8

bere
Tear

Combined Fryingerto Services Exerm

Register Number

Booklet Series

A	
	Į

2008

MECHANICAL AND PRODUCTION ENGINEERING

Time Allowed : 3 Hours	Maximum Marks : 30

Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

- This Booklet has a cover (this page) which should not be opened till the invigilator gives signal 1. to open it at the commencement of the examination. As soon as the signal is received you should tear the right side of the booklet cover carefully to open the booklet. Then proceed to answer the questions.
- This Question Booklet contains 200 questions. 2.
- Answer all questions. All questions carry equal marks. 3.
- The Test Booklet is printed in four series e.g. | A | B | C | or | D | (See Top left side of this 4. page). The candidate has to indicate in the space provided in the Answer Sheet the series of the booklet. For example, if the candidate gets | A | series booklet, he/she has to indicate in the side 2 of the Answer Sheet with Blue or Black Ink Ball point pen as follows:

[B][C][D]

- You must write your Register Number in the space provided on the top right side of this page. Do 5. not write anything else on the Question Booklet.
- An Answer Sheet will be supplied to you separately by the Invigilator to mark the answers. You 6. must write your Name. Register No. and other particulars on side 1 of the Answer Sheet provided, failing which your Answer Sheet will not be evaluated.
- You will also encode your Register Number. Subject Code etc., with Blue or Black ink Ball point 7. pen in the space provided on the side 2 of the Answer Sheet. If you do not encode properly or fail to encode the above information, your Answer Sheet will not be evaluated.
- Each question comprises four responses (A), (B), (C) and (D). You are to select ONLY ONE correct 8. . response and mark in your Answer Sheet. In case you feel that there are more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each question. Your total marks will depend on the number of correct responses marked by you in the Answer Sheet.
- In the Answer Sheet there are four brackers [A][B][C] and [D] against each question. To 9. answer the questions you are to mark with Ball point pen ONLY ONE bracket of your choice for each question. Select one response for each question in the Question Booklet and mark in the Answer Sheet. If you mark more than one answer for one question, the answer will be treated as wrong. e.g. If for any item, (B) is the correct answer, you have to mark as follows:

[A] [C][D]

- 10. You should not remove or tear off any sheet from this Question Booklet. You are not allowed to take this Question Booklet and the Answer Sheet out of the Examination Hall during the examination. After the examination is concluded, you must hand over your Answer Sheet to the Invigilator. You are allowed to take the Question Booklet with you only after the Examination is
- Failure to comply with any of the above instructions will render you liable to such action or penalty as the Commission may decide at their discretion.
- Do not tick-mark or mark the answers in the Question Booklet. 12.
- The sheet before the last page of the Question Booklet can be used for Rough Work. 13.

5004

| Turn over

- 1. If the sum of all the forces acting on a body is zero, it may be concluded that the body
 - A) must be in equilibrium
 - B) cannot be in equilibrium
 - C) may be in equilibrium provided the forces are concurrent
 - D) may be in equilibrium provided the forces are parallel.
- 2. If U_1 and U_2 are the velocities of approach of two moving bodies in the same direction and their corresponding velocities of separation are V_1 and V_2 , then as per Newton's law of collision of elastic bodies, the coefficient of restitution e is given by

A)
$$e = \frac{V_1 - V_2}{U_1 - U_2}$$

B)
$$e = \frac{U_2 - U_1}{V_1 - V_2}$$

C)
$$e = \frac{V_1 - V_2}{U_2 - U_1}$$

D)
$$e = \frac{V_2 - V_1}{U_1 - U_2}$$
.

3. A body of weight W is required to move up on rough inclined plane whose angle of inclination with the horizontal is α . The effort applied parallel to the plane is given by

A)
$$P = W \tan \alpha$$

B)
$$P = W \tan (\alpha + \phi)$$

C)
$$P = W (\sin \alpha + \mu \cos \alpha)$$

D)
$$P = W (\cos \alpha + \mu \sin \alpha)$$

where $\mu = \tan \phi = \text{coefficient of friction}$.

- A screw jack used for lifting the load is
 - A) a reversible machine

B) a non-reversible machine

C) an ideal machine

D) none of these.

- 5. In ideal machines
 - A) mechanical advantage is greater than velocity ratio
 - B) mechanical advantage is equal to velocity ratio
 - C). mechanical advantage is less than velocity ratio
 - D) mechanical advantage is unity.

x 401

5004

[Turn over

- 6. For a self-locking lifting machine, the efficiency must be
 - A) 50%

B) more than 50%

C) less than 50%

- D) 100%.
- 7. Pick out the correct statement:
 - A) The path traced by a projectile is trajectory.
 - B) The area under v-t diagram is acceleration.
 - C) Efficiency of simple machine is velocity ratio / mechanical advantage.
 - D) If efficiency is < 50%, that simple machine is reversible.
- 8. A couple produces
 - A) translatory motion
 - B) rotational motion
 - C) combined translatory and rotational motions
 - D) none of these.
- 9. Static friction is always
 - A) less than dynamic friction
 - B) equal to dynamic friction
 - C) greater than dynamic friction
 - D) has no relation with dynamic friction.
- 10. If a body is moving with a uniform acceleration (a), then final velocity (v) of the body after time (t) is equal to
 - A) $ut + \frac{1}{2} at^2$

B) u + at

C) $u^2 + 2as$

D) none of these

where u = initial velocity

s =distance travelled in t seconds.

x 401

- 11. In the macroscopic approach, in the study of thermodynamics
 - I. the structure of matter is taken into account
 - II. the structure of matter is not considered
 - III. only a limited number of properties are used to describe the state of matter
 - IV. the values of the properties needed for the description of the system cannot be measured.

Of the statements:

A) I alone is correct

- B) I and II are correct
- C) II and III are correct
- D) All are correct.
- 12. Temperature of a gas is due to
 - A) its heating value

- B) kinetic energy of molecules
- C) repulsion of molecules
- D) attraction of molecules.
- 13. Work done in reversible adiabatic process is given by
 - A) $\frac{P_2V_2 P_1V_1}{1 n}$

B) $\frac{P_2V_2 - P_1V_1}{1 - \gamma}$

C) $\frac{P_2V_2 - P_1V_1}{\gamma - 1}$

- D) $\frac{\gamma-1}{J} (P_2 V_2 P_1 V_1)$.
- 14. When a perfect gas is expanded through an aperture of minute dimensions, the process is
 - A) isothermal

B) adiabatic

C) isentropic

- D) throttling.
- 15. Carnot engine is irreversible due to
 - A) friction between moving parts
 - B) losses from working fluid in transit
 - C) high speed
 - D) both (A) and (B).
- 16. During adiabatic expansion
 - A) internal energy remains constant
 - B) temperature remains constant
 - c) entropy remains constant
 - D) enthalpy remains constant.

- 17. Heat flows from hot substance to cold substance unaided. This statement is given by
 - A) Kelvin

B) Gay-Lussac

C) Joule

- D) Clausius.
- 18. The coefficient of performance of a Carnot refrigerator operating between the reservoirs at -10°C and 40°C is
 - A) 0.526

B) 5.26

C) 52.6

- D) 526.
- 19. Which of the following is the extensive property of a thermodynamic system?
 - A) Pressure

B) Volume

C) Temperature

- D) Density.
- 20. The work done in steady flow process is given as
 - A) $\int_{1}^{2} p dv$

B) $-\int_{-\infty}^{\infty} p du$

C) $\int_{0}^{2} v dp$

- D) $-\int_{-\infty}^{\infty} v dp$.
- 21. The function of a distributor in a coil ignition system of I.C. engines is
 - A) to distribute spark

B) to distribute power

C) to distribute current

- D) to time the spark.
- 22. The thermal efficiency of petrol engines is about
 - A) 15%

B) 30%

C) 50%

- D) 70%.
- 23. A higher compression ratio causes
 - A) an acceleration in the rate of combustion
 - B) tendency of an engine to increase detonation
 - C) pre-ignition
 - D) all of these.

24.	in r	nt and miss governing		
	A)	mixture strength is maintained co	nstant	
	B)	quantity of fuel is varied to suit le	oad on	engine
	C)	the fuel supply is cut off complet	ely du	ring one or more number of cycles
	D)	none of these.		
25.	Fue	el having maximum resistance to de	tonatio	on is
	A)	benzene	B)	toluene
•	C)	iso-octane	D)	n-heptane.
26.		operation of forcing additional air	r unde	r pressure, into the engine cylinder
	A)	carburation	B)	supercharging
	C)	dissociation	D) .	turbulence.
27.	The	knocking in spark ignition engines	s gets 1	reduced
	A)	by retarding the spark advance		
	B)	by increasing the compression rat	tio	
	C)	by increasing the cooling water te	mpera	ture
	D)	by increasing the inlet air tempera	ature.	
28.	Sup	ercharging is essential in		
	A)	diesel engines	B)	gas turbines
	C)	petrol engines	D)	aircraft engines.
29.	lder	ntify the correct order of classification	on of I	nternal Combustion Engines :
,	A)	Reciprocating Type, Internal Com	bustio	n Engine, Non-reciprocating Type.
	B)	Reciprocating Type, External Con	bustio	n Engine, Non-reciprocating Type.
	C)	SI Engine, CI Engine, Internal Co	mbusti	on Engine.
	D)	Internal Combustion Engine, Type.	Recipi	rocating Type, Non-reciprocating
30.	The	cetane values for high speed engi-	nes vai	ry between
	A)	5 to 11	B)	15 to 21
	C)	25 to 34	D)	45 to 54.
F 4.4		For	14	. Turn over

- 31. Hypersonic flow exists when Mach number is
 - A) unknown

- B) less than 1
- C) less than 5, greater than 1
- D) greater than 5.
- 32. Which is the continuity equation?

A)
$$h_o = h + \frac{V^2}{2g_c J}$$

B)
$$G = \frac{\dot{m}}{A} = \rho V$$

C)
$$M = \frac{V}{a}$$

D)
$$S = S_o$$

33. Stagnation temperature in terms of Mach number is given by

A)
$$\frac{T_0}{T} = \frac{k-1}{2} \cdot M^2$$

B)
$$\frac{T_0}{T} = \frac{1+k^2}{2}$$
 . M^2

C)
$$\frac{T_0}{T} = 1 - \frac{k-1}{2} \cdot M^2$$

D)
$$\frac{T_0}{T} = 1 + \frac{k-1}{2} \cdot M^2$$

- 34. In a nozzle, if back pressure is equal to inlet pressure
 - A) no flow occurs
 - B) maximum flow occurs
 - C) flow is subsonic in diverging section
 - D) flow is supersonic in converging as well as diverging sections.
- 35. The normal shock wave in compressible flow is analogous to
 - A) surges in open channel
 - B) vortex formation in centrifugal pump
 - C) hydraulic bore in tidal rivers
 - D) hydraulic jump in channel flow.
- 36. Ramjet engine
 - A) is self-operating at zero flight speed
 - B) is not self-operating at zero flight speed
 - C) requires no air for its operation
 - D) produces a jet consisting of plasma.
- 37. For speed above 3000 km/hour, it is more advantageous to use
 - A) turbojet engine

B) ramjet engine

C) propellers

D) rockets.

x 401

- 38. The function of a heat exchanger in a gas turbine unit is
 - A) to heat the compressed air before inlet to combustion chamber
 - B) to heat the gas before inlet to gas turbine
 - C) to exchange heat from hot gases of combustion chamber to the exhaust gases of gas turbine
 - D) to heat the compressed air in between the stages of air compressor.
- 39. Which one of the following is true in an isentropic process of expansion from state (1) to state (2)?
 - $A) \quad \frac{p_2}{p_1} = \left(\frac{T_1}{T_2}\right)^{\frac{k-1}{k}}$

 $B) \qquad \frac{p_2}{p_1} = \left(\frac{T_2}{T_1}\right)^{\frac{k-1}{k}}$

C) $\frac{p_2}{p_1} = \left(\frac{T_1}{T_2}\right)^{\frac{k}{k-1}}$

- $D) \qquad \frac{p_2}{p_1} = \left(\frac{T_2}{T_1}\right)^{\frac{k}{k-1}}$
- 40. Air refrigerator makes use of
 - A) Atkinson cycle

- B) Otto cycle
- C) Reversed Joule cycle
- D) Stirling cycle.
- 41. In an ammonia-hydrogen refrigeration system, the hydrogen
 - A) helps evaporation of NH 3
 - B) acts as a refrigerant
 - C) helps NH 3 to flow through the circuit
 - D) burns to supply heat.
- 42. For a given dry bulb temperature, as the relative humidity increases, the wet bulb depression will be
 - A) more
 - B) less
 - C) same
 - D) more / less depending on other factors.
- 43. Dew point is
 - A) the temperature at which condensation of steam in saturated air will start
 - B) dependent on pressure of air
 - C) the lowest attainable temperature for a mixture of air and steam
 - D) none of these.

		rado or scriptore mode to die total	11041 10	miowi us
	A)	by-pass factor	B)	sensible heat factor
	C)	humidifying efficiency	D)	none of these.
45.	-	ure humidification is desired, the be maintained as	spray v	vater through which air passes, has
	A)	WBT	B)	DBT
	C)	DPT	D)	None of these.
46.	The	moisture conțent of air is indicate	ed by	
•	A)	dry bulb temperature		
	B)	wet bulb temperature		
	C)	dew point temperature		•
	D)	both wet bulb and dew point ten	nperatu	res.
47.	ln a	diabatic saturation		
•	A)	the process consists of increasing heat content	ng the l	numidity ratio without change in its
	B)	the process includes change in constant	DBT k	eeping the humidity ratio of air as
	C)	the process consists of heating t	he air w	vithout changing the humidity ratio
	D)	the process can be accomplishe water in air.	d eithei	by the addition of steam or heated
48.		e ratio of high temperature to igerator is 1.25. The COP will be	o low	temperature for reversed Carnot
	A)	2	B)	3
	C)	4	D)	5.
49.		he specific humidity of moist air i reases,	remains	same but its dry bulb temperature
	A)	its dew point temperature incre	ases	
	B)	its dew point temperature decre	ases	
	C)	its dew point temperature remai	ins sam	.
	D)	its dew point temperature maincrease or decrease of relative		ease or decrease depending upor ty.

- 50. Bernoulli's equation is derived making assumptions that
 - A) the flow is uniform, steady and incompressible
 - B) the flow is non-viscous, uniform and steady
 - C) the flow is steady, non-viscous, incompressible and irrotational
 - D) none of these.
- 51. The velocity components in x and y directions in terms of velocity potential
 - (ϕ) are
 - A) $u = -\frac{\partial \phi}{\partial x}$, $v = \frac{\partial \phi}{\partial y}$

B) $u = \frac{\partial \phi}{\partial y}$, $v = \frac{\partial \phi}{\partial x}$

C) $u = -\frac{\partial \phi}{\partial y}$, $v = -\frac{\partial \phi}{\partial x}$

- D) $u = -\frac{\partial \phi}{\partial x}, v = -\frac{\partial \phi}{\partial y}.$
- 52. The value of the kinetic energy correction factor (α) for the viscous flow through a circular pipe is
 - A) 1.33

B) 1.50

C) 2.0

- D) 1.25.
- 53. Maximum efficiency of power transmission through pipe is
 - A) 50%

B) 66.67%

C) 75%

- D) 100%.
- 54. Power transmitted through pipes, will be maximum when
 - A) head lost due to friction = $\frac{1}{2}$ total head at inlet of the pipe
 - B) head lost due to friction = $\frac{1}{4}$ total head at inlet of the pipe
 - C) head lost due to friction = total head at the inlet of the pipe
 - D) head lost due to friction = $\frac{1}{3}$ total head at the inlet of the pipe.
- 55. The boundary layer separation takes place if
 - A) pressure gradient is zero
 - B) pressure gradient is positive
 - C) pressure gradient is negative
 - D) none of these.

- **56**. The shear stress between two fixed parallel plates with a laminar flow between them
 - A) is constant across the gap
 - B) varies parabolically as the distance from the mid-plane
 - C) varies directly as the distance from the mid-plane
 - D) varies inversely as the distance from the mid-plane.
- 57. For a forced vortex flow, the height of paraboloid formed is

- B) $\frac{V^2}{2g}$ D) $\frac{wr^2}{2g}$.
- Match List I correctly with List II and select your answer using the codes given 58. below:

List I

List II

- Navier-Stokes equation is useful in a) analysis of
- 1. Momentum
- Shear stress in turbulent flow is b) mainly due to
- 2. Hydraulic gradient line
- c) Pressure gradient is linear for developed flow obeys
- 3. Eddy viscosity
- d) Vapour lock in water pipeline may occur if goes below conduit
- 4. Viscous.

Codes:

- d
- A) 1
- B) 3 2
- C) 2 3 1
- D) 3 1.
- The metacentric height of a floating body is 59.
 - the distance between metacentre and centre of buoyancy A)
 - B) the distance between the centre of buoyancy and centre of gravity
 - C) the distance between metacentre and centre of gravity
 - D) none of these.

x 401

60.	The	The cavitation in a hydraulic machine is mainly due to							
	A)	low velocity	B)	high velocity					
	. C)	low pressure	D)	high pressure.					
61.	Pre	ssure drop in nozzle occurs in							
	A)	reaction turbine	B)	impulse turbine					
	C)	steam turbine	D)	all of these.					
62 .	Spe	ecific speed of turbine is indicated in	n.						
	A)	$\frac{N\sqrt{Q}}{H^{\frac{3}{4}}}$	B)	$\frac{N\sqrt{P}}{H^{\frac{5}{4}}}$					
	C).	$\frac{N \vee Q}{H^{\frac{2}{3}}}$	D)	$\frac{N\sqrt{P}}{H^{\frac{3}{2}}}$					
63.	Mu	ltistage centrifugal pumps are used	to obt	ain					
	A)	high discharge	B) ·	high head					
	C)	pumping of viscous fluids	D)	high efficiency.					
64.	Spe	ecific speed of impulse wheels range	es fron	n ·					
	A)	0 to 4.5	B)	10 to 100					
f	C)	80 to 200	D)	250 to 300.					
65. ·	Mo	tion of a liquid in a volute casing of	a cent	rifugal pump is an example of					
	A)	rotational flow	B)	forced cylindrical vortex flow					
	C)	radial flow	D)	spiral vortex flow.					
66.	In c	case of centrifugal fan or blower the	gas c	apacity varies directly with					
	A)	speed	B)	(speed) ²					
	C)	$\{\text{ speed }\}^{\frac{3}{2}}$	D)	(speed) ³ .					
67.	Cav	itation damage in the turbine runne	er occu	ars near the					
	A)	inlet on the concave side of the bla	ades						
	B)	inlet on the convex side of the blace	des						
	C)	outlet on the convex side of the bla	ades						
	D)	outlet on the concave side of the b	lades.						
r = = =		roo		[There are					

•									
68.		arbine runs at 240 r.p.m. under a ating under a head of 16 m will be	head	of 9 m. The speed of the turbine					
	A)	420 r.p.m.	B)	320 r.p.m.					
	C)	240 r.p.m.	D)	120 r.p.m.					
69.		itation parameter σ is defined in tendent head H as	ms of	net positive suction head (NPSH)					
	A)	$\frac{NPSH}{\sqrt{H}}$	B)	$\frac{\sqrt{H}}{NPSH}$					
	C)	H NPSH	D)	NPSH H					
70.	In tr	ransient heat conduction, two signifi	cant o	limensionless parameters are					
	A)	Reynolds & Fourier	B)	Fourier & Prandtl					
	C)	Biot & Fourier	D)	Biot & Nusselt.					
71.	The	critical radius of insulation for a sp	herica	l shell is					
	A)	thermal conductivity of insulating reheat transfer coefficient at outer s							
	B)	B) 2 × thermal conductivity of insulating material heat transfer coefficient at outer surface							
	C)	inverse of (A)							
	D }	inverse of (B).							
72 .		concept of overall coefficient of blems of	heat	transfer is used in heat transfer					
	A)	conduction	B)	convection					
	C)	radiation	D)	conduction and convection.					
73.	The	value of convective heat transfer co	oeffici	ent depends upon					
	A)	physical properties of fluid	B)	nature of fluid flow					
	C)	velocity of fluid flow	D)	all of these.					
74.	The	unit of Stefan-Boltzmann constant	is						
	A)	watt/m ² k	B)	watt/m 4 k					
	C)	watt/m ² k ²	D)	watt/m ² k ⁴ .					
x 40	01	500	4						

75. NTU is given by

Αì	UA
A)	C _{min}

$$B) \quad \frac{C_{\min}}{UA}$$

C)
$$\frac{C_{\text{max}}}{UA}$$

$$D) \qquad \frac{C_{\min}}{C_{\max}}$$

76. (N_u) for the forced convection in laminar flow over a flat plate is

A)
$$0.116 P_r^{\frac{1}{3}} R_e^{\frac{1}{2}}$$

B)
$$0.332 P_r^{\frac{1}{3}} R_e^{\frac{1}{2}}$$

C)
$$0.037 R_e^{0.8} P_r^{\frac{1}{3}}$$

D)
$$0.023 R_e^{0.8} P_r^{0.3}$$

77. In comparison to parallel flow heat exchangers, counter flow versions have

A) lower LMTD

- B) larger heat transfer area
- C) smaller heat transfer area
- D) higher LMTD.

78. Thermal resistance (K/W) of a 0.5 m thick, 1 m wide and 1.25 m high furnace wall having a thermal conductivity 0.4 W/mK is

A) 2

B) 10

C) 20

D) 1.

79. Metal temperature rises due to

- A) increase in thermal conductivity
- B) decrease in thermal conductivity
- C) increase in heat transfer
- D) none of these.

80. Thermal efficiency of a diesel engine used for power generation is

- A) less than air standard value
- B) more than air standard value
- C) equal to that of air standard value D)
- twice that of air standard value.

81. Consider the following statements:

- I. Run-of-the river plant is cheaper than the storage plant of equal capacity.
- II. Run-of-the river plant serves base load, when located upstream of the storage plant.
- III. Run-of-the river plant output depends on what storage plants pass on, when located between storage plants.

Of the statements:

- A) (I) and (II) are correct
- B) all are correct
- C) (II) and (III) are correct
- D) (I) and (III) are correct.

82 .	The	The size of the reactor is said to be critical when					
	A)	chain reaction can be initiate	ed B)	it becomes uncontrollable			
	C)	it explodes	D)	it produces no power.			
83.		most practical fuel for a therelear considerations, is	monuclea	r reactor, both from economical and			
	A)	Plutonium	B)	Uranium			
	C)	Lithium	D)	Thorium.			
84.	Mos	st commonly used moderator in	n nuclear	plants is			
	A)	heavy water	B)	concrete and bricks			
	C)	graphite and concrete	D)	graphite.			
85.	In a	a throttling process		÷			
,	A)	steam temperature remains of	constant				
	B)	steam pressure remains con-	stant	·			
	C)	steam enthalpy remains cons	stant				
	D)	steam entropy remains const	tant.				
86.	The	efficiency of reheat cycle is g	iven by				
	A) _	Work done Heat supplied	B)	Total useful heat drop Heat supplied			
	C)	Adiabatic heat drop Heat supplied	D)	_Total useful heat drop_ Total adiabatic heat drop			
87.	Fas	t breeder reactors use					
	A)	water as moderator	B)	carbon dioxide as moderator			
	C)	graphite as moderator	D)	no moderator.			
88.	Sul	phur in coal results in					
	A)	causing clinkering and slaggi	ng				
	B)	corroding air heaters					
	C)	spontaneous combustion dur	ing coal s	torage			
	D)	all of these.					
89.	In n	nuclear reactors, control rod is	made of				
	A)	lead and tin	B)	boron and cadmium			
	C)	graphite	D)	zinc.			
x 40	1		5004				

			_					
90.	The	e overshoot and the settling time are r						imum with
	A)	unde	erdamp	ed syste	em		B)	overdamped system
	C)	critic	cally da	mped s	ystem		D)	damped system.
91.	The	rmal e	expansi	on of so	olid is, e	mployed	in	
	A)	then	mocoup	ole			B)	resistance thermometer
	C)	bime	tal eler	nent		e e	D)	Zener diode.
92.	The	gener	rally us	ed devi	ce for te	mperatu	re n	neasurement inside the furnace is
	A)	gas	hermo	meter			B)	optical pyrometer
	C)	alcol	nol the	momete	er		D)	mercury thermometer.
93.	Det	ermin	ing mo	isture i	n stear	n by me	asu	ring the temperature in a throttling
	calo	rimet	er is ar	examp	le of	•		
	A)	dire	ct meas	suremen	ıt		B)	indirect measurement
•	C)	mea	sureme	ent by co	omparis	on	D)	measurement by calibration.
94.			st İ cor	rectly w	rith Lis	t II and	selec	et your answer using the codes given
	belo	ow:						
•			List	I				List II
		a)	Dens	ity			1.	Mass-spring seismic sensor
		b)	Powe	r.			2.	Anemometer
		c)	Air flo	ow .	-	·	3.	Dynamometer
		d)	Accel	eration			4.	Resonant elements.
	Cod	les :		• 1				
		а	b	C	đ			•
	A)	2	. 1	3	4			
	B)	2	3	1	4			
	C)	4	2	3	1			
	D)	4	3	2	1.			
95.	A R	ossett	e gauge	e is emp	oloyed for	or the me	easu	rement of
٠	A)	abso	lute pr	essure			B)	low pressure variations
	C)	strai	n in on	e direct	ion		D)	strain in more than one direction.
x 40	i l					5004	7	[Turn over

control element and the value of the controlled variable, the controller action is

5004

Bì

D)

differential

proportional.

401

floating

integral

A)

C)

100.		ing tensile-testing of a specimen ameters actually measured include	using	a Universal Testing Machine, the						
	A)	A) true stress and true strain								
	B)	Poisson's ratio and Young's module	us							
	C)	engineering stress and engineering	strai	n						
	D)	load and elongation.								
101.		ratio of shear modulus to the modu 25 will be	ilus of	f elasticity, when the Poisson's ratio						
	A)	2	B)	1.4						
	C)	0.4	D)	zero.						
102.	Prin	cipal planes are the planes, on whic	ch the	resultant stress is the						
	A)	shear stress	B)	normal stress						
	C)	tangential stress	D)	none of these.						
103.	Proo	f resilience is the greatest stored er	nergy a	at						
	A)	limit of proportionality	B)	elastic limit						
	Cĵ	plastic limit	D)	none of these.						
104.		maximum deflection of a cantilever	bean	of length L with a point load W at						
	the i	free end is								
	A)	$\frac{WL^3}{3EI}$	B)	WL ³ 8EI						
	C)	WL ³ 16 EI	D)	WL 3 48 EI						
105.	A po	int of contraflexure in a beam occur	rs at a	point where						
	A)	bending moment changes sign								
	B)	shear force changes sign								
	C)	loading becomes zero								
	D) .	bending moment and shear force b	ecom	e zero.						
		·		•						

- 106. Hoop stress in a thin cylinder of diameter 'd' and thickness 't' subjected to pressure 'p' will be
 - A) $\frac{pd}{4t}$

B) $\frac{pd}{t}$

C) $\frac{pd}{2t}$

- D) $\frac{2pd}{t}$.
- 107. According to Lame's equation, hoop stress for a thick cylinder at any point at a radius 'r' from centre is equal to
 - A) $\frac{b}{r^2} + a$

B) $\frac{b}{r^2} - a$

C) $\frac{b}{r} + a$

- D) $\frac{b}{r} a$.
- 108. Ties are load carrying members which have many
 - A) torsional loads

B) axial compressive loads

C) axial tension loads

- D) transverse loads.
- 109. The effective length of a column having both the ends fixed is
 - A) twice its length.

B) half its length

C) own length

- D) $\sqrt{2}$ times its length.
- 110. Kinematic pairs are those which have
 - A) two elements that do not permit relative motion
 - B) two elements that permit relative motion
 - C) elements of pair held together mechanically
 - D) elements of pair not held together mechanically.
- 111. A kinematic chain requires at least
 - A) 2 links and 3 turning pairs
- B) 3 links and 4 turning pairs
- C) 4 links and 4 turning pairs
- D) 5 links and 4 turning pairs.
- 112. Ackermann steering gear consists of
 - A) sliding pairs

B) turning pairs

C) rolling pairs

D) higher pairs.

x 401

		21		GEME						
113.	The	e indicator using Watt mechanism is known as								
	A)	Thomson indicator	B)	Richard indicator						
	C)	Simplex indicator	D)	None of these.						
114.		relation between the no. of pairs (of links (l) is	<i>p</i>) f	orming a kinematic chain and the						
	A)	l = 2p - 2	B)	l=2p-3						
	C)	l=2p-4	D)	l=2p-5.						
115.	The	differential mechanism of an autom	obile i	s having						
	A)	one degree of freedom	B)	two degrees of freedom						
	C)	three degrees of freedom	D)	zero degree of freedom.						
116.	The	effect of gyroscopic couple, acting o	n a sl	nip pitching upward, will be to						
	A)	move the ship towards star board								
	B)	move the ship towards port								
	C)	move the ship in clockwise direction	n wh	en viewed from stern						
	D)	none of these.								
117.		tional torque transmitted in a conica	al pivo	t bearing considering uniform wear						
	is A)	$\frac{1}{2}\mu WR$ cosec α	B)	$\frac{2}{3}\mu WR \operatorname{cosec} \alpha$						
	C)	$\frac{3}{4} \mu WR \text{ cosec } \alpha$	D)	μWR cosec α.						
118.	Cree	ep in belt drive is due to	e.							
٠	A)	material of the pulley								
	B)	material of the belt								
	C)	expansion of belt								
	D)	uneven extensions and contraction	s due	to varying tension.						
119.	is pr	is the pitch circle radius of pinion, ressure angle, the maximum length or to avoid interference will be								
	A)	$(r+R)\sin\phi$	B)	$(r+R)\cos\phi$						
,	C)	$(r + R) \tan A$	D)	$(r+R) \cot \phi$.						

<u> </u>	•		•	
120. Two	meshing gears must have same			
A)	number of teeth	B)	addendum	
C)	dedendum	D)	module.	
121. Hun	ting in a governor occurs due to			
A)	worn-out guides of the sleeve			
B)	fixed position of balls for each s	peed wi	ithin working range	
C)	friction			
D)	none of these.			
122. A go	vernor is said to be isochronous	when		
A)	the equilibrium speed is consta working range	nt for al	ll radii of rotation of the balls wi	thin
B)	the range of speed is zero for all range	radii of	f rotation of the balls within wor	king
C)	any one of these	-		
D)	none of these.			
123. Han	nmer blow is			
A)	maximum value of unbalanced	force ald	ong the line of stroke	
B)	maximum value of unbalanced	force pe	erpendicular to the line of stroke	
C)	resultant value of the unbalance	ed force		
D)	minimum value of unbalanced	force pe	erpendicular to the line of stroke.	
124. Refe	erence plane is a plane which is			
A)	passing through the plane of ro	tation of	of the rotating weight	
B)	passing through the plane of ro	tation o	of the balancing weight	•
C)	at an angle of 45° to the rotating	g-weigh	at	
D)	at an angle of 45° to the balance	ing weig	ght.	
125. The	rate of decay of oscillations is k	nown as	s	
A)	critical damping	B)	damping coefficient	
C)	logarithmic decrement	D)	damped oscillation.	

x 40	1	5004	П	[Turn over
	C)	structural work	D)	all of these.
	A)	aircraft body	B)	ship building
133.	Sna	p head rivets are used in		
	C)	3	D)	4.
	A)	1	B)	2
132.	Acc	ording to I.B.R., the factor of safety	of rive	eted joint should not be less than
	C)	$1.41 \sqrt{t}$	D)	$6.05 \sqrt{t}$.
,	A)	<i>t</i>	B)	2t
131.	The	diameter of rivets in mm for a plate	of th	ickness t mm is taken as
	D)	strength of riveted joint to strength	of ur	nriveted plate.
	·C)	tearing strength of plate to strength	h of u	nriveted plate
	B)	crushing strength of rivet to streng	th of	unriveted plate
	Å)	shearing strength of rivet to streng	th of	unriveted plate
130.	Effic	ciency of riveted joint is the ratio of		
	C)	bore measurement	D)	level of flat surfaces.
•	A)	angular measurement	B)	linear measurement
129.	Clin	ometer is used for		
	C)	magnification factor	D)	damping factor.
	A)	critical damping coefficient	B)	logarithmic decrement
	stat	ic force is known as		
128.	Rati	o of maximum displacement of the	force	d vibration to the deflection due to
	C)	n	D)	n+1.
	A)	n(n-1)	B)	n-1
	'n' is	•	pan	is claused with the Hamber of plates
127	-	number of active surfaces for a mu		•
	C)	range of speed	D)	sleeve lift.
	A)	radius of rotation	B)	speed of rotation
120.	COIL	troining force curve is a plot between	i cont	rounig force and

x **401**

•				•
134.	A un	niversal coupling is	* *:	
	A)	flexible coupling		
	B)	rigid compiling		
	C)	used to connect perfectly aligned s	haft	
	D)	none of these.		
135.	Lag	bolt is generally used in		
	A)	wooden construction	B)	electrical equipment
	C)	fastening castings	D)	all of these.
136.	Soci	ket joint is mostly used for pipes wh	ich	
	A)	carry steam at high pressure	B) .	carry water at low pressure
	C)	are buried in the earth	D)	carry fluid at high pressure.
137.	Whi	ch of the following is a friction clute	h?	
	A) .	Cone clutch	B)	Band clutch
	C }	Disc clutch	D)	All of these.
138.	The	ratio of maximum fluctuation of spe	ed to	the mean speed is called
	A)	fluctuation of speed	B)	coefficient of fluctuation of speed
	C)	maximum fluctuation of speed	D)	none of these.
139.	The	maximum shear stress induced in	the w	ire of a circular section of a helical
	spri	ng depends on	` ,	
	A)	material of the wire	B)	size of cross-section
	C)	the ratio d/O	D)	all of these.
140.	The	wire ropes make contact at		
•	A)	bottom of groove of the pulley		•
•	B)	sides of groove of the pulley		
	C)	sides and bottom of groove of the p	ulley	
	D)	anywhere in the groove of the pulle	ÿ.	
141.	The	minimum nominal pitch dia. for a V	-pulle	y is
•	A)	50 mm	B)	65 mm
	C)	75 mm	D)	90 mm.
	-			

142.	The	ratio of number of teeth and pitch	circle	diameter of a spur gear is called
	A)	pitch	B)	circular pitch
	C)	diametral pitch	D)	module.
143.	Bac	klash is		*
	A)	sum of clearances of two gears		,
	B)	the mutual ply between two gears		
	C)	amount by which the tooth space teeth	e exce	eeds the thickness of an engaging
	D)	none of these.		
144.	Gear	rs which connect inclined shafts,	whic	h if produced, would intersect at
	sam	e angle in the same plane are known	n as	
	A)	spur gears	B)	bevel gears
	C)	spiral hypoid gears	D)	worm wheels.
145.	The	helix angle for single helical gears ra	anges	from
•	A)	10' to 15'	B)	15' to 20'
•	C)	20° to 35°	D)	35' to 50'.
146.	In sp	oiral bevel gears, the axes are		
	A)	non-parallel and non-intersecting a	nd the	e teeth are curved
	B)	non-parallel and non-intersecting a	nd the	e teeth are straight
	C)	intersecting, the teeth are curved a	nd ob	lique
	D)	intersecting, the teeth are curved a	nd ca	n be ground.
147.	The	type of gear used for speed reduction	n of S	50 : 1 will be
	A)	herring bone	B)	hypoid
	C)	bevel	D)	worm wheel.
148.	The a	axial thrust on the worm (W_A) is g	lven b	У
	A)	$W_A = W_T \cdot \tan \phi$	B)	$W_A = W_T / \tan \phi$
	C)	$W_A = W_T \cdot \tan \lambda$	D)	$W_A = W_T / \tan \lambda$.

149. The	149. The actual length of the belt is slightly less than the calculated				
A)	to give initial tension	B)	due to creep		
C)	due to slip	D)	to provide strength.		
150. Hig	h speed steel tool material contain	ns carbo	n.		
A)	0.6 - 1.0%	B)	2 - 4%		
C)	4 - 6%	D)	6 - 10%.		
151. For	drilling operation, cylindrical job	should	always be clamped on a		
A)	Vice	B)	Socket		
C)	V-block	D)	Clamp.		
152. For	drilling brass, a drill with				
A)	high helix angle is required	B)	low helix angle is required		
C)	any helix angle is required	D)	zero helix angle is required.		
153. The angle between the tool face and the ground end surface of flank is known as					
A)	lip angle	B)	rake angle		
C)	clearance angle	D)	nose angle.		
	ne taken to drill a hole through a e of 0.25 mm/rev. will be	25 mm	thick plate at 300 r.p.m. at a fee		
,A)	10 sec	B)	20 sec		
C)	25 sec	D)	40 sec.		
155. In o	orthogonal cutting,				
A)	cutting edge is inclined to axis	of job			
B)	cutting edge is perpendicular to	axis of	the job		
. C)	cutting edge is perpendicular to	line of	its motion		
D)	cutting edge is parallel to line o	f its mot	don.		
156. A s	teel containing 0.85% carbon is l	mown a	8		
A)	eutectoid steel	B)	hypo-eutectoid steel		
C)	hyper-eutectoid steel	D)	none of these.		
x 401	5	004	•		

157.	Crat	er wear occurs mainly due to		•
	A)	abrasion	В)	diffusion
•	C)	oxidation	D)	adhesion.
158:	A st	ep cone pulley is provided in a	lathe to	
	A)	reverse the spindle rotation	B)	change the spindle speed
	C) ,	drive the lead screw	D)·	provide feed.
159.	The	job length for a shaper is		
	A)	unlimited	B)	equal to that for a planer
	C)	limited to smaller size	D)	more than that for a planer.
160.	Gea	r shaper can be used to cut w	hich of the	following types of gear?
	A)	Internal	B)	External
	C)	Non-conventional	D)	All of these.
161.	For	machining ceramics, glass and	d plastics w	which method is not applicable?
•	A)	AJM	B)	LBM
	C)	EDM	D)	USM.
162.	Whi	ich is incorrect?		
	A h	ob cutter		
÷	A)	rotates about its axis during o	cutting	
	B)	moves axially after gear blank	k has made	one rotation
	C)	moves into the workpiece du	ring feed	
•	D }	moves parallel to the axis of	workpiece o	luring cutting.
163.	Diel	ectric is a must in		
	,A)	EDM process	B)	ECM process
	C)	Laser beam machining	D)	Abrasive jet machining.
164.	The	ruby rod used in Laser Beam	Machining	is made up of
	A)	crystalline aluminium oxide o	r sapphire	
	B)	copper oxide		
	C)	zinc oxide		•
	·D)	none of these.		
x 40	1	. [5004	[Turn ove

- 165. The purpose of honing operation is
 - A) to remove grinding and tool marks left by previous operation
 - B) to finish holes
 - C) to correct eccentricity of holes
 - D) to provide very close fit between two contact surfaces.
- 166. The precision grinding of round and flat parts with loose, dust type abrasives is known as
 - A) lapping

B) honing

C) polishing

- D) buffing.
- 167. With numerical control equipment, which one of the following is not true?
 - A) Single-piece machining is possible and feasible because of the nature of the control system.
 - B) Fixture cost is considerably lower for numerical control machining than for conventional machining.
 - C) The initial cost of N.C. machine is low.
 - D) Programming and tape writing take much less time than building jigs & fixtures, and locating gases.
- 168. In electrochemical machining process metal removal rate depends upon
 - A) the hardness of tool material
 - B) the hardness of job material
 - C) the difference between the hardness of tool and work material
 - D) independent of the hardness of tool and work material.
- 169. The tool electrodes used in the ECM process differ from those used in EDM process in that ECM electrodes
 - A) are made of conducting materials
 - B) are made of insulating materials
 - C) are insulated at the sides
 - D) are insulated in the front.

170.	The	feature measured by a gear tooth v	ernie	ris	
	A)	addendum	B)	tooth depth	
	C)	pitch line thickness of tooth	D)	all of these.	
171.	A si	ne bar is specified by			·
	A)	its total length		the state of the s	
	B)	the centre distance between the tw	vo roll	lers	
	C)	the size of the rollers			
	D)	the weight of sine bar.			
172.	The	accessory of slip gauges is			
	A)	scribing and centre points	B)	measuring jaws	
•	C)	holder	D)	base and (A), (B) & (C)	•
173.	Scri	bing block is used to			
	A)	hold the round bars during markin	g		
	B)	check the trueness of flat surfaces			
•	C)	locate the centres of round bars			
	D)	check the surface roughness.	,		
174.	Beve	el protractor is used to measure			
	A) .	angles in the workpiece	B)	diameter of hole in the	workpiece
	C) .	length of the workpiece	D)	none of these.	
175.	Meth	nod concerned with surface finish m	easur	rement is	
	A)	ultrasonic method	B)	field emission method	
	C)	critical angle of attack method	D)	all of these.	
176.	Whic	h of the following are not controllab	le err	ors?	
	A)	Calibration errors	B)	Environmental errors	
	C)	Avoidable errors	D) ,	Random errors.	
177.	Elen	nent of the indicating device carryin	g the	scale is called	
	A)	dial	B)	transducer	
	C)	housing	D)	index.	
40		5004			[Turn over

x 401

QEME

178.	78. Sensitivity and range of measuring instrument have				
	A)	direct relationship	B)	linear relationship	
	C)	inverse relationship	D)	none of these.	
179.	Syst	ematic errors are			
	A)	regular and repetitive	B)	randomly distributed	
	C)	distributed on either side of mean	D)	unpredictable.	
180.		lysis of an operation, when carried ker is known as	out i	in terms of individual motions of a	
	A)	work analysis	B)	motion analysis	
	C)	time and motion analysis	D)	operation analysis.	
181.	Stri	ng diagram is used when			
	A).	team of workers is working at a pla	ace		
	B)	material handling is to be done			
	C)	idle time is to be reduced			
	D)	all of these.		·	
182.	Tim	e standards are used for			
	A)	performance evolution of individua	l wor	kers	
	B)	incentive payments			
	C)	cost estimating			
	D)	all of these.			
183.	Mat	erial handling system is affected by	the fa	actor	
	A)	product to be handled			
	B)	production system			
	C)	type of building within which mate	rial is	to be handled	
	D)	all of these factors.			
184.	ABC	analysis deals with			
	A)	flow of material	B)	analysis of process chart	
	C)	controlling inventory costs money	D)	none of these.	
185.	MRI	P indicates			
	A)	Materials Reordering Point	B)	Materials Reordering Planning	
•	C)	Materials Requirements Planning	D)	Materials Requirements Point.	
		K00/	•		

186.	Sim	plex method is the method used	l for	
	A)	value analysis	B)	network analysis
	C)	linear programming	D)	queuing theory.
187.	Diffe	erence of actual sales and break	keven poi	nt is called
	A)	margin of safety	B)	price-cost margin
	C)	contribution	D)	none of these.
188.	Star	ndard time is equal to		i e
	A)	normal time plus allowances	B)	normal time minus allowances
	C)	normal time plus idle time	D)	normal time minus idle time.
189.	The	function that authorises produc	ticn and	control is
	A)	routing	B) -	despatching
	C)	scheduling	D)	expediting.
190.	The	input-output analysis is often c	alled as	
	A)	cost benefit analysis	B)	value analysis
	C)	non-pricing analysis	D)	none of these.
191 .	The	incentive wage plan in which s	savings aı	re expressed as a % of the standard
	tim			·
- ,	A)	Halsey plan	B)	Bedaux plan
	C)	Rowan plan	D)	Group plan.
192.		ck represents the difference bet		
	A)	earliest completion time and la		
	B)	latest allowable time and earlie	_	
	C)	earliest completion time and n		
	D)	latest allowable time and norm		·
193.	In l	· · · · · · · · · · · · · · · · · · ·	vage ince	entive system, bonus is paid to a
	. A)	whose output exceeds 67% eff	iciency	
	B)	on the percentage of time save	ed .	
	C)	on the percentage of time world	ked	
	D)	on the percentage of standard	time.	
x 40	1		5004	[Turn over

194.	An e	event is indicated on the network by	•	
	A)	an arrow		
	B)	a straight line with circle at the en	d	•
	C)	a number enclosed in a circle or a	squai	re
	D)	a dotted line.		
195.	PER	T and CPM are		
•	A)	techniques to determine project sta	itus	
	B)	decision making techniques		
	C)	aids to determine cost implication	of pro	ject
	D)	aids to the decision maker.		
196.		rder to investigate the shortcomi oved procedure, the analysis carrie	_	•
	A)	work analysis	B)	motion analysis
	C)	time and motion analysis	D)	operation analysis.
197.	Pre-j	olanning		
	A)	is the end of all planning	B)	is the beginning of control
	C)	culminates in routing	D)	is the substance of control.
198.	Load	ling consists of		
	A)	determination of when is to be don	е	
	B)	determination of requirements and	contr	ol of men and machines
	C)	determination of requirements and	contr	ol of materials
	D)	determination of requirements and	contr	ol of tools.
199.	The	first free trade zone in India was es	tablis	hed at
	A)	Cochin	B)	Madras
	C)	Bombay	D)	Delhi.
200.	An o	organisation containing manufacturi	ng, m	arketing and finance is called
	A)	matrix organisation	B)	functional organisation
	C)	flow network organisation	D)	modular organisation.

(SPACE FOR ROUGH WORK)

(SPACE FOR ROUGH WORK)