130/2015

Maximum: 100 marks

Time: 1 hour and 15 minutes

1	Ctainless	steel is an alloy of which among th	e following	₇ ?
1.	(A)	chromium, nickel and iron	(B)	manganese, copper and iron
	(C)	copper, carbon and iron	(D)	copper, tin and zinc
	(0)	copper, ourself and from		
2.	What is d	etermined by conducting an abrasi	ion test?	
	(A)	aggregate crushing value	(B)	toughness
	(C)	hardness	(D)	soundness
3.	On which	of the following, the support for fl	at slab is p	rovide?
	(A)	beams built monolithically above		
	(B)	columns built monolithically with	h slab	
	(C)	beams		
	(D)	walls		
4.	What is t	he width of Broad Gauge?		
	(A)	1.575 m	(B)	1.565 m
	(C)	1.576 m	(D)	1.676 m
5.	Among w	hich of the following conditions a ch equal to that of flange?	T-beam be	comes identical to a rectangular beam
	(A)	neutral axis remains within web		
	(B)	neutral axis remains within flan		
	(C)	neutral axis coinsides with geom	etrical cen	tre of beam
	(D)	에서 마음하다 없는 가입니다. () 말라면 하셨습니다. 보고 보이지 않는데, 보고 보고 있다면 하는데 보다 되었습니다.		
6.	Which an	nong the following is a step used fo	or changing	the direction of a stair?
	(A)	flight	(B)	nosing
	(C)	landing	(D)	winder
7.	By which	of the following tests, fineness of	cement car	be determined?
	(A)	permeability test	(B)	(B. 1. 1) - [
	(C)	vicat apparatus test	(D)	compression test
8.	Among the	he following, in which type of cana	al, flow occ	urs only when there is a rise of flow in
	(A)	inundation canal	(B)	contour canal
	(C)	ridge canal	(D)	side slope canal

9.		defined as the ratio of volume das percentage?	of air voids	to the total volume of soil mass and is
	(A)	void ratio	(B)	porosity
	(C)	percentage air voids	(D)	air content
10.	What is t	he side slope of a Cipoletti weir	?	
	(A)		(B)	2 horizontal to 1 vertical
	(C)	4 horizontal to 1 vertical	(D)	1 horizontal to 4 vertical
11.	How the t	temporary hardness of water is	removed?	
	(A)	by boiling	(B)	by lime soda process
	(C)	by zeolite process	(D)	by aeration
12.	In which	of the following types of concret	e beam section	on, failure will occur all on a sudden?
	(A)	singly reinforced beam	(B)	under reinforced section
	(C)	balanced section	(D)	over reinforced section
13.	In which	condition a doubly reinforced be	am is used?	
	(A)	when extra safety is needed		to the first of the second
	(B)	when depth and breadth of be		e restricted in size
	(C)	when large moment is expecte	d	
	(D)	when depth is more than 1 m		
14.	In a water	r supply scheme, for what purpo	se aeration i	s carried out?
	(A)	to remove taste and odour		
	(B)	for complete elimination of col	loidal matter	
	(C)	for killing pathogenic bacteria		
	(D)	for coagulation		
15.		ne disadvantage of centrifugal p	ump compare	ed with reciprocating pump?
		priming required		pulsatory flow
	(C)	low speed	(D)	difficult to handle viscous fluid
16.	What is k	known as the force per unit as unger of 50 mm diameter at a r	rea required ate of 1.25 m	to penetrate into a soil mass with a m/minute?
	(A)	bearing capacity	(B)	modulus of rupture
	(C)	CBR	(D)	aggregate crushing value
17.	What is flo	oor area ratio?		
	(A)	ratio of total floor area on all fl		ı area
	(B)	ratio of plinth area to plot area		
	(C)	ratio of ground floor area to plo		
	(D)	ratio of total floor area on all fl	oors to plot a	rea

18.	What is a	izimuth?		
	(A)	arbitrary meridian	(B)	true meridian
	(C)	magnetic meridian	(D)	none of these
19.		l be the hydraulic mean depth for a moof width B and depth D?	ost eco	onomical rectangular section of an open
	(A)	D/2	(B)	2D
		BD^2		BD^3
	(C)	$\frac{BD^2}{6}$	(D)	$\frac{BD^3}{12}$
20.	At any po	oint on the magnetic equator what will	be the	angle of dip?
	(A)	100°	(B)	0°
	(C)	90°	(D)	180°
21.	What is t	he area of building, excluding the area	occup	ied by walls?
	(A)	net area	(B)	plinth area
	(C)	carpet area	(D)	floor area
22.	In the cas	se of open channel flow if the flow is lar	ninar,	which of the following is correct?
	(A)	Reynolds number < 500		Reynolds number > 500
	(C)	Reynolds number < 2000	(D)	Reynolds number > 4000
23.			f a tur	bine to the power delivered by water to
	the runne		(D)	arranall officionar
	(A)	사람들이 보면 살아야 한다면 하는 일반 하나면 얼마나 있었다. 그 사람들은 사람들은 사람들이 되었다면 하는데 이 없었다.	(B)	overall efficiency
	(C)	mechanical efficiency	(D)	hydraulic efficiency
24.	What is n	neant by cambium layer of an exogeneo		e?
	(A)	layer between inner bark and sap wo	od	
	(B)	outermost layer of the tree		
	(C)	zone of inner rings surround the pith		
	(D)	layer between pith and heart wood		
25.	What is t	he difference between two measured va	alues c	
	(A)	variation	(B)	경기 전에 마르게 배추 경기하다 가는 가는 게 되었다. 하나 사람들은 사람들은 사이 가게 되었다.
	(C)	intentional error	(D)	balancing error
26.	1 m. The	pile is being driven with a drop ham, penetration in the last blow is 5 mm. to the Engineering News formula:	mer w Deter	eighing 18 kN and having a free fall of mine the load carrying capacity of pile
		100 kN	(B)	90 kN
	(A)	110 kN	(D)	180 kN
	(C)	IIU KIN	(1)	100 1111

27.	15 m/s. It	vater, of cross sectional area f the plate is moving with a ve is the force exerted by the jet	elocity of 5 m/s	es a flat plate normally with a velocity in the direction of jet and away from	y c	
	(A)*	250 N	(B)	0.50 N		
	(C)	500 N	(D)	0.25 N		
28.	Dry dens	ity of which sample is expecte	ed to be high?			
	(A)	organic clay	(B)	dense sand		
	(C)	bentonite	(D)	stiff clay		
29.				med by a plane through the observe		
	(A)	observor's meridian	(B)	ecliptic		
	(C)	hour circle	(D)	horizon		
30.				of sheet pile walls, usually tempora	ry	
			rpose of exclud	ing water during construction?		
	(A)	cofferdam	(B)	bulkhead		
	(C)	penstock	(D)	box caisson		
31.	What is n	neant by Froude's number?				
	(A)	ratio of inertia force and vis	scous force			
	(B)	ratio of square root of inerti	a force and pre	ssure force		
	(C)	ratio of square root of inerti	a force and gra	vity force		
	(D)	ratio of inertia force and pre	essure force			
32.	Among which of the following conditions, Darcy's Law is not applicable to seepage of soils?					
	(A) soil is homogeneous					
	(B)	the flow conditions are turb	ulant in soil			
	(C)	the soil is incompressible ur	nder stress			
	(D)	the soil is isotropic				
33.	Which of	the following is a field test?				
	(A)	vane shear test	(B)	direct shear test		
	(C)	triaxial compression test	(D)	unconfined compression test .		
34.	For what	type of soil unconfined compr	ession test is g	enerally applicable?		
	(A)	saturated clay	(B)	sand		
	(C)	silt	(D)	poorly graded sandy silt		

				그렇게 그 생물이 되었다. 그 아이트 그 아들은 그렇게 되었다. 그 아이들은 아이들은 아이들은 아이들은 사람들은		
35.	If C_d = coefficient of discharge, C_v = coefficient of velocity and C_c = coefficient of contraction, then which of the following statement is correct?					
		$C_c = C_d \times C_v$		$C_v = C_c \times C_d$		
	(C)	$C_d = C_v \times C_c$	(D)	None of these		
36.	Which of	the following will have a plasticity in	dex 20?			
	(A)	sand	(B)	clay		
	(C)	silt	(D)	compacted sand		
37.		protective barrier constructed to end bed by the effect of heavy and strong s		rbours, and to keep the harbour waters		
	(A)	entrance lock	(B)	dock		
	(C)	shaft	(D)	break water		
38.				ea of cross section 1 m ² which is placed be plate is 1 m below the free surface of		
	(A)	981 N	(B)	9.81 N		
	(C)	9810 N	(D)	98.1 N		
39.	Among which of the following tests conducted for measurement of shear strength of soil, no excess pore pressure is set up at any stage of the test?					
	(A)	drained test	(B)	undrained test		
	(C)	consolidated undrained test	(D)	quick test		
40.	Which of terminal		er of a	sphere which will settle at a specific		
	(A)	Darcy's Law	(B)	Stoke's Law		
	(C)	Hooke's Law	(D)	Gay – Lussac's Law		
41.	What is n	neant by optimum water content?				
	(A) water content corresponding to maximum dry density					
	(B)	water content corresponding to zero	air voi	ds		
	(C)	water content corresponding to min	imum d	ry density		
	(D)	water content corresponding to field	densit	y		
42.		ne function of a fish plate?				
	(A)	for fixing rails to sleepers	(B)	for fastening chairs to sleepers		
	(C)	for fixing wooden sleepers to rail	(D)	to hold two rails together		
43.		ong the following is pressure on a flu		물건지 그 가장 되고 있습니다. 그는 사람들 집에 되는 것이 되었습니다. 그 나는 사람들이 모르는 것이 없는 사람들이 되었습니다.		
	(A)	absolute pressure	(B)	gauge pressure		
ti.	(C)	vacuum pressure	(D)	none of these		

44.	Which of	the following is the uni	t of coefficient of	cons	solidation?
	(A)	cm ² /sec		(B)	cm/sec
	(C)	m²/kN		(D)	none of these
45.		d a point load of 2 kN a			d of 3 kN at a distance of 2 m from left om left end A. What will be the support
	(A)	3 kN			2.5 kN
	(C)	2 kN		(D)	$\frac{19}{7}$ kN
46.		h a value of k (coefficien assified as :	nt of permeabilit	y) ra	nging from 10 ⁻⁵ mm/sec to 10 ⁻³ mm/sec
	(A)	pervious		(B)	semi pervious
	(C)	impervious		(D)	aquiclude
47.	Which of	the following soil sampl	es will have grai	ns of	f almost same particle size?
	(A)	well graded		(B).	good graded
	(C)	gap graded		(D)	poorly graded
48.		nong the following is thue to a given unit increa		char	nge in volume of soil per unit of initial
	(A)	coefficient of volume c	hange	(B)	coefficient of compressibility
	(C)	coefficient of settlemen	nt	(D)	swelling index
49.	Which of	the following values, the	e voids ratio in so	oil ca	n have theoretically?
	(A)	< 1 only		(B)	can be less than or more than 1
	(C)	> 1 only		(D)	< 0.5
50.	For what	purpose stiffeners are u	sed in a plate gir	der?	
	(A)	to connect the flange p	lates to the web		
	(B)	to provide web splice			
	(C)	to prevent buckling of	web		
	(D)	to provide splice for fla	ange plates and c	over	plates
51.	greater th				been subjected to an effective pressure is also completely consolidated by the
	(A)	normally consolidated	soil	(B)	pre - consolidated soil
	(C)	under – consolidated s	oil	(D)	over consolidated soil
120/	2015		9		

52.	By which	simple equation th	ne hydrologic cy	cle may be	expressed?	
	(A)	Precipitation = E				
	(B)	Evaporation = Pr				
	(C)	Run off = Precipi				
	(D)					
	(D)	recipitation – E	vaporation + K	un on		
53.	Which ar	nong the following	is a functional	relation c	onnecting the value of specific gra-	vity
4	voids rati	io, water content ar				
	(A)	$w = \frac{eG}{}$		(B)	a = wG	
	(2.1)	$w = \frac{eG}{S_r}$ $S_r = \frac{ew}{G}$		(D)	$e = \frac{wG}{S_r}$ $G = \frac{ew}{S_r}$	
	(0)	g _ ew		(D)	c ew	
	(0)	$S_r = \overline{G}$		(D)	$G = \frac{1}{S}$	
54.	What is a	an impermeable for	mation which	contain wa	ter but are not capable of transmit	tin
		ing a sufficient qua				
	(A)	aguifer		(B)	aquifuge	
	(C)	perched aquifer		(D)	aquiclude	
55.	Coefficier	nt of permeability is	s inversely prop	ortional to	which of the following?	
	· (A)	viscosity		(B)	effective diameter	
	(C)	unit weight of wa	ter	(D)	void ratio	
		Andrew Visited Property				
56.	If an aud	itorium has a total	surface area of	plaster, fl	oor, curtains and seats equal to 160	m
	and volur	ne of auditorium is	5000 m³, what	t is time of	f reverberation in seconds accordin	g to
4.5	Sabin's ed	quation?				
	(A)	3.2 seconds		(B)	5.12 seconds	
	(C)	5 seconds		(D)	8 seconds	
					All Control of the Co	
57.				vity of soil	is the ratio of unit weight of solid	s to
		iter at a temperatu	re of:			
	(A)	4°C		(B)		
	(C)	17°C		(D)	36°C	
-0	1771	1.6	.1 1 6	1: 1		
58.					ce of undisturbed clay sample due	
					ssion strength in undisturbed state	e to
		moulded state, with	iout change in v			
	(A)	sensitivity			thixotropy	
	(C)	collapse potential		(D)	coefficient of structural collapse	
59.	Which am	ong the following i	s also known as	rolled stee	el joist?	
	(A)	rolled steel T sect		(B)	rolled steel channel section	
				Activities of the same		
	(C)	rolled steel I secti	OII	(D)	rolled steel angle section	

60.		which of the followin	is the load, γ is the ug is equal to total dep		
	(A)	$\frac{P}{\gamma} \left(\frac{1 + \sin \Phi}{1 - \sin \Phi} \right)$	(B)	$\frac{P}{\gamma} \left(\frac{1 - \sin \Phi}{1 + \sin \Phi} \right)$	
	(C)	$\frac{P}{\gamma} \left(\frac{1 - \sin \Phi}{1 + \sin \Phi} \right)^2$	(D)	$\frac{P}{\gamma} \left(\frac{1 + \sin \Phi}{1 - \sin \Phi} \right)^2$	
61.	Name the	e level surface to whi	ch the elevations are re	ferred :	
	(A)	bench mark	(B)		
	(C)	base line	(D)		
62.	For no te	ension developed in a	gravity dam, where th	ne resultant of all	forces on dam should
	(A)	at toe	(B)	near heel	
	(C)	at top	(D)		le third of the section
63.	frictionles (A) (C)	ss pulley. With what	and 4.3 kg are hung to acceleration the heavie (B) (D)	r mass comes down	assing over a smooth n?
64.			stic limit, $W_S = \text{shrink}$	age limit then whi	ch of the following is
	equal to p	plasticity index (I_P) ?			
	(A)	$W_L - W_P$	(B)	$W_P - W_L$	
	(C)	$W_L - W_S$	(D)	$W_P - W_S$	
65.	Among th	e following which eq	uipment is not used in o	chain survey?	our Petrological Con-
	(A)	ranging rod	(B)	offset rod	
	(C)	alidade	(D)	plumb bob	
66.	Name the	end supports of the	superstructure of a brid	ge:	计划 原数
	(A)	abutments .	(B)	piers	
	(C)	wing walls	(D)	deckings	
57.	A body wa	as thrown vertically o	down from a tower. Wh	at is the distance t 5.5 m/sec?	ravelled by the body
	(A)	25 m	(B)	60.60 m	
	(C)	60 m	(D)	30 m	

A		Í	1	130/2015 [P.T.O.]
	(C)	Arithmetic average method	(D)	None of these
	method th (A)	e area of the basin is not taken in Isohyetal method	to account' (B)	? Thiesson polygon method
75.				ge precipitation (or rainfall) in which
	(C)	reservoir	(D)	upstream side
	(A)	ayacut	(B)	catchment area
74.	Name the	area to be irrigated by a dam:		
	(0)	cares board	(D)	cicat
	(A) (C)	ridge piece eaves board	(B) (D)	wall plate cleat
	support pt (A)		(D)	wall plate
73.		점하는 그렇게 하면 하면 하는 사람들이 되었다면 하는 사람들이 되었다. 그리는 사람들이 되었다면 하다 되었다면	which are	fixed on principal rafter of trusses to
	(C)	time of concentration	(D)	recession time
		effective duration	(B)	basin lag
	the outlet	of a catchment?		
72.	What is ca	alled, the time in hours taken by	rainwater	that falls at the farthest point to reach
	(C)	128	(D)	16
	(0)	πD^4	(F))	πD^4
	(A)	$\frac{\pi D^4}{64}$ $\frac{\pi D^4}{128}$	(B)	$\frac{\pi D^4}{32}$ $\frac{\pi D^4}{16}$
11.				
71.	What is th	ne polar moment of inertial of a ci	rcle of dian	neter D?
	(C)	C_4AF	(D)	C_2S
		C_3S	(B)	C_3A
		es to the progressive strength of co		
70.				ydration of which among the following
	(1)	product of torque and radius of a	JILLIU	
	(D)	product of rigidity modulus and product of torque and radius of s		VISC
	(B) (C)	product of rigidity modulus and product of rigidity modulus and		네 보면서 얼마나 아이들이 나가 되었습니다. 이 집에 얼마나 되었다고 있다면 하는데 하는데 그리다는 사람이 되었다면 하다 되었다.
	(A)	product of rigidity modulus and		그래요 [1888] [1888] [1888] [1888] [1888] [1888] [1888] [1888] [1888] [1888] [1888] [1888] [1888] [1888] [1888] [1888]
69.		nong the following is torsional rigi		
	(A) (C)	Gallery Cross drainage work	(B) (D)	Cut off pile Sluice
	stream:	Callow	(D)	C-+ -66 - 1-
68.		e structure carrying discharge of	a natural	stream across a canal intercepting the

76.		00 m if the design speed is 100 km/ho		ge terms) required for a road curve of
	(4)	127	(D)	1000
	(A)	$\frac{127}{1000}$ %	(B)	127 %
	(C)	10%	(D)	$\frac{1000}{127}\%$ $\frac{10}{9.81}\%$
				3.01
77.	Which of	the following is not included in tempor	rary ac	ljustments of a dumpy level?
	(A)	setting up	(B)	levelling up
	(C)	elimination of parallax	(D)	centering
78.	Among th	e following which represents the irrig	ating c	apacity of a unit of water:
	(A)	water application efficiency	(B)	consumptive use efficiency
	(C)	duty	(D)	delta
79.	What is the	he maximum size of the particle of silt	?	
	(A)	0.02 mm	(B)	0.002 mm
	(C)	0.2 mm	(D)	0.06 mm
80.	Name the	well from which water flows automat	ically	under pressure :
	(A)	infiltration well	(B)	artesian well
	(C)	flowing well	(D)	tube well
81.	Which am	ong the following is the back bearing	of N30	∘È?
		E 30° N		N 150° E
		S 150° W	The second second	S 30° W
82.		ne following, by which method the for a given discharge?	efficie	ncy of a sedimentation tank can be
	(A)	by increasing the depth of the tank	(B)	by decreasing the depth of the tank
ai do		by increasing the area of the tank		
83.		ntilever beam of length L , what benefit equal to that produced by a concentra		moment at free end would produce a ad W at free end?
	(A)	WL	(B)	$\frac{2}{3}WL$
	*	9		WI
	(C)	$\frac{2}{3}W$	(D)	$\frac{WL}{EI}$
84.	will be the	e result?	or volu	metric proportioning of concrete, what
	(A)	no effect		
	(B)	buckling of concrete product will be t		
	(C)	more quantity of concrete per bag of		
	(D)	less quantity of concrete per bag of ce	ement	will be produced

85.	In which direction, resultant for	ce will shift by providing a top width for roadway and free
	board in elementary profile of a g	ravity dam, for full reservoir condition?
	(A) shift towards top	(B) shift towards toe
	(C) shift towards heel	(D) no shift at all
86.	Two simply supported beams A ar	nd B of same width have identical loading. What is the ratio
	$\frac{strength of beam A}{strength of beam B} \text{ if beam A ha}$	s depth double that of beam B?
	strength of beam B	
	(A) 2	(B) 4
	(C) 1/2	(D) 1/4

87. What is the least count of a transit theodolite?

(A) 20 minutes
(B) 30 minutes
(C) 60 seconds
(D) 20 seconds

88. A steel rod of length 20 m at 30°C is heated upto 40°C. What is the temperature stress

developed if the expansion is prevented? Given, $\alpha = 12 \times 10^{-6} \,\mathrm{per} \,^{\circ}\mathrm{C}$, $E = 2 \times 10^{5} \,\mathrm{N/mm^{2}}$ (A) $2.4 \,\mathrm{N/mm^{2}}$ (B) $24 \,\mathrm{N/mm^{2}}$

(b) 2.4 N/mm^2 (D) 0.24 N/mm^2

89. What will be the deflection at the centre of a simply supported beam of rectangular cross section if the depth is doubled, for the same load W?

(A) $\frac{1}{2}$ of first case (B) $\frac{1}{6}$ of first case (C) $\frac{1}{8}$ of first case (D) $\frac{1}{4}$ of first case

90. If K is the bulk modulus, E is the Young's modulus and N is the shear modulus then, which is the relation to find out Poisson's ratio $\left(\frac{1}{m}\right)$?

(A) $\frac{9KN}{N+3K}$ (B) $\frac{3K-2N}{6K+2N}$ (C) $2N\left(1+\frac{1}{K}\right)$ (D) $3K\left(1-\frac{2}{N}\right)$

91. If three coplanar, concurrent forces are acting at a point are in equilibrium, of which two of them are collinear, then what is the magnitude of third force which is acting at an angle θ with other two forces?

(A) zero
 (B) algebraic sum of other two forces
 (C) vector sum of other two forces
 (D) none of the above

92.	Where is the keystone of a	n arch being placed?	
	(A) extrados	(B)	crown
	(C) intrados	(D)	springing line
93.	What is measured using a	venturimeter?	
	(A) velocity	(B)	pressure
	(C) viscosity	(D)	discharge
94.	What will be the elongation vertically under its own we		igth L , cross sectional area A , hanging
			WL .
	(A) $\frac{WL}{AE}$	(B)	$\frac{WL}{3AE}$
	WI		WI
	(C) $\frac{WE}{2AE}$	(D)	$\overline{4AE}$.
95.			is used to carry water from storage
	reservoir to the power hous		intoleo atmistras
	(A) forebay	(B)	intake structure
	(C) draft tube	(D)	penstocks
96.	What is the nominal size of	f standard brick?	
	(A) $19 \text{ cm} \times 9 \text{ cm} \times 9$	9 cm (B)	$20 \text{ cm} \times 10 \text{ cm} \times 10 \text{ cm}$
	(C) 22 cm × 11.5 cm	$1 \times 7.5 \text{ cm}$ (D)	$20 \text{ cm} \times 10 \text{ cm} \times 5 \text{ cm}$
97.	What will be the elementar	ry profile of a gravity dam?	
	(A) rectangular in s		trapezoidal in section
	(C) polygon with six		triangular in section
98.	Where the tension steel is	provided in a two way slab?	
	(A) only at top	(B)	only at bottom
	(C) at top and botto	m (D)	at corners
99.	What is a graph showing v	ariations of discharge with	time at a particular point of a stream?
	(A) Unit hydrograp	h (B)	Hyetograph
	(C) Strange's run of	ff curve (D)	Hydrograph
100.			I number of joints is j then which of the
	following relations will be s		
	(A) $m > (2j-3)$		m < (2j-3)
	(C) $m < 2(j-3)$	(D)	m > 2(j-3)