{\log |x|}$ is equal to (A) 1 (A) 2 (B) -1 (B) 1 (C) 2 (C) 4 (D) -2 (D) 3 If every element of a group G is its own 194. inverse, then G is 198. The function $f(x) = \frac{x - |x|}{x}$ is (A) finite (B) infinite (A) continuous everywhere (C) cyclic (B) discontinuous for all x (D) abelian (C) continuous for all x except x = 0 195. In an arithmetic progression sum of (D) continuous for all x except x = 1 terms, equidistant from the beginning and the end is equal to The value of $\lim_{x\to 0} \frac{3\sin^2 x - 2\sin^2 x}{3x^2}$ (A) last term 199. (B) first term (A) $\frac{1}{3}$ (C) second term (D) sum of the first and last term (B) 0 (C) The radius of convergence R of the 196. (D) none of these power series $\sum_{n=0}^{\infty} \frac{(-3)^n x^n}{\sqrt{n+1}}$ is 200. The square matrix A is orthogonal, then (A) $\frac{1}{3}$ determinant of A is (A) ±1 (B) $\frac{2}{3}$ (B) 0 (C) 1 (C) ±2 (D) none of these (D) none of these

JDD-75/PGT-MATH/ TIER-II/X-15

ź

	The same billion of			
193.	यदि sin $(x + y) = \log (x + y)$ है, तो $\frac{dy}{dx}$ इसके	197.	फलन $f(x) = \frac{1}{\log x }$ में असंगति के बिन्दु	है
	बराबर है		(A) 2	
	(A) 1		(B) 1	
	(B) -1 (C) 2		(C) 4	
	(D) 1-2		(D) 3	
194.	यदि G समूह का हर घटक उसका अपना ही प्रतिलोमी है, तो G है (A) परिमित (B) अनंत (C) चक्रीया	198.	× (A) हरजगह निरंतर (B) सभी x के लिए असंगत	
195.	(D) अबेलियन समांतर श्रेढ़ी में शुरुआत और अन्त से समान दूरी		(C) सभी x के लिए निरंतर सिवाय x = 0 वे (D) सभी x के लिए निरंतर सिवाय x = 1 वे	
	पर रहनेवाले पदों का जोड़ इसके बराबर होता है (A) आखिरी पद	199.	lim _{x→0} $\frac{3 \sin^2 x - 2 \sin^2 x}{3 x^2}$ का मूल्य है	5-
1	(B) पहला पद (C) दूसरा पद (D) पहले और आखिरी पद का जोड	×	(A) $\frac{1}{3}$ (B) 0	
196	∑ [∞] (−3) ⁿ x ⁿ _{n=0} √n+1 इस पावर श्रृंखला का अभिसरण R की त्रिज्या है	200.	 (C) 1 (D) इनमें से कोई नहीं यदि वर्ग मैट्रिक्स A लम्बकोणीय है, तो निर्धारक है 	A का
	(A) $\frac{1}{3}$		(A) ±1	
	(B) ² / ₃		(B) 0 (C) ±2	
	(C) 1 (D) इनमें से कोई नहीं		(D) इनमें से कोई नहीं	
A*		45-		

A,

197. The points of discontinuity of the function 193. If sin $(x + y) = \log (x + y)$, then $\frac{dy}{dx}$ is $f(x) = \frac{1}{\log |x|}$ is equal to (A) 1 (A) 2 (B) -1 (B) 1 (C) 2 (C) 4 (D) -2 (D) 3 If every element of a group G is its own 194. inverse, then G is The function $f(x) = \frac{x - |x|}{x}$ is 198. (A) finite (B) infinite (A) continuous everywhere (C) cyclic (B) discontinuous for all x (D) abelian (C) continuous for all x except x = 0 In an arithmetic progression sum of 195. (D) continuous for all x except x = 1 terms, equidistant from the beginning and the end is equal to The value of $\lim_{x\to 0} \frac{3\sin^2 x - 2\sin^2 x}{2x^2}$ (A) last term 199. (B) first term (C) second term (A) $\frac{1}{3}$ (D) sum of the first and last term (B) 0 (C) 1 The radius of convergence R of the 196. (D) none of these power series $\sum_{n=0}^{\infty} \frac{(-3)^n x^n}{\sqrt{n+1}}$ is 200. The square matrix A is orthogonal, then determinant of A is (A) (A) ±1 (B) (B) 0 (C) (C) ±2 (D) none of these (D) none of these

A٠

44-

IMPORTANT INSTRUCTIONS TO CANDIDATES उम्मीदवारों के लिए महत्त्वपूर्ण अनुदेश

- 11. This Booklet contains 48 pages.
- Please check all the pages of the Booklet carefully. In case of any defect, please ask the invigilator for replacement of the Booklet.
- 13. Directions : Each question or incomplete statement is followed by four alternative suggested answers or completions. In each case, you are required to select the one that correctly answers the question or completes the statement and blacken (**(b)** appropriate circle A, B, C or D by Blue/Black Ball-Point Pen against the question concerned in the Answer-Sheet. (For V.H. candidates corresponding circle will be blackened by the scribe)
- Mark your answer by shading the appropriate circle against each question. The circle should be shaded completely without leaving any space. The correct method of shading is given below.

8.8.9.9.9.9.9.9.9	Wrong Method	Correct Metzod
-------------------	--------------	----------------

The Candidate must mark his/her response after careful consideration.

- 15. There is only one correct answer to each question. You should blacken (*) the circle of the appropriate column, viz., A, B, C or D. If you blacken (*) more than one circle against any one question, the answer will be treated as wrong. If you wish to cancel any answer, you should completely erase that black mark in the circle in the Answer-Sheet and then blacken the circle of revised response.
- A machine will read the coded information in the OMR Answer-Sheet. In case the information is incomplete/different from the information given in the application form, the candidature of such candidate will be treated as cancelled.
- Use the space for rough work given in the Question Bocklet only and not on the Answer-Sheet.
- You are NOT required to mark your answers in this Booklet. All answers must be indicated in the Answer-Sheet only.

- 11. इस पुस्तिका में 48 पेज है ।
- इस पुस्तिका के सभी पृष्ठों का ध्यानपूर्वक निरीक्षण करें । यदि बोई दोष है, तो निरीक्षक को उसे बदलने के लिए कहें ।
- 13. निर्देश : प्रायेक प्रश्न अधवा प्रत्येक अधूरे कधन के बाद चार उत्तर अधवा पूरक कथन सुझाये गये हैं । प्रत्येक दशा में आपको किसी एक को चुनना है बो प्रश्न का सही उत्तर दें अथवा कथन को पूरा करें और आपको उत्तर-पत्रिका में उपयुक्त गोलाकार खाने A, B, C या D को नीला या काला बॉल-पॉइन्ट पेन से काला (•) करना है । (दृष्टिबाधित उम्मीदवारों के लिए संगत गोलाकार लिपिक द्वारा काला किया जाए)
- 14. प्रत्येक प्रश्न के सामने उचित वृत्त का चिन्हांकन करके अपना उत्तर लिखें । वृत्त को बिना कोई स्थान छोड़े चिन्हांकित करें । चिन्हांकित करने का सही तरीका नीचे दिया गया है ।

यलव तरिका	सलत तरीका	रालत करीका	सही तरीका
00000	0000	गलना करीका 🔿 🖲 🔿 🔿	0000

अभ्यर्थी को अपना उत्तर ध्यानपूर्वक सोच विचार के उपरान्त चिन्हित करना चाहिए ।

- 15. प्रत्येक प्रश्न का केवल एक ही सही उसर है । आपको समुचित कॉलम अर्थात् A, B, C या D के गंगेलाकार खाने को काला (•) करना है । यदि आप किसी प्रश्न के सामने एक से अधिक गोलाकार खाने को भरेंगे (•) तो आपका उत्तर गलत माना जायेगा । यदि आप किसी उत्तर को रद्द करना चाहते हैं तो आप उत्तर-पुस्तिका के उस गोलाकार खाने से काले निशान को पूरी तरह से मिटा दें और तब बदले हुए उत्तर के लिए गोलाकार खाने को काला कर दें ।
- 16. ओ.एम.आर. उत्तर-पत्रिका में भरी गई कूट सूचना को एक मशीन पढेगी । यदि सूचना अपूर्ण है अथवा आवेदन पत्र में दी गई सूचना से भिन्न है, तो ऐसे अभ्यर्थी की अभ्यर्थिता निरस्त समझी आयेगी ।
- कच्चे कार्य के लिए केवल प्रश्न पत्र में दिए गये स्थान का प्रयोग करें 1 उत्तर-पुस्तिका पर कच्चा कार्य न करें 1
- इस पुस्तिका के अन्दर आपको उत्तर अंकित नहीं करने हैं । उत्तर केवल उत्तर-पत्रिका में ही दें ।

Go through instructions given in Page No. 3 (Facing Page)

-48-

SEAL

A*

DO NOT OPEN THE SEAL OF THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO

POST CODE / पोस्ट कोड : 141/12, 142/12, 181/14, 182/14

QUESTION-CUM ANSWER BOOKLET

प्रश्न-उत्तर पुस्तिका

JDD-75/PGT-MATH/ TIER-II/X-15

DESCRIPTIVE TIER – II/ वर्णनात्मक टियर – II MAIN EXAMINATION/ मुख्य परीक्षा

Time Allowed : 1 Hour निर्धारित समय : 1 घण्टा

Maximum Marks : 50 अधिकतम अंक : 50

IMPORTANT INSTRUCTIONS TO CANDIDATES उम्मीदवारों के लिए महत्त्वपूर्ण अनुदेश

 Before making any entry on Question Paper and QAB candidate should count and check the no. of pages and if any discrepancy is seen then Invigilator should be informed immediately for another copy of Question Paper/QAB.

प्रश्न-पत्र तथा QAB में किसी भी प्रकार की प्रविष्टि करने के पूर्व अभ्यर्थियों को कुल पृष्ठ संख्या की जाँच अवश्य कर लेनी चाहिए तथा किसी भी प्रकार की विसंगति होने पर वीक्षक को सूचित कर प्रश्न-पत्र QAB की दूसरी प्रति प्राप्त करना चाहिए ।

Answer of every question is expected at specified space. The answer will not be checked if there is change in place of question or answer.

प्रत्येक प्रश्न का निर्धारित जगह पर उत्तर अपेक्षित है । प्रश्न या उत्तर के स्थान परिवर्तन होने पर उत्तर की आँच नहीं की जाएगी ।

3. It is mandatory to strictly follow the instructions by the candidates.

दिए गए निर्देशों का कड़ाई से पालन करना प्रत्येक अभ्यर्थी के लिए अनिवार्य है।

इस पुस्तिका की सील तब तक न खोलें जब तक कहा न जाए

i) Essay (In English)

I. Write an essay on any one of the topics given below :

30 Marks

a) A World without oil.

CIT A T

RO

b) Teenagers today are more worldly wise than their parents.

QR

c) It is better to be lucky than talented.

2

ii) Letter writting / Expansion of Ideas (In English)

II. Answer any one of the following :

20 Marks

a) Write a letter to the Chief Minister of your state drawing his attention to the urgent need for a Government Hospital in your district.

OR

b) "An idle mind is a devil's workshop" - Expand.

OR

c) You wish to become a journalist while your parents want you to become a doctor. Write a letter to your mother giving reasons why you should be allowed to pursue your ambition.

-8-

INSTRUCTIONS TO CANDIDATES

- 1. Time Allowed : Descriptive Type Examination : 1 Hour Total : 1 Hour
- Please check all the pages of the Question-Cum Answer Booklet with OMR facing sheet. In case of any defect, please ask the Invigilator for replacement of the Booklet. In case of any discrepancy between the English and Hindi versions of any Question, the English version will be treated as final/authentic.
- You must not tear off or remove any sheet from this Booklet. This Booklet must be handed over to the Invigilator before you leave the Examination Hall.
- This Booklet consists of Descriptive Examination – 2 questions of 50 marks. Limit your answer to the space provided in this Booklet. No additional sheet will be provided.
- Answer the Questions as carefully as you, can. Some Questions may be difficult and others easy. Do not spend much time on any Question.
- Use of Calculator/Palmtop/Laptop/Other Digital Instrument/Mobile/Cell Phone/ Pager is NOT allowed.
- Candidates found guilty of misconduct/ using unfair means in the Examination Hall will be liable for appropriate penal/ legal action.
- You should not write your roll number, name or address in the space provided for writing answer. In case of letter writing name and address should be written as "abc", 'xyz" etc.

अभ्यशियों के लिए अनुदेश

1. निर्धारित समय :

वर्णनात्मक परीक्षा : 1 घण्टा कुल : 1 घण्टा

- इस प्रश्न-उत्तर पुस्तिका और ओ.एम.आर. मुँहा पत्रिका के सभी पृष्ठों का ध्यानपूर्वक निरीक्षण करें। यदि कोई दोष है, तो निरीक्षक को उसे बदलने के लिए कहें। यदि किसी प्रश्न के हिन्दी तथा अंग्रेजी अनुवाद में कोई अंतर है, तो अंग्रेजी अनुवाद को ही सही समझा जाएगा।
- इस पुस्तिका से कोई पत्ना फाइना या अलग करना मना है। परीक्षा-भवन छोड़ने से पहले यह पुस्तिका निरीक्षक के हवाले कर दें।
- इस पुस्तिका में 50 अंकों का वर्णनात्मक परीक्षा 2 प्रश्न सम्मिलित किए गए हैं। अपने उत्तर को इस पुस्तिका में दिए गए निर्दिष्ट स्थान तक ही सौमित रखें। कोई अतिरिक्त पृष्ठ नहीं दिया जाएगा।
- प्रश्नों के उत्तर यथेष्ट रूप से ध्यानपूर्वक दें। कुछ प्रश्न आसान तथा कुछ कठिन हो सकते हैं। किसी एक प्रश्न पर बहुत समय न लगाएँ।
- कैलकुलेटर/पामटॉप/लैपटॉप/अन्य डिजिटल उपकरण/मोबाइल/सेल फोन/पेजर का उपयोग वर्जित है।
- परीक्षा-भवन में अनुचित व्यवहार एवं कार्य के लिए दोषी पाये गये अभ्यर्थी युक्तिसंगत दण्डनीय/वैधानिक कारवाई के पात्र होंगे ।
- आपको उत्तर लिखने के लिए दिए गए स्थान पर नाम या पता तथा अपना रोल नम्बर नहीं लिखना चाहिए । पत्र लेखन में दिए गए नाम व पता लिखने के स्थान पर "abc", 'xyz" लिखें ।

-12-