147/2015

Maximum: 100 marks

Time: 1 hour and 15 minutes

1.	A cycle co	onsists of two isothermal and two ise	ntropic p	processes is known as:
	(A)	Otto cycle	(B)	Joule cycle
	(C)	Stirling cycle	(D)	Carnot cycle
2.	In an isor	netric projection the radius of a sphe	re it is e	equal to :
	(A)	0.82 R	(B)	R
	(C)	1.22 R	(D)	2 R
3.	The funct	ion of steam nozzle is to convert:		
	(A)	heat energy steam into kinetic energy	rgy	
	(B)	heat energy steam into rotational e	energy	
	(C)	kinetic energy into heat energy of s	steam	
	(D)	heat energy steam into pressure en	nergy	
4.	Dryness f	raction is the ratio of :		
	(A)	mass of dry steam to the mass of w	ater vap	oour in suspension
	(B)	mass of water vapour in suspensio steam	n to the	mass of water vapour and mass of dry
	(C)	mass of dry steam to the mass suspension	of dry	steam and mass of water vapour in
	(D)	mass of water vapour in suspension	n to the	mass of dry steam
5.		rmal efficiency of Carnot heat engin terator working within the same tem	The second secon	percent, then coefficient of performance e limit would be:
	(A)	1	(B)	2
	(C)	3	(D)	4
6.	During th	rottling process:		
	(A)	internal energy does not change	(B)	pressure does not change.
	(C)	volume does not change	(D)	enthalpy does not change
7.	Which on system?	e of the following parameter is sign	nificant	to ascertain chemical equilibrium of a
	(A).	Clapeyron of equation	(B)	Maxwell relation
	(C)	Gibb's function	(D)	Helmholtz function

		of anthon in cast iro	n usually varies be	tween:
8.	The percent	age of carbon in cast iro	(B)	0.5 to 1.0%
	(A) (1 to 0.2 %	(D)	2.5 to 3.5%
	(C) 1	.5 to 2.5%		
9.	Martensite	is a supersaturated solu	tion of carbon in:	
9.		Alpha iron	(B)	Beta iron
		Gamma iron	(D)	Delta iron
	(0)			
10.	Dislocation	in materials is a	defect.	
	(A)	Point	(B)	Line
	(C)	Plane	(D)	Volumetric
			f 0 15 to 0	3 m The ratio of the new discharge to
11.	The head o	ver a 90° V-notch increa	ases from 0.13 to 0	.3 m. The ratio of the new discharge to
		l discharge is :	(B)	2.25
		1.414	(D)	5.657
	(C)	4.00		
12.	A floating	body will remain in stab	le equilibrium so lo	ong as:
	(A)	the metacentre M lies b	elow the centre of	gravity
	(B)	the metacentre M lies a	bove the centre of	gravity
	(C)	the metacentre and cen	tre of gravity rema	in at the same position
	(D)	None of these		
				11 lister of from the surface to a noin
13.	The nomin	nal thickness of boundar	y layer represents	the distance from the surface to a poin
	where:			
	(A)	the flow ceases to be la		:
	(B)	velocity is 99 percent of		
	(C)	the shear stress become		
	(D)	the flow behaves as if i	t were rotational	
14	A nitot-tu	be is an instrument for i	neasuring:	
14	(A)	pressure of flow	(B)	discharge of fluid
	(C)	velocity of flow	(D)) total energy
15	. The speci	fic speed $Ns = (N\sqrt{Q})/$	$H^{3/4}$ for a double	suction pump is to be evaluated. The
		would be taken:		
	(A)	half the actual dischar	ge (B	
	(C)	double the actual disch	/D) square of the actual discharge

(C) double the actual discharge

16.	If two pu	amps identical in all respects and are connected in series, the result	d each capab	le of delivering a discharge e is :	e Q against a
	(A)		(B)	2Q against a head H	
	(C)	Q against a head 2H	(D)	Q against a head H.	
17.	The power A pelton (A)	er obtained from an impulse tur turbine with six nozzles has a sp 1.35	bine is propo ecific speed ((B)	ortional to the number of rof 8.1. The specific speed po	nozzles used. er nozzle is :
	(C)	3.3	(D)	8.1	
18.	During io	lling of a petrol engine requires:			
	(A)	chemically correct mixture	(B)	variable mixture	
	(C)	lean mixture	(D)	rich mixture	
19.	In invest	ment casting the pattern:			
	(A)	is made of wax			
	(B)	is made of plastic			
	(C)	is always made of the material	to be cast		
	(D)	is not used			
20.	In the Or	sat apparatus KOH solution is u	sed to absorb	ı:	
	(A)	carbon monoxide	(B)	carbon dioxide	
	(C)	oxygen	(D)	none of the above	
21.	For the sa	ame compression ratio:			
	(A)	thermal efficiency of otto cycle	is greater tha	an that of diesel cycle	
	(B)	thermal efficiency of otto cycle:			
	(C)				
	(D)				
22.	The knock	king in SI engine gets reduced:			
	(A)	by increasing the compression i	ratio		
	(B)	by retarding the spark advance		900	
	(C)	by increasing the inlet air temp	erature		
	(D)	by increasing the cooling water	temperature		
23.	Where is	the Hook's joint used in an auton	nobile?		
	(A)	between gearbox and propeller	shaft	technological acceptance	
	(B)	between flywheel and clutch			
	(C)	between differential gear and w	heel		
	(D)	between clutch and gear box			
1			5		147/2015
					[P.T.O.]

24.	Work inpu	t to the air compressor with n a	s index of co	mpression:
24.	(A)	increases with increase in valu	e or n	
	(B)	decrease with increase in value		
	(C)	remains same whatever the va		
	(D)	first increases and then decrea	ses with valu	ue of n
		a: .: .: .: .:		
25.		refrigeration is equivalent to:	(B)	210 kJ/min
	(A)	336 kJ/min	(D)	540 kJ/min
	(C)	1400 kJ/min	(D)	540 Ke/IIIII
26.	The therm	nal conductivity is expressed as		
	(A)	W/mK	(B)	W/m ² K
	(C)	W/hmK	(D)	W/h²m²K
27.	In SI eng	ines which one of the following	g is the corr	rect order of the fuels with increasing
21.		n tendency:		
	(A)	Paraffins, Olefins, Naphthenes	s, Aromatics	
	(B)	Aromatics, Naphthenes, Paraf	fins, Olefins	
	(C)	Naphthenes, Olefins, Aromatic	es, Paraffins	
	(D)	Aromatics, Napthenes, Olefins	s, Paraffins	
				of Durandel number and t
28.		elt number in natural convection		
	(A)	Stanton number	(B)	Biot number
	(C)	Reynolds number	(D)	Grashoff number
29.	Which of	the following properties of a refr	rigerant is ur	ndesirable?
	(A)	high critical temperature	(B)	low specific heat of liquid
	(C)	low specific volume vapour	(D)	high boiling point
30.	The emis	sivity of a hody is equal to	absorptivity	when the body remains in thermal
30.		m. This law refers to as:		
	(A)	Planck's law	(B)	Lambert's law
	(C)	Kirchoff's law	(D)	Wien's displacement law
31.	In a rono	ur compression cycle the conditi	on of refriger	rant is saturated liquid:
31.	(A)	before entering the compressor		ano io batta atota inquia
	(A) (B)	before passing through the cor		
	(E)	after passing through the cond		
		after passing through the expa		
	(D)	arter passing through the expa	inston valve	

6

. 147/2015

32.	Which of	the following processes is generally us	sed in v	vinter air conditioning?				
	(A)	dehumidification	(B)	humidification				
	(C)	cooling and dehumidification	(D)	heating and humidification				
33.	Upto criti	ical radius of insulation the heat flow						
	(A)	decreases						
	(B)	increases						
	(C)	heat flux decreases						
	(D)	convection heat loss is less than con-	duction	heat loss				
34.	As relativ	ve humidity decreases the dew point w	rill be —	wet bulb temperature.				
	(A)	higher than	(B)	equal to				
	(C)	lower than	(D)	none of the above				
35.				oke engine having an identical cylinder				
	size running at 1500 rpm. The theoretical output of the two stroke engine will be:							
	(A)	twice that of the four stroke engine						
	(B)	half that of the four stroke engine						
	(C)	the same as that of the four stroke e						
	(D)	depend upon whether it is a CI or SI	engine					
36.		reason for adopting the axial flow cot turbine is that:	mpress	sors instead of centrifugal compressors				
	(A)	starting torque for axial flow compre	essor is	high				
	(B)	(B) the frontal area of axial flow compressor is considerably less						
	(C)	the efficiency of middle speed range is higher						
	(D)	pressure ratio per stage is high						
37.	Morse tes	t measures the indicated power of:						
	(A)	SI engine	(B)	CI engine				
	(C)	Steam engines	(D)	Steam turbine				
38.	Which one	e of the following is a lower pair?						
	(A)	cam and follower	(B)	toothed gearing				
	(C)	shaft in a bearing	(D)	ball and race in bearing				
39.	Coriolis co	omponent of acceleration is present ex	ists wh	enever a point moves along a path that				
	(A)	tangential acceleration	(B)	centripetal acceleration				
	(C)	linear motion	(D)	rotational motion				

40. The speed of an engine is seen to fluctuate Continuously above and below mean spegovernor is said to be:				ously above and below mean speed. The
	(A)	isochronous	(B)	hunting
	(C)	over sensitive	(D)	unstable
41.	Which m	otor will be suitable for tra	action?	
	(A)	DC series motor	(B)	DC shunt constant speed
	(C)	DC shunt adjustable spe	eed (D)	compound motor
42.	When tw		olute profiles on t	heir tooth engage the line of action is
	(A)	pitch circle	(B)	dedendum circle
	(C)	addendum circle	(D)	base circle
43.	Crowning	of pulleys is generally do	ne:	
	(A)	to reduce the belt friction	n	
	(B)	to dissipate the heat gen	erated due to frict	ion
	(C)	to perfect the belt joint s	o that it may not b	reak while running
	(D)	to prevent the belt from	running of the pul	ley
44.		supported beam of span I bending moment of:	0 m carrying a loa	ad of 500 N at the midspan will have a
	(A)	500 Nm	(B)	1250 Nm
	(C)	2500 Nm	(D)	5000 Nm
45.		eter of shaft is increased d. How many times the to		00 mm all other conditions remaining city increases?
	(A)	2 times	(B)	4 times
	(C)	8 times	(D)	16 times
46.		ression coil spring of stiff ne equivalent spring stiffn		t into two equal parts and the used in
	(A)	10 N/m	(B)	20 N/m
	(C)	40 N/m	(D)	80 N/m
47.	A differen	tial gear in an automobile	is:	
	(A)	simple gear train	(B)	epicyclic gear train
	(C)	compound gear train	(D)	none of these
1 471	2015		0	

48.	8. The engine of an aeroplane rotates in clockwise direction when seen from the tail end and the aeroplane takes turn to left. The effect of gyroscopic couple on the aeroplane will be:				
	(A)	to raise the nose and dip the tail	(B)	to dip the nose and raise the tail	
	(C)	to raise the nose and tail	(D)	to dip the nose and tail	
49.		notive the ratio of the connecting rod ler	ngth to	crank radius is kept large in order to:	
	. (A)	minimise the effect of primary force	(B)	minimise the effect of secondary force	
	(C)	have perfect balancing	(D)	start the locomotive quickly	
50.		o facilitate the starting of locomotive i ders are placed :	n any	position, the crank of a locomotive with	
	(A)	45°	(B)	90°	
	(C)	120°	(D)	180°	
51.	The ratio force is kn		ced v	ibration to the deflection due to static	
	(A)	damping factor	(B)	damping coefficient	
	(C)	logarithmic decrement	(D)	magnification factor	
52.	Determine			mm length is to be turned on a lathe. mm in one pass when cutting speed is	
	(A)	1.74 min	(B)	2.74 min	
	(C)	3.74 min	(D)	4.74 min	
53.	For produ	cing more accurate holes, the sequence	e of op	erations to be followed is:	
	(A)	centering, drilling, boring, reaming	(B)	centering, boring, drilling, reaming	
	(C)	drilling, centering, boring, reaming	(D)	drilling, reaming, boring, centering	
54.	The main	purpose of chaplets used in foundary p	oractio	e are:	
	(A)	to provide efficient venting	(B)	to ensure directional solidification	
	(C)	to support the core	(D)	to align the mould boxes	
55.	In oxy-ace	tylene gas welding the volume of oxygo	en req	uired per unit volume of acetylene:	
	(A)	1	(B)	1.5	
	(C)	2	(D)	2.5	
66.	Tempering	g of hardened steel is done to increase	its:		
	(A)	grain size	(B)	surface condition	
	(C)	ductility	(D)	carbon content	

57.		e which is found bet t the cutting edge is		e cutti	ng tool and the normal to the machin	ec
	(A)	rake angle		(B)	relief angle	
	(C)	clearance angle		(D)	cutting angle	
58.			e bond holds the c	utting	points or abrasives in place defined	by
	the term					
	(A)	structure		(B)	grit size	
	(C)	grain size		(D)	grade	
59.	Which of	the following is not	a part of Capstan l	lathe?		
	(A)	chuck		(B)	tailstock	
	(C)	spindle		(D)	tool post	
60.	The gears	manufactured on g	generating principle	e in:		
	(A)	hobbing		(B)	milling	
	(C)	broaching		(D)	shaping	
61.	Quick ret	urning mechanism	is used in :			
	(A)	milling machine		(B)	broaching machine	
	(C)	slotting machine		(D)	lathe machine	
62.	During ul	trasonic machining	the metal removal	is ach	ieved by:	
	(A)	high frequency ed	dy currents			
	(B)	high frequency so	und waves			
	(C)	hammering action	of abrasive particl	es		
	(D)	rubbing action bet	ween tool and worl	k piece		
63.			ard specifications	the to	etal number of designated grades	of
		tal tolerances are:				
	(A)	18		(B)	21	
	(C)	24		(D)	28	
64.	In a metri	c thread designated	l by M12 \times 1.5 spec	ify tha	t the thread has:	
	(A)	cross sectional are	a 12 mm ² and dept	h 1.5		
	(B)	nominal diameter	12 mm and pitch 1	.5		
	(C)	nominal diameter	12 mm and numbe	r of th	reads per mm is 1.5	
	(D)	Pitch 1.5 and dept	h 12 mm			
147/	2015		10			A

65.	In a steam	n engine the joint to be used for conne	cting t	he piston rod and cross-head is:			
	(A)	knucle joint	(B)	cotter joint			
	(C)	oldham's coupling	(D)	bolted joint			
66.	Creep in a	a belt drive is due to:					
	(A)	improper crowning					
	(B)	plasticity of belt material					
	(C)	differential elongation of belt due pulley	to diffe	erence in tension on two sides of the			
	(D)	Change in the coefficient of friction of	lue to d	over heating			
67.		emand for a product costing Rs. 100 i ost is Rs. 2 per unit per year. The eco		Ordering cost per order is Rs. 100 and lot size is then:			
	(A)	200	(B)	300			
	(C)	400	(D)	500			
68.	CPM and	PERT techniques are used for:					
	(A)	layout planning	(B)	financial management			
	(C)	executing a new project	(D)	increasing productivity			
69.	ABC anal	ysis in materials management is a me	thod of	f classifying the inventories based on:			
	(A)	the value of annual usage item	(B)	economic order quantity			
	(C)	volume of material consumption	(D)	quantity of material used			
70.	Break even point is the point where:						
	(A)	fixed and variable cost line will inter	sect				
	(B)	variable and total cost lines intersect	t .				
	(C)	total cost and fixed cost lines interse					
	(D)	total cost and sales revenue lines int	ersect				
71.		product model required for any CAD/C					
	(A)	Data model	(B)	Solid model			
	(C)	Prototype	(D)	Geometric model			
72.		hnology is suitable for production of:					
	(A) medium range variety and high range quality						
	(B)	high range variety and high range qu					
	(C)	medium range variety and medium r		quantity			
	(D)	low range variety and low range qua	lity				

13.	infins	the tools are identify	led by means of		
	(A)	colour code		(B)	bar code
	(C)	PLC		(D)	digital code
74.	Just in t	imo manufacturia	1.7	,	
14.		ime manufacturing	philosophy emp		
	(A)			(B)	manufacturing
	(C)	profit		(D)	inventory
75.	A joint se	ector undertaking:			
	(A)	is jointly owned b	y several share	holders	
	(B)				rnment
	(C)				
	(D)				ments
76.	C-charts	are the best exampl	e of ·		
	(A)	Binomial distribu		(B)	Poisson distribution
	(C)	Normal distributi		(D)	None of these
				(D).	
77.	Cellular 1	manufacturing syste	m is designed	on the basis	s of:
	(A)	JIT		(B)	MRP
	(C)	GT		(D)	Layout
78.	In linear	programming the sh	adow prices ar	ρ.	
	(A)	the values assigne			
	(B)	maximum cost per		capacity	
	(C)	cost of bought out			
	(D)	cost of items manu		plant	
79.	A fooler -				
10.		auge is used to check	x :		
	(C)	pitch of gears	11		shape of screw threads
	(0)	bore of discs and p	ulleys	(D)	thickness of a clearance
80.	The relation	on between tool life	(T) and cutting	speed (V)	s expressed as:
		$TV^n = C$			V + nT = C
	(C)	T + nV = C			$VT^n = C$
				(D)	VI = C
81.	Which ame	endment of the cons	titution lowerin	ng the votir	ng age from 21 to 18?
*	(A)	73		(B) (
	(C)	64		(D) 6	31

	(A)	Supreme Court		1000 - 100 100 100 100 100 100 100 100 1
	(0)	papione court	(B)	Prime Minister
	(C)	Parliament	(D)	State legislature
83.	The const	itution prescribe the age qualification	for bei	ing appointed as Governor of the state :
	(A)	25 years	(B)	35 years
	(C)	45 years	(D)	40 years
	Which ar sentention		he rig	ght to protection against arrest and
	· (A)	Article 21	(B)	Article 19
	(C)	Article 20	(D)	Article 22
85.	The chief	legal advicer of the President of India :		
	(A)	Comptroller and Auditor General	(B)	Chief Justice of Supreme Court
	(C)	Attorney General	(D)	Division bench of Supreme Court
86.	Sarkaria d	commission related to:		
	(A)	Minorities rights	(B)	River water and Border disputes
	(C)	Backward class commission	(D)	Centre State relations
87.	In 1975 th	ne National Emergency Declaration sig	ned by	<i>ı</i> :
	(A)	V.V. Giri	(B)	Neelam Sanjeev Reddy
	(C)	Zakir Huzzain	(D)	Fakhruddin Ali Ahmed
88. I	Modern st	ates are called "Professional States" ca	lled b	y:
	(A)	Norman D Palmer	(B)	Rajani Kothari
	(C)	S.L. Sikri	(D)	Frederic C. Mosher
89.	Write the	odd one :		
	· (A)	A.B. Vajpayee	(B)	Rajeev Gandhi
	(C)	ManMohan Singh	(D)	Jawaharlal Nehru
90.	The young	gest person who became the Chief Mini	ster of	f the State:
	(A)	Omar Abdulla	(B)	Akhilesh Yadav
	(C)	Praphulla Mahanta	(D)	Aravind Khejriwal

91.	. Operation Protective Edge is associated with:				
	(A)	Egypt		(B)	Israel
	(C)	Kuwait		(D)	Afghanistan
92.	Bachpan	Bachchavo Andola	in is founded by :		
	(A)	Vinobabave		(B)	Baba Amte
	(C)	Kailesh Satyarth	ni di	(D)	Aravind Khejriwal
93.	Malayali	poet known as 'Sir	nging Sword of Kerala	a' is:	
	(A)	T.S. Tirumumpu		(B)	Changampuzha
	(C)	Kumaranasan		(D)	Vailoppalli
94.	The ruler	of Travancore who	o abolished 'Shucheer	ndram	Kaimukku':
	(A)	Swati Tirunal		(B)	Utram Tirunal
	(C)	Sree Moolam Tir	runal	(D)	Sree Visakham Tirunal
95.	'Jeevitha	Samaram' is the a	utobiography of:		
	(A)	EMS Namboothi	rippadu	(B)	C. Kesavan
	(C)	A.K. Gopalan		(D)	V.T. Bhattathirippad
96.	Who was	the internal Minis	ter of Kerala in 1957	?	
	(A)	EMS Namboothi	rippadu	(B)	T.V. Thomas
	(C)	V.R. Krishnaiyye	er	(D)	K.R. Gouri
97.	The real r	name of Vagvadana	anta was :		
	(A)	Kunhiraman		(B)	Kunhikannan
	(C)	Damodaran		(D)	Bala Krishnan
98.	The editor	r of the journal 'Mi	itavadi' was :		
	(A)	Ramakrishnappi	lla	(B)	Vakkam Abdul Khader
	(C)	C. Krishnan		(D)	T.K. Madhavan
99.	Who found	ded Kochi Pulaya	Mahasabha'?		
	(A)	K.P. Karuppan		(B)	Ayyankali
	(C)	Sahodaran Ayyar	ppan	(D)	None of these
100.	'Aruvippu	ram Pratishta' wa	s conducted in the ye	ar:	
	(A)	1878		(B)	1887
	(C)	1898		(D)	1787