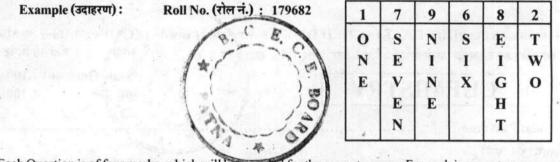
	rest bookLet-2016 (परीक्षा-पुस्तिका-२०१६)	
B1MC6	Test Booklet No. परीक्षा-पुस्तिका संख्या	219633
This Test Booklet contains UNATTA इस परीक्षा-पुस्तिका के अन्दर असंलग्नित ओ.एग Subject : विषय : CHEMISTRY . Candidate's Name :	म.आर. उत्तर-पत्रक रखाहुआ है ।)	.) (TIME : 1 Hour 30 Minute समप्र : 1 घंटा 30 मिनट Naco Questions : 100 कुल प्रान्न : 100
. Candidate's Full Sig. : (परीक्षार्थी का पूरा हस्ताक्षर) . Roll No. (Fill in digits and words : रोल नं. [उदाहरण (निर्देश संख्या 2) में दिर		गंकों तथा घल्टों में भरें।
राल नः [उदाहरण (ानवरा सख्या 2) न वि	जार गय जनुसार जयन राल नन्यर का प	गवत राजा राज्या न नरा
		THE END OF EXAMINATION SUBMIT THIS BOOKLET ONGWITH THE USED OMR
		SUBMIT THIS BOOKLET
. Exam. Centre :		SUBMIT THIS BOOKLET

INSTRUCTIONS TO CANDIDATES (परीक्षार्थियों के लिये निर्देश)

(A) General (सामान्य) :

. This Booklet contains 24 Pages (apart from the OMR answer-sheet). इस परीक्षा-पुस्तिका में ओ.एम.आर. उत्तर-पत्रक के अतिरिक्त 24 पृष्ठ हैं।

Before attempting the question paper kindly check that Test Booklet No. & OMR Answer Sheet No. match with each other. If they do not match with each other, replace Test Booklet and OMR Answer Sheet immediately. प्रइन-पत्र को हल करने से पहले कृपया जाँच लें कि परीक्षा पुस्तिका संख्या और OMR उत्तर पत्रक संख्या एक समान होने चाहिए । यदि ये समान नहीं हैं तो परीक्षा पुस्तिका और OMR उत्तर-पत्रक तुरन्त बदलवा लें प्र


As soon as the booklet is distributed, Examinees are directed to confirm the number of pages, legibility of printing etc. They must also confirm that the Bar Code is printed in such a way that its one portion is printed on part-I of the answer-sheet and the remaining portion is printed on part-II of the answer-sheet. No complaints will be entertained for exchange of booklet later than 10 minutes after distribution.

for exchange of booklet later than 10 minutes after distribution. जैसे ही यह पुस्तिका वितरित की जाती है वैसे ही प्रत्येक परीक्षार्थी को चाहिये कि वह इसके पूछी की संख्या और छपाई की शुद्धता आदि की सम्यक् जाँच कर ले । प्रत्येक परीक्षार्थी को यह भी सुनिश्चित कर लेना चाहिये कि उत्तर-पत्रक पूछी की संख्या और छपाई की शुद्धता आदि की हस्सा उत्तर-पत्रक के पार्ट-I पर और बाकी हिस्सा उत्तर-पत्रक के पार्ट-II पर पड़े । बँटने के दस मिनट के बाद परीक्षा-पुस्तिका को बदलने के लिये कोई शिकायत स्वीकार नहीं की जायेगी ।

Continued on inside cover page. (आवरण पृष्ठ के अन्दर वाले भाग पर देखें ।) 2. Roll No. should be written in digits as well as in words in the appropriate Box provided at serial-3 above on the upper portion of the front cover page of this Test Booklet as per the example given below :

परीक्षा-पुस्तिका के मुख पृष्ठ के ऊपरी भाग के क्रम 3 में बनाये गये सम्बन्धित बॉक्स में नीचे दिये गये उदाहरण के अनुसार रोल नम्बर को अंकों तथा शब्दों में लिखना है :

 Each Question is of four marks, which will be awarded for the correct answer. For each incorrect answer one mark will be deducted from the total marks obtained. Zero mark will be given for Questions not answered. More than one Answer indicated against a Question will be declared as incorrect Answer.

प्रत्येक प्रश्न के लिये चार अंक निर्धारित हैं जिन्हें सही उत्तर के लिये दिया जायेगा । प्रत्येक गलत उत्तर के लिये एक अंक कुल प्राप्तांकों में से काट लिया जायेगा । जिस प्रश्न का उत्तर नहीं दिया जायेगा उसके लिये शून्य अंक दिया जायेगा । यदि एक प्रश्न के लिये एक से अधिक उत्तर दिये जायेंगे तो उन सभी को उस प्रश्न के लिये गलत उत्तर माना जायेगा ।

 Use of Calculator/Slide Rule/Log Table/Graph Paper/Charts or any electronic gadget eg. Mobile Phone, Bluetooth, Pager etc., is not allowed.

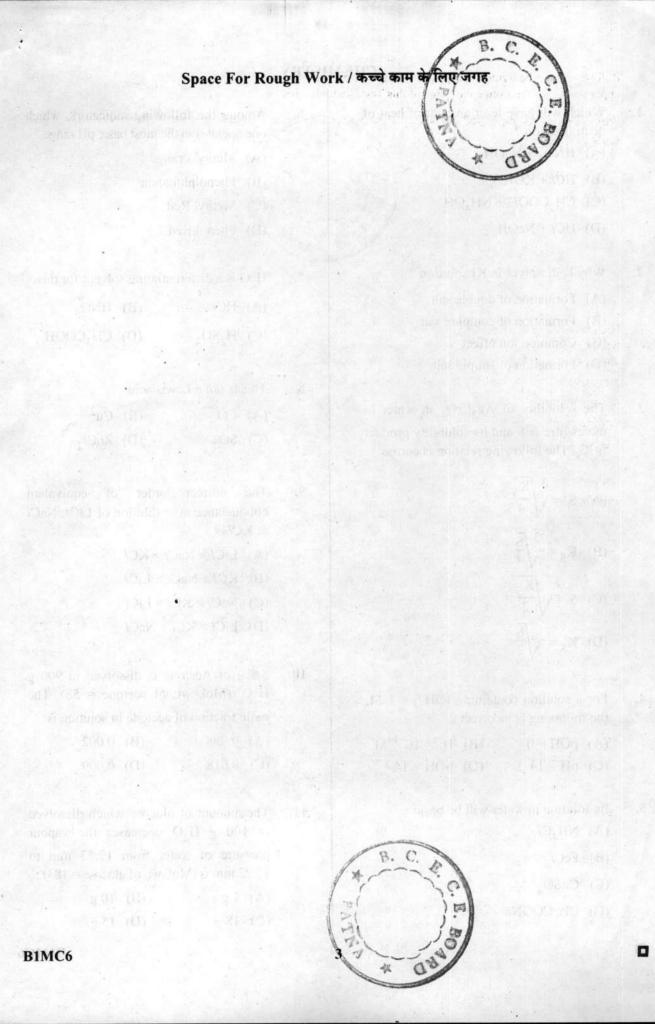
कैलकुलेटर/स्लाइड रूल/लॉग टेबुल/ग्राफ पेपर/चार्ट्स या किसी प्रकार के इलेक्ट्रॉनिक उपकरण यथा मोबाइल फोन, ब्लूटूथ, पेजर आदि का उपयोग वर्जित है ।

5. If there is any difference between English version and the corresponding translated version in Hindi of any question, then the English version will be treated as authentic.

यदि अंग्रेजी में मुद्रित किसी प्रश्न और उसके हिन्दी अनुवाद में कोई भिन्नता हो तो अंग्रेजी में मुद्रित प्रश्न ही मान्य होगा ।

6. Any candidate attempting or using unfair means or copying or detaching any page of question booklet or marking the answer on the question booklet will be expelled and his candidature will be rejected. यदि कोई परीक्षार्थी नकल करते, गलत तरीके अपनाते, परीक्षा-पुस्तिका का पृष्ठ फाइते या उस पर उत्तर लिखते पाया जायेगा तो उसे परीक्षा

से निष्कासित कर दिया जायेगा और उसकी उम्मीदवारी रदद कर दी जायेगी।


- 7. Candidates must also follow the instructions, which may be given by the Centre Superintendent from time to time. परीक्षा केन्द्र के केन्द्राधीक्षक द्वारा समय-समय पर दिये गये निर्देशों का सभी परीक्षार्थियों को पालन करना होगा ।
- ADDITIONAL BOOKLET/ANSWER-SHEET WILL NOT BE PROVIDED GNDER ANY CIRCUMSTANCES OTHER THAN THAT MENTIONED IN 1 ABOVE.
 क्रम 1 में वर्णित परीक्षा-पुस्तिका एवं उत्तर-पत्रक के अतिरिक्त अलग से कोई अन्य परीक्षा-पुस्तिका और उत्तर-पत्रक किसी भी परिस्थिति में नहीं दिया जायेगा ।
- 9. CANDIDATES MUST SUBMIT THE WHOLE BOOKLET ALONG WITH THE OMR ANSWER-SHEET AT THE END OF EXAMINATION.

2

परीक्षा की समाप्ति पर उत्तर-पत्रक के साथ पूरी परीक्षा-पुस्तिका जमा कर देनी है ।

- (B) Process for Filling up Part-I of Answer-Sheet (उत्तर-पत्रक पार्ट-I को भरने की प्रक्रिया) :
- 1. ANSWER-SHEET IS OF OMR TYPE TO BE READ BY COMPUTER SCANNER.

उत्तर-पत्रक ओ.एम.आर. प्रकार का है जिसे कम्प्यूटर स्कैनर द्वारा पढ़ा जाना है ।

CHEMISTRY

8

6.

60

7.

Which will have least amount of heat of 1. neutralization?

(A) HNO₃ + NaOH

- (B) HCl + KOH
- (C) CH₃COOH+ NH₄OH
- (D) HCl + NaOH
- Why I2 dissolves in KI solution ? 2.
 - (A) Formation of double salt
 - (B) Formation of complex salt
 - (C) Common ion effect
 - (D) Formation of simple salt
- The solubility of Ag₂CrO₄ in water in 3. moles/litre is S and its solubility product is K_s. The following relation is correct :
 - (A) $S = \sqrt[3]{\frac{K_S}{4}}$ (B) $K_{\rm S} = \sqrt[3]{\frac{\rm S}{4}}$ (C) $S = \sqrt{\frac{K_S}{2}}$ (D) $K_s = \sqrt{\frac{s}{2}}$
- For a solution containing $[OH^-] = 1 M$, 4. the following is incorrect :

(B) $H^+ = 10^{-14}M$ (A) pOH = 0(C) pH = 14

- (D) pOH = 14
- 5. Its solution in water will be basic
 - (A) NH₄Cl
 - (B) FeCl₃
 - (C) $CuSO_4$

(D) CH₃COONa

Among the following indicators, which one operates in the most basic pH range? (A) Methyl orange

(B) Phenolphthalein (C) Methyl Red (D) Phenol Red

H₂O is a differentiating solvent for this.

(A)	HC/	(B) HNO ₃
(C)	H ₂ SO ₄	(D) CH ₃ COOH

- 8. This is not a Lewis acid.
 - (B) Cu^{2+} (A) CO (D) ZnCl₂ (C) SO₃
- 9. correct order The of equivalent conductance at ∞ dilution of LiCl, NaCl & KCl is
 - (A) LiCl > NaCl > KCl
 - (B) KCl > NaCl > LiCl
 - (C) NaCl > KCl > LiCl
 - (D) LiCl > KCl > NaCl

10. 5.8 g of Acetone is dissolved in 900 g H_2Q . (Mol. wt. of acetone = 58). The mole fraction of acetone in solution is

(A) 0.998	(B)	0.002
(C) 0.018	(D)	0.009

50

-14

11. The amount of glucose which dissolved in 100 g H₂O decreases the vapour pressure of water from 17.53 mm to 17.22 mm is (Mol. wt. of glucose = 183):

(A)	1 g	(B)	10 g
(C)	18 g	(D)	15 g

रसायन-शास्त्र

1. किसकी उदासीनीकरण ऊष्मा न्यूनतम होगी?

(A) HNO₃ + NaOH

- (B) HC/ + KOH
- (C) $CH_3COOH + NH_4OH$
- (D) HCl + NaOH
- 2. I, क्यों KI विलयन में घुलनशील है ?
 - (A) द्विक लवण का बनना
 - (B) संकुल लवण का बनना
 - (C) सम-आयन प्रभाव
 - (D) सरल लवण का बनना
- 3. Ag_2CrO_4 की जल में मोल/लिटर में विलेयता S है और इसका विलेयता गुणनफल K_S है । निम्न संबंध सत्य है :

(A)
$$S = \sqrt[3]{\frac{K_S}{4}}$$

(B) $K_S = \sqrt[3]{\frac{S}{4}}$
(C) $S = \sqrt{\frac{K_S}{2}}$
(D) $K_S = \sqrt{\frac{S}{2}}$

 एक विलयन जिसमें [OH⁻] = 1 M है, निम्म उसके लिए असत्य है:

> (B) $H^+ = 10^{-14}M$ (D) pOH = 14

- (A) pOH = 0
- (C) pH = 14
- 5. इसका जल में विलयन क्षारीय होगा
 - (A) NH_4Cl
 - (B) FeCl₃
 - (C) CuSO₄
 - (D) CH₃COONa
- B1MC6

6. निम्न सूचकों में से किसका रंग परिवर्तन का pH
परिसर सर्वाधिक क्षारीय है ?
(A) मेथिल ओरेंज
(B) फीनॉलपथेलिन
(C) जोगिल रेड
(D) फीनॉल रेड

- 7. H₂O इसके लिए विभेदी विलायक है
 - (A) HC/ (B) HNO_3 (C) H_2SO_4 (D) CH_3COOH
- 8. यह लूइस अम्ल नहीं है

(A)	СО	(B)	Cu ²⁺
(C)	SO3	(D)	ZnCl ₂

- ∞ तनुता पर LiCl, NaCl और KCl की तुल्यांकी चालकता का सही क्रम है
 - (A) LiCl > NaCl > KCl
 - (B) KCl > NaCl > LiCl
 - (C) NaCl > KCl > LiCl
 - (D) LiCl > KCl > NaCl

10.

1

8. C.

03

5

900 ग्राम जल में एसीटोन के 5.8 ग्राम घोले गये (एसीटोन का अणुभार = 58)। विलयन में एसीटोन का मोल प्रभाज है

(A)	0.998	(B)	0.002
(C)	0.018	(D)	0.009

 कितना ग्लूकोस 100 ग्राम H₂O में घोलने पर जल का वाष्प दाब 17.53 mm से घटकर 17.22 mm हो

जाएगा (ग्लूकोस का अणुभार = 183) ?

(A)	1 g	(B)	10 g
(C)	18 g	(D)	15 ġ

- 12. The aqueous solution of an organic compound was made with 6 g of it in 100 g water. Its boiling point is 100.51 °C. If K_b for water = 0.51 °C molai ¹, the molecular weight of the compound is
 - (A) 51 (B) 60
 - (C) 79 (D) 101
- C₆H₅COOH associates in benzene into a dimer. The ratio of Van't Hoff factors of C₆H₅COOH in this solution to aqueous solution of NaCl is
 - (A) 1:4
 (B) 1:1
 (C) 1:2
 (D) 2:1
- 14. The product of $CO + 2H_2$ CuO + ZnO + Cr₂O₃

300 °C , 200 atm 15

- (А) НСНО
- (B) HCOOH
- (C) (CH₃CO)₂O
- (D) CH₃OH
- 15. Addition of 1 2% Ethyl alcohol is mixed with CHCl₃ & during its storage, it functions as
 - (A) Negative catalyst
 - (B) Oxidising agent
 - (C) Reducing agent
 - (D) Positive catalyst
- 16. In oxidation of oxalic acid by $KMnO_4 + H_2SO_4$, the following acts as an autocatalyst :
 - (A) K^+ (B) Mn^{2+}

(D) SO_4^{2-}

(C) CO₂

17. Generally, yeast is not its source :

(A) Invertase
(B) Zymase
(C) Diastase
(D) Maltase

B

- 18. The equilibrium constant for N₂ + O₂ ⇒ 2NO is 4 × 10⁻⁴ at 200 K. Use of a catalyst led to increase in rate by 10 times. Its equilibrium constant now is
 - (A) 40×10^{-4}
 - (B) 20×10^{-4}
 - (C) 4×10⁻⁴
 - (D) 2×10^{-4}
- **19.** The lower limit for the size for a solute particle to be colloidal is about

(A) 50 Å	(B) 1000 Å
(C) 2000 Å	(D) 5000 Å

- 20. Milk is (A) Aerosol
 - (C) Sol (D) Emulsion

(B) Foam

Its solution in water is an example of an irreversible colloid.

(A) Starch (B) Protein (C) Gum (D) As₂S₃

Purple of Cassius consists of

(A)	Au	(B)	Ag.	
(C)	S	(D)	Fe(OH) ₃	

B1MC6

12.	एक कार्बनिक यौगिक के जलीय विलयन में 6 ग्राम	117.cc	The second secon	त नहीं है :
	पदार्थ 100 ग्राम जल में घुला है । यदि इस विलयन का	2	(A) इन्वर्टेस	an all and a good a
	क्वथनांक 100.51 °C है और जल का $K_b = 0.5$		(B) जाइमेस	ana an in an
	°C molal ⁻¹ है, तो पदार्थ का अणुभार है	1	() डायस्टेस	
	(A) 51 (B) 60 (C) 79 (D) 101	OYKO	(D) माल्टेस	
13.	C ₆ H ₅ COOH वेन्जीन विलयन में संगुणित हो द्वितय	18.		2NO का 200 K पर साम्य
	बनाता है । इसके वांट हॉफ गुणक का NaCl के जलीय		स्थिरांक 4×10^{-4}	है। उत्प्रेरक का प्रयोग करने पर
	विलयन के वांट हॉफ गुणक का अनुपात है		दर 10 गुणा बढ़ गयी	है। अब इसका साम्य स्थिरांक है
	(A) 1:4 (B) 1:1		(A) 40×10^{-4}	Stringer Maria
	(C) 1:2 (D) 2:1		(B) 20×10^{-4}	
	0.0.17.0.10.0		(C) 4×10^{-4}	
14.	$CO + 2H_2 \xrightarrow[300 °C, 200 \text{ atm}]{CuO + ZnO + Cr_2O_3} \overline{\Phi}$		(D) 2×10^{-4}	
	उत्पाद है	19.	एक वितरित कण को	। कोलॉइडी होने के लिए उसके
	(А) НСНО		साइज की न्यूनतम सी	मा है लगभग
	(B) HCOOH		(A) 50 Å	(B) 1000 Å
	(C) (CH ₃ CO) ₂ O (D) CH ₃ OH		(C) 2000 Å	(D) 5000 Å
15.	CHCl3 को लम्बे समय के लिए रखने के लिए उसमें 🤻	B. 20.	दूध है	
	1 – 2% एथिल एल्कोहॉल मिला दिया जाता है । यह	5	(A) एरोसॉल	(B) फेन
	इस प्रकार कार्य करता है :)	(0) सॉल	(D) पायस
	(A) ऋणात्मक उत्प्रेरक	GNY O	/	
	(B) ऑक्सीकारक	H.	इसका जलीय विलयन	न एक अनुत्क्रमणीय कोलॉइड का
	(C) अपचायक		उदाहरण है	
	(D) धनात्मक उत्प्रेरक		(A) स्टार्च	(B) प्रोटीन
			(C) गोंद	(D) As ₂ S ₃
16.	ऑक्सेलिक अम्ल के $KMnO_4 + H_2SO_4$ द्वारा			
	ऑक्सीकरण में, निम्न स्व-उत्प्रेरक का कार्य करता है :	22.	पर्पल ऑफ कैसियस मे	में होता है
	(A) K ⁺ (B) Mn ²⁺		(A) Au	(B) Ag
	(C) CO_2 (D) SO_4^{2-}		(C) S	(D) $Fe(OH)_3$

B1MC6

7

- 23. H_2S is used with fresh precipitate of As_2S_3 as:
 - (A) Solubilization agent
 - (B) Peptising agent
 - (C) Reducing agent
 - (D) Oxidising agent
- 24. This is important in stabilization of a colloidal solution.
 - (A) Diffusibility
 - (B) Tyndall effect
 - (C) Brownian motion
 - (D) Aggregation
- 25. The ΔH_f for $H_2S_{(g)}$, $SO_{2(g)}$ and $H_2O_{(l)}$ are - 5.20, -70.90 and -68.40 kCal mol⁻¹ respectively. The heat of reaction $2H_2S_{(g)} + SO_{2(g)} \rightarrow 3S + 2H_2O_{(l)}$ is
 - (A) 55.50 kCal
 - (B) + 55.50 kCal
 - (C) -81.30 kCal
 - (D) 136.80 kCal
- 26. ΔH for $C_6H_{6(l)} + 3H_{2(g)} \rightarrow C_6H_{12(l)}$ and $C_6H_{10(l)} + H_{2(g)} \rightarrow C_6H_{12(l)}$ are -205 kJ mol⁻¹ and -119 kJ mol⁻¹ respectively. The resonance energy for \neq C_6H_6 (benzene) is
 - (A) -357 kJ mol^{-1}
 - (B) $+ 357 \text{ kJ mol}^{-1}$
 - (C) 152 kJ mol⁻¹
 - (D) -152 kJ mol^{-1}

27. Which one is an organic compound ?

(A) H_2CO_3 (B) HCN (C) $NH_2.CO.NH_2$ (D) CS₂

B. C

0 y & D

3

- 28. Carbon shows catenation since
 - (A) It has valence of 4.
 - (B) C C bond energy is high.
 - (C) atomic radius is small.
 - (D) It can bond with O & H.
- **29.** The following can be purified by sublimation :
 - (A) $(COOH)_2$
 - (B) C₆H₅COOH
 - (C) $C_6H_5NH_2$
 - (D) CH₃COCH₃
- **30.** What was the first chromatographic material used by Tswett ?
 - (A) SiO_2
 - (B) Cellulose

(C) CaCO₃.

V

8

24

31. The stationary phase | mobile phase in TLC are :

(A Bolid | Gas

- (B) Solid | Liquid
- (C) Liquid | Liquid
- (D) Liquid | Solid

- 23. H2S का As2S3 के ताजा अवक्षेप के साथ प्रयोग में
 - H2S इसका कार्य करता है :
 - (A) विलायक
 - (B) पेप्टीकारक
 - (C) अपचायक
 - (D) ऑक्सीकारक
- 24. कोलॉयडी विलयनों के स्थायित्व के लिए यह महत्वपूर्ण है
 - (A) विसरणता
 - (B) टिन्डल प्रभाव
 - (C) ब्राउनी गति
 - (D) समूहन
- 25. $H_2S_{(g)}$, $SO_{2(g)}$ और $H_2O_{(l)}$ की ΔH_f क्रमश: - 5.20, -70.90 और -68.40 kCal mol⁻¹ \overleftarrow{e} | अभिक्रिया $2H_2S_{(g)}$ + $SO_{2(g)}$ → $3S + 2H_2O_{(l)}$ की ऊष्मा है
 - (A) 55.50 kCal
 (B) + 55.50 kCal
 (C) 81.30 kCal
 (D) 136.80 kCal
- **26.** $C_6H_{6(l)} + 3H_{2(g)} \rightarrow C_6H_{12(l)}$ और $C_6H_{10(l)} + H_{2(g)} \rightarrow C_6H_{12(l)}$ के लिए ΔH क्रमश: - 205 kJ mol⁻¹ और - 119 kJ mol⁻¹ हैं C_6H_6 (बेन्जीन) की अनुनाद ऊर्जा है (A) - 357 kJ mol⁻¹ (B) + 357 kJ mol⁻¹ (C) 152 kJ mol⁻¹
 - (D) -152 kJ mol^{-1}

- निम्न में से कौन सा कार्बनिक यौगिक है ?
- (A) H_2CO_3
- (B) HCN

27

QAAO

1

- (C) NH₂.CO.NH₂
- (D) CS₂
- 28. कार्बन शृंखलित होने का गुण दर्शाता है क्योंकि
 - (A) इसकी संयोजकता 4 है।
 - (B) C C बन्धन ऊर्जा उच्च है।
 - (C) इसके परमाणु का रेडियस छोटा है।
 - (D) यह O और H के साथ बन्धन कर सकता है।
- 29. निम्न का ऊर्ध्वपातन द्वारा शोधन किया जा सकता है :
 - (A) (COOH)₂
 - (B) C₆H₅COOH
 - (C) C₆H₅NH₂
 - (D) CH₃COCH₃
- 30. स्वैट ने सर्वप्रथम किस पदार्थ को वर्णलेखन में प्रयोग किया?
 - (A) SiO₂
 - (B) सैल्युलोज
 - (C) CaCO₃
 - (D) स्टार्च

31. तनु स्तर वर्णलेखन में स्थिर प्रावस्था और गतिशील

- े मावरथा हैं :
 - (A) ठोस | गैस
 - (B) ठोस | द्रव
 - (C) द्रव | द्रव
 - (D) द्रव | ठोस

32.	Lassaigne's test is not used for testing its presence.	38.	The number of chain isomers of octane are
	(A) N (B) C/	B. C.	MA 9
	(C) I (D) P		(B) 18 (C) 6
33.	What is "wood spirit"? (A) CH ₃ OH	0.9 V	
	 (B) CH₃CH₂OH (C) CH₃COCH₃ 	39.	Of all the possible conformations of n-butane, the one with the following angle of rotation is most stable :
	(D) CH ₃ COOH		(A) 0°(B) 60°
34.	$C_n H_{2n+2} O$ is the general formula of		 (C) 120° (D) 240°
	(A) Alkanals(B) Alkanones	40	37 He h. (3)
	(C) Alkanols(D) Alkyl Alkanoates	40.	Starting with CH ₃ COOK, Kolbe's electrolytic method liberates the following on cathode :
	(D) Aikyi Aikailoates	atres	(A) CH ₄
35.	The number of optical isomers of a compound with n asymmetric C atoms is		(B) CO ₂ (C) H ₂
	(A) 2^n (B) n^2		(D) $C_2 H_6$
	(C) $\frac{n}{2}$ (D) 2n	41.	Clemmensen reduction uses :
36.	This group shows + I effect :		(A) $Zn - Hg + Conc. HC/$
	(A) NO ₂ (B) CN	man	(B) Na
	(C) CHO (D) COO ⁻	B. C.	(D) Ni
37.	Which one will have odd number of electrons?	42.	What is Lindlar's catalyst ?
	(A) Methyl cation	03	(A) $Pd CaCO_3 + (CH_3COO)_2Pb$
	(B) Methyl anion		(B) Alkaline KMnO ₄
	(C) Methyl radical		(C) Acidic KMnO ₄
	(D) Methane		(D) Zinc dust
•	10)	B1MC6

32.	लैसेने परीक्षण इसकी उपस्थिति की पहचान के लिए 🕴 3	8. ऑक्टेन के शृंखला समावयवी की संख्या है
	उपयोग में नहीं लाया जाता :	Colo 9
	(A) N (B) C/	(H) 18
	(C) I (D) P	1. 20 6
	"az (1)();" am a) () \$ 2	(D) 11
33.	"वुड स्पिरिट" क्या होती है ?	
	(A) CH ₃ OH 3	9. n-ब्यूटेन के सभी संभावित संरूपणों में से, वह संरूपण
	(B) CH ₃ CH ₂ OH	जिसमें घूर्णन कोण निम्न होता है, वह सबसे स्थायी है :
	(C) CH ₃ COCH ₃	(A) 0°
	(D) CH ₃ COOH	(B) 60°
		(C) 120°
34.	C _n H _{2n+2} O इसका सामान्य सूत्र है	(D) 240°
	(A) एल्केनल	
	(B) एल्केनॉन 4	0. CH3COOK से प्रारंभ कर, कोल्बे की विद्युत-
	(C) एल्केनॉल	अपघटनी विधि में निम्न कैथोड पर मुक्त होती है :
	(D) एल्किल एल्केनोएट	(A) CH ₄
		(B) CO ₂
35.	एक यौगिक जिसमें n असममित C परमाणु है, उसके	(C) H ₂
	ध्रुवण-घूर्णक समावयवियों की संख्या है	(D) $C_2 H_6$
	(A) 2^n (B) n^2	
		1. क्लीमेन्सन अपचयन में प्रयोग होता है :
		(A) Zn – Hg + सांद्र HCl
36.	यह समूह + I प्रभाव दर्शाता है	(B) Na
	(A) NO ₂ (B) CN	(C) LIA/H4
	(C) CHO (D) COO-	(D) Ni
37.	किसमें इलेक्ट्रॉनों की संख्या विषम होगी ? 4	2. लिण्डलार उत्प्रेरक क्या है ?
	(A) मेथिल धनायन	(A) $Pd CaCO_3 + (CH_3COO)_2Pb$
	(B) मेथिल ऋणायन	(B) क्षारीय KMnO ₄
	(C) मेथिल मूलक	(C) अम्लीय KMnO ₄
	(D) मेथेन	(D) जिंक रज
B1M	IC6 11	
DIN		

43. The product of $CH \equiv CH \xrightarrow{(i) kMnO_4^\circ, OH^-}$ is (A) CH_3COOH

R. ()

44. The monomer for the polymer which is used for coating cooking vessels to make their surface non-sticking is

(A) $CH_2 = CH_2$

(B) COOH

COOH

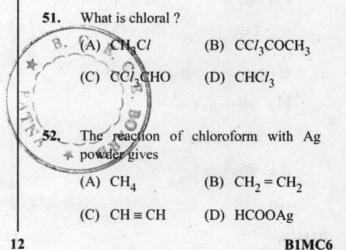
(D) CH₂CH₂OH

(C) CH₃CHO

- (B) $CH_2 = CHCl$
- (C) $CF_2 = CF_2$
- (D) $C_6H_5CH = CH_2$

45. The monomer for this polymer is prepared from cyclohexanone :

- (A) Nylon 66
- (B) Nylon 6
- (C) Dacron
- (D) Rubber


46. This polymer is present in cell walls of plants :

- (A) Starch
- (B) Chitin
- (C) Poly-isoprene
- (D) Cellulose

47. This contains hydrocarbons with carbons in the range of $C_{30} - C_{40}$:

(A) Paraffin wax (B) Kerosene

- (C) Bitumen (D) Petrol
- **48.** Bergius process converts the following into gasoline.
 - (A) $CO + H_2$
 - (B) Wood
 - (C) Coal + H_2
 - (D) $CO_2 + H_2$
- **49.** Ammonolysis of RX gives
 - (A) Amine(B) Amide(C) NH₃(D) RCN
- 50. $CH_3NC \xrightarrow{H^+} Will \text{ produce products}$ including :
 - (A) CH₃COOH
 - (B) CH₃CONH₂
 - (C) CH₃CH₂NH₂
 - (D) HCOOH

