| CE    | A        | G   | $\mathbf{E}/$ | 1 | ۶ |
|-------|----------|-----|---------------|---|---|
| VIII. | $\Gamma$ | VI. | النا          |   | L |

| Register  |                    |   | <br> | <br> | r' | <br> |  |
|-----------|--------------------|---|------|------|----|------|--|
| 1,4111061 | Register<br>Number | - |      |      |    |      |  |

#### 2018

# AGRICULTURAL ENGINEERING (Degree Standard)

Time Allowed: 3 Hours]

[Maximum Marks: 300

Read the following instructions carefully before you begin to answer the questions.

#### IMPORTANT INSTRUCTIONS

- 1. The applicant will be supplied with Question Booklet 15 minutes before commencement of the examination.
- 2. This Question Booklet contains 200 questions. Prior to attempting to answer the candidates are requested to check whether all the questions are there in series and ensure there are no blank pages in the question booklet. In case any defect in the Question Paper is noticed it shall be reported to the Invigilator within first 10 minutes and get it replaced with a complete Question Booklet. If any defect is noticed in the Question Booklet after the commencement of examination it will not be replaced.
- 3. Answer all questions. All questions carry equal marks.
- 4. You must write your Register Number in the space provided on the top right side of this page. Do not write anything else on the Question Booklet.
- 5. An answer sheet will be supplied to you, separately by the Room Invigilator to mark the answers.
- 6. You will also encode your Question Booklet Number with Blue or Black ink Ball point pen in the space provided on the side 2 of the Answer Sheet. If you do not encode properly or fail to encode the above information, action will be taken as per commission's notification.
- 7. Each question comprises four responses (A), (B), (C) and (D). You are to select ONLY ONE correct response and mark in your Answer Sheet. In case you feel that there are more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each question. Your total marks will depend on the number of correct responses marked by you in the Answer Sheet.
- 8. In the Answer Sheet there are four circles (A), (B), (C) and (D) against each question. To answer the questions you are to mark with Blue or Black ink Ball point pen ONLY ONE circle of your choice for each question. Select one response for each question in the Question Booklet and mark in the Answer Sheet. If you mark more than one answer for one question, the answer will be treated as wrong. e.g. If for any item, (B) is the correct answer, you have to mark as follows:

 $A \bullet C \Phi$ 

- 9. You should not remove or tear off any sheet from this Question Booklet. You are not allowed to take this Question Booklet and the Answer Sheet out of the Examination Hall during the time of examination. After the examination is concluded, you must hand over your Answer Sheet to the Invigilator. You are allowed to take the Question Booklet with you only after the Examination is over.
- 10. The sheet before the last page of the Question Booklet can be used for Rough Work.
- 11. Do not tick-mark or mark the answers in the Question Booklet.
- 12. Applicants have to write and shade the total number of answer fields left blank on the boxes provided at side 2 of OMR Answer Sheet. An extra time of 5 minutes will be given to specify the number of answer fields left blank.
- 13. Failure to comply with any of the above instructions will render you liable to such action or penalty as the Commission may decide at their discretion.

## SPACE FOR ROUGH WORK

1.0900000000

| •         | (1)     | Intersection method                                          |            | ·(B)       | Resection method                              |
|-----------|---------|--------------------------------------------------------------|------------|------------|-----------------------------------------------|
|           | (C)     | Radiation method                                             | ,          | (D) _      | Traversing method                             |
|           |         |                                                              |            |            |                                               |
| 2.        |         | planimeter, when the tracing p<br>the circle is known as the | ooint is m | oved a     | along a circle without rotation of the wheel  |
|           | (A)     | Prime circle                                                 |            | (7)        | Zero circle                                   |
|           | (Ç)     | Ortho circle                                                 |            | (D)        | Circum circle                                 |
| •         |         |                                                              |            |            |                                               |
| 3.        | The l   | ine joining points of equal elev                             | ation is l | cnown      | as a                                          |
|           | (A)     | Horizontal line                                              | • .        | (B)        | Vertical line                                 |
|           |         | Contour line                                                 |            | (D)        | Level line                                    |
| <b>4.</b> |         | operation of levelling from the is known as                  | finishing  | g point    | t to the starting point at the end of a day's |
|           | . (A) ` | Simple levelling                                             |            | (B)        | Longitudinal levelling                        |
|           | (C)     | Cross-sectional levelling                                    |            |            | Check levelling                               |
| ,         |         |                                                              | •          | ,          |                                               |
| 5.        | The l   | line of collimation and axis of t                            | he telesc  | ope sh     | ould                                          |
| ,         |         | coincide                                                     |            | (B)        | be parallel                                   |
| · ·       | (C)     | be perpendicular                                             |            | (D)        | be tangential                                 |
|           | ;       |                                                              |            | <b>-</b> . |                                               |
| 6.        | The l   | benchmark established by the                                 | survey of  | India      | is known as the                               |
|           | (A)     | Temporary bench mark                                         |            | (B)        | Permanent bench mark                          |
| •         |         | GTS bench mark                                               | •          | (D)        | Arbitrary bench mark                          |
|           | , ,     |                                                              |            | •          |                                               |
| 7.        |         | ne trapezoidal formula, for cal                              | culating   | area,      | the line joining the top of the ordinates is  |
| •         | (A) .   | curved                                                       | •          | (20)       | straight                                      |
| ٠         | (C)     | circular                                                     | •          | (D)        | parabolic                                     |
|           |         |                                                              | ·          | , .        |                                               |

|            | (i)  | There exists a holding capac |              | correl           | ation between o   | organic matte   | r present in so  | il and its wat |
|------------|------|------------------------------|--------------|------------------|-------------------|-----------------|------------------|----------------|
| •          | (ii) | Channels left                | by decaye    | ed root          | ts perform an ir  | nportant role   | in percolation   | of water       |
| , .        | (A)  | (i) only true                | •            |                  | (B)               | (ii) only true  | •                |                |
|            | 9    | both (i) and (               | (ii) are tru | ıe               | (D)               | both (i) and    | (ii) are not tru | e              |
|            |      |                              |              |                  |                   |                 |                  |                |
| <b>9</b> . | The  | gully in which               | erosion is   | conti            | nued is called    |                 |                  |                |
| ٠.         | (A)  | Dormant gul                  | ly           |                  |                   | Active gully    |                  | ٠.             |
|            | (C)  | · Dead gully                 |              |                  | (D)               | Healed gully    |                  |                |
|            | ·    | •                            |              |                  |                   | ,               |                  |                |
| 10.        | Mat  | ch the following             | z:           |                  |                   | •               |                  | ·              |
|            |      | State of Gully               |              | •                | Property          | ,               | ٠.               | * .            |
| ,          | (a)  | Stage 1                      |              | 1.               | Healing           |                 |                  |                |
|            | (b)  | Stage 2                      |              | 2.               | Stabilization     | . ,             |                  | •              |
| •          | (c)  | Stage 3                      |              | 3.               | Formation         | ,               |                  |                |
| •          | (d)  | Stage 4                      |              | 4.               | Initiation        | • • •           | •                |                |
|            | ,    | (a) (b)                      | (c)          | (d) <sup>-</sup> |                   |                 |                  | ,              |
|            | (A)  | 4 3                          | 2            | 1                | •                 |                 |                  | , ••           |
|            |      | 4 3                          | 1            | $2^{\cdot}$      |                   | •               | ,                |                |
|            | (C)  | 3 1                          | $2^{\cdot}$  | 4                |                   |                 |                  |                |
|            | (D). | 3 2                          | 1            | 4.               |                   | -               | •                | •              |
|            | •    |                              |              | •                |                   |                 |                  |                |
| 11.        | Con  | touring refers t             | o growing    | of cr            | ops or performi   | ng of tillage o | perations        |                |
|            |      | across the co                |              |                  |                   | along the sl    |                  | •              |
|            | (C)  | along the wi                 |              |                  | · (D)             | •               | ind direction    |                |
|            | (0)  | G10119 0110 111              |              |                  | ()                |                 |                  | •              |
| 10         | 3371 |                              | ٠.           | 43               |                   |                 |                  |                |
| 12.        |      | •                            | •            | uion 18          | s associated to v | •               |                  |                |
|            | (A)  | mole draina                  | · .          | •                |                   | deep chiseli    | ng ·             |                |
|            | (C)  | basin listing                | •            |                  | (D)               | tie ridging     |                  |                |
| ,          |      |                              |              |                  |                   |                 |                  | •              |

What do you infer from the following statements?

| 13. | Cent       | ral Arid Zone Research Institute is r                         | ocated III |                                            |
|-----|------------|---------------------------------------------------------------|------------|--------------------------------------------|
| •   | (A)        | Jaipur                                                        | (B)        | Jaisalmer                                  |
|     |            | Jodhpur                                                       | · (D)      | Agra                                       |
|     |            |                                                               |            |                                            |
| 14. | The called |                                                               | e for the  | purpose of intercepting surface runoff are |
|     | W.         | Diversion drains                                              | . (B)      | Relief drains                              |
|     | (C).       | Grassed waterway                                              | (D)        | Field drains                               |
|     |            |                                                               |            |                                            |
| 15. | On a       | 3 nercent land slope calculate the h                          | orizonta   | l spacing of bunds in medium rainfall zone |
| 10. | (A)        | 90 m                                                          | . (B)      | 60 m                                       |
|     |            | 30 m                                                          | (D)        | 15 m                                       |
|     |            |                                                               | ( )        |                                            |
|     |            |                                                               |            | 9                                          |
| 16. |            | ch of the following combinations is/an                        |            | eavy rainfall areas                        |
|     | (i)        | Bench terrace with inward slope                               |            | ledium rainfall areas                      |
|     | (ii)       | Bench terrace with level top Bench terrace with outward slope |            | ow rainfall areas                          |
| •   | (iii)      |                                                               | ,- B       | (ii) only                                  |
|     | (A)        | (i) only                                                      |            | (i), (ii) and (iii)                        |
|     | (C)        | (iii) only                                                    |            | (1), (11)                                  |
|     |            |                                                               |            |                                            |
| 17. | The        | susceptibility or vulnerability of soil                       | to erosio  |                                            |
|     | (A)        | Erosivity                                                     | - £        | Erodibility                                |
|     | · (C)      | EI <sub>30</sub> index                                        | (D)        | Accretion                                  |
|     | •          | * ,                                                           |            |                                            |
| 18. | In E       | $ m I_{30}$ method, the $ m I_{30}$ refers to                 |            |                                            |
| •   | -          | maximum rainfall intensity of 30                              | minutes    | duration                                   |
|     | (B)        | rainfall depth of 30 mm                                       |            |                                            |
|     | · (C)      | kinetic energy of 30 minutes rainf                            | all        |                                            |
|     | (D)        | maximum infiltration rate for 30                              |            |                                            |
|     | (2)        |                                                               |            |                                            |
|     | ~ •        |                                                               |            |                                            |
| 19. | Cosh       | nocton wheel is a                                             | ,<br>(B)   | flow managing device                       |
|     |            | sediment sampler                                              | (B)        | flow measuring device                      |
|     | (C)        | velocity measuring device                                     | (D)        | wind speed measuring device                |
| ٥   |            |                                                               | 5          | CEAGE/18                                   |
| -7  |            |                                                               | , : .      | [Turn over                                 |

| 20.   | Whic  | ch of the following pai                        | rs are correctly n | natche  | d?                  |
|-------|-------|------------------------------------------------|--------------------|---------|---------------------|
| •     | (i)   | Soil wetness –                                 | Relative water     | conte   | nt of soil          |
|       | (ii)  | Mass wetness -                                 | Soil water con     | tent    |                     |
|       | (iii) | Volume wetness -                               | Soil water con     | tent or | n volumetric basis  |
|       | (A)   | (i) and (ii)                                   |                    | (B)     | (i) and (iii)       |
|       | (C)   | (ii) and (iii)                                 | •                  |         | (i), (ii) and (iii) |
| •     |       | •                                              |                    | •       |                     |
| 21.   | 1 ha  | –m equals –                                    | cubic meter        |         | •                   |
|       | (A)   | 1,000                                          | •                  | (D)     | 10,000              |
|       | (C)   | 5,000                                          | ·.                 | (D)     | 50,000              |
| . *   | ·     | · ·                                            |                    |         | ,                   |
| 22.   | In ge | maral the major comm                           | ononto of weeks    |         |                     |
|       | (A)   | eneral, the major comp<br>Pre-sowing irrigatio | •                  | requir  | ement of crops is   |
|       | (23)  | Evapotranspiration                             |                    | •       | •                   |
|       | (C)   | Leaching requireme                             |                    |         |                     |
| ٠.    | (D)   |                                                | •                  |         |                     |
|       | , (D) | Deep precolation fro                           | m crop root zone   |         |                     |
|       |       |                                                | . •                |         | · / .               |
| 23.   |       | th of the following is/a:                      | re used to measu   | re irri | gation water?       |
|       | (i)   | Water meter                                    | •                  |         |                     |
|       | (ii)  | Current meter                                  |                    |         | •                   |
|       | (iii) | Dethridge meter                                | a                  | •       |                     |
| ` : . | (A)   | (i) only                                       |                    | (B)     | (i) and (ii) only   |
|       | (C)   | (i) and (iii) only                             | ,                  | 0       | (i), (ii) and (iii) |
| •     | 1     |                                                |                    |         |                     |
| 24.   | Each  | side of cipoletti weir l                       | has a slope (H : V | ) of    |                     |
|       | (A)   | 1:2                                            | ,                  | (B)     | 1:3                 |
|       | 4     | 1:4                                            | ,                  | (D)     | 1:5                 |
|       |       |                                                |                    | •       | •                   |
| 25.   | The s | sheet of water which o                         | verflows a weir i  | s calle | ď                   |
| -     | (A)   | jet                                            |                    | (B)     | runoff              |
| ٠.    |       | nappe                                          | •                  |         | •                   |
|       |       | mappe                                          | , .                | (D)     | stream              |
|       |       | •                                              |                    |         |                     |

| wai        | er source is  | •           | •             | . •                          |                    |                |                    |
|------------|---------------|-------------|---------------|------------------------------|--------------------|----------------|--------------------|
| (A)        | 0.5 mg/lit    | · · ·       |               | (B)                          | 1.0 mg/lit         |                |                    |
| 4          | 2.0 mg/lit    | ;           | ,             | (D)                          | 3.0 mg/lit         |                | , ,                |
|            |               |             |               | ,                            |                    |                |                    |
| . Fin      | d out the der | oth of whic | ch 1 ha of ri | ice field can                | be irrigated       | with a flow of | 7.5 l/s in 8 hours |
| (A)        | 0.0216 cm     | • •         |               | (B)                          | $21.6~\mathrm{cm}$ | . '            |                    |
|            | 2.16 cm       |             |               | (D)                          | 4.32 cm            |                | 4                  |
|            |               |             |               | , ,                          | • •                | •              | •                  |
| Effi       | ciency of Air | lift pumps  | s is about —  |                              | – per cent.        |                |                    |
| <b>(1)</b> | 30            | 1 1         |               | (B)                          | 50                 |                |                    |
| (C)        | 70            |             |               | (D)                          | 80                 |                |                    |
| .(~)       |               |             |               |                              | • :                |                |                    |
| D          |               | <br>        | 141           | - 4 J                        |                    |                |                    |
|            |               | ient is the | depth of w    | ater drained                 | •                  | given area in  |                    |
| (A)        | 1 hour        |             | . • •         |                              | 1 day              |                |                    |
| (C)        | 1 minute      | -           |               | (D)                          | 1 month            | •              | 3 · · · · ·        |
|            |               |             |               |                              |                    |                |                    |
| Mat        | ch the follow | ving:       |               |                              |                    |                |                    |
|            | Property      |             | U             | Jnit .                       |                    |                | •                  |
| (a)        | EC.           |             | 1. (r         | $ \frac{1}{\text{nmole}/l} $ | :                  |                |                    |
| (b)        | SAR           |             |               | s/m                          |                    |                | •                  |
| (c)        |               |             |               | er cent                      |                    |                |                    |
| (d)        | ESP           |             |               | nc/l                         |                    | •              | ·                  |
|            | · · ·         |             |               |                              | •                  | , , ,          |                    |
|            | (a) (b)       | (c)         | (d)           | •                            |                    |                |                    |
| (A)        | 2 . 4         | 1           | 3             |                              | •                  | •              | ,                  |
| (B)        | 4 2           | . 1         | . 3 -         |                              | <b>\</b>           |                |                    |
| 4          | 2 1           | 4           | 3             | •                            | •                  |                |                    |
|            |               | _           | _             |                              |                    |                | •                  |
| (D)        | 4 '2          | 3           | 1             |                              |                    | A              |                    |

| 31. | The          | soak pit should be filled with                                                                                  |           |        |               |                                       |             |          |
|-----|--------------|-----------------------------------------------------------------------------------------------------------------|-----------|--------|---------------|---------------------------------------|-------------|----------|
|     | (A)          | course aggregates only                                                                                          | •         | ,      |               | ,                                     |             |          |
|     | (B)          | fine aggregates only                                                                                            |           |        |               |                                       | •           |          |
| :   | 4            | course and fine aggregates or                                                                                   | nly       |        |               |                                       | ,           | •        |
|     | (D)          | heavy clay                                                                                                      |           |        |               |                                       | • • •       | •        |
|     | ; ·          |                                                                                                                 |           |        |               |                                       |             |          |
| 32. | The          | minimum side slope of an eartl                                                                                  | hen chan  | nel fo | r polyethylen | e lining is                           |             |          |
|     |              | 2:1                                                                                                             |           | (B)    | 2.5:1         |                                       |             | ,        |
|     | (C)          | 3:1                                                                                                             |           | (D)    | 15:1          |                                       |             |          |
|     |              | . ,                                                                                                             | · ·       |        | ·             |                                       | •           |          |
| 33. | maxi<br>2500 | rmine the capacity of an overlimum of about 40000 litres of to litres per hour during rest of only 28000 lit/hr | water pe  | r hour | for two hou   | rs during n                           | oon and o   | nly abou |
|     | (A)          | 12,000                                                                                                          | ,         | (2)    | 24,000        |                                       |             |          |
|     | (C)          | 25,000                                                                                                          |           | (D)    | 36,000        |                                       |             | •        |
|     |              |                                                                                                                 |           |        |               |                                       | •           |          |
| 34. | The          | most commonly used concrete pi                                                                                  | pes for u | ndergr | ound pipeline | water dist                            | ribution sy | stem is  |
|     | (A)          | pipes with bell ends                                                                                            |           | -      |               | · · · · · · · · · · · · · · · · · · · | ·           |          |
|     | (B)          | pipes with tongue and groove                                                                                    | e joint   |        |               |                                       |             | •        |
|     | (C)          | pipes with faucet and spigot                                                                                    | joint     |        |               |                                       | v           |          |
|     | 9            | pipes with collar joints                                                                                        |           | ,      |               |                                       |             |          |
| ,   | •            |                                                                                                                 |           |        | -             |                                       |             | •        |
| 35. | Whi          | ch of the following is called sup                                                                               | er struct | ture?  |               |                                       |             |          |
|     | I.           | Foundation                                                                                                      | ,         |        | <b>.</b>      |                                       |             | •        |
| •   | II.          | Walls and pillars                                                                                               |           |        |               | ,                                     |             |          |
|     | III.         | Roofs, floors and doors and v                                                                                   | vindows   |        |               |                                       | . ·         |          |
|     | · (A)        | I only                                                                                                          |           | (B)    | II and III    |                                       |             |          |
| ·   | (C)          | I and II                                                                                                        |           |        | I, II and III |                                       |             |          |
|     |              |                                                                                                                 |           | _      |               |                                       |             |          |

| 6. | Whic   | h type of poultry house is most   | ceconomic                             | cal?   |                           |           |               |
|----|--------|-----------------------------------|---------------------------------------|--------|---------------------------|-----------|---------------|
| •  | (A)    | wire floored poultry houses       | ,                                     | . ,    |                           |           |               |
|    | 0      | deep litter poultry houses        | 6                                     |        |                           | •         | •             |
|    | (C)    | cage houses                       | •                                     |        | •                         | •         |               |
|    | (D)    | open air poultry houses           | ,                                     |        |                           |           |               |
|    |        |                                   |                                       |        |                           | •*        | •             |
| 7. | Face   | in type of barn are usually pre   | ferred for                            | • •    |                           |           |               |
|    | (A)    | Milch animals                     | ٠ ,                                   | 0      | Bullocks                  | •         |               |
|    | (C)    | Buffaloes                         |                                       | (D)    | Sick animals              | •         | •             |
| ,  |        |                                   |                                       |        |                           |           |               |
| 8. | The I  | limiting operating pressure wh    | ich can b                             | e sus  | tained by a non-reinfo    | orced con | crete pipe in |
|    | irriga | ation water conveyance is         |                                       |        |                           |           |               |
|    | (A)    | 4 m                               | •                                     |        | 6 m                       |           |               |
|    | (C)    | 8 m                               |                                       | (D)    | 10 m                      |           | •             |
|    |        |                                   |                                       |        | •                         |           |               |
| 9. | Pyrh   | eliometer is an instrument, wh    | nich meas                             | ures   |                           |           |               |
| •  | 4      | Beam radiation                    | •                                     | (B)    | Total radiation           |           |               |
|    | (C)    | Global radiation                  | ,                                     | (D)    | Diffused radiation        |           |               |
|    |        |                                   | . • •                                 |        |                           |           |               |
| 0. | Func   | tions of cover plates in flat pla | te collecto                           | orș ai | ce'                       |           | •             |
|    | (i)    | to transmit maximum short         | wąve radi                             | ation  | to the absorber plate     | r         |               |
|    | (ii)   | to minimise upward heat loss      | s from the                            | e abs  | orber plate               |           |               |
|    | (iii)  | to shield the absorber plate f    | rom direc                             | t exp  | ose to environment        | ,         |               |
|    | (iv)   | to allow infra red radiation e    | mitted by                             | the    | absorber plate            |           |               |
|    | 4      | (i), (ii) and (iii) are correct   |                                       | (B)    | (i), (iii) and (iv) are o | correct   |               |
| ·  | (C)    | (i), (ii) and (iv) are correct    | · · · · · · · · · · · · · · · · · · · | (D)    | (ii), (iii) and (iv) are  | correct   |               |
|    |        | •                                 |                                       |        |                           |           | •             |
| 1. | Glas   | s wool is used as                 | — in a fla                            | t pla  | te collector.             |           |               |
| •  | (A)    | absorber plate                    |                                       | (B)    | cover plate               |           | · .           |
|    |        | insulation material               |                                       | (D)    | enclosure material        |           | :             |
|    | /      | •                                 |                                       |        |                           |           |               |

| 42. | The         | ratio of the projected area of                     | the rotor to t  | he  | swept area of th     | e rotor is | s known    | as         |
|-----|-------------|----------------------------------------------------|-----------------|-----|----------------------|------------|------------|------------|
|     | (A)         | Tip speed ratio                                    | (               | В)  | Torque coeffic       | ient       | •          | ,          |
|     | (0)         | Solidity                                           | . (             | D). | Power coefficie      | ent        | •          | ,          |
| •   |             |                                                    |                 |     |                      |            |            |            |
| 43. | The         | calorific value of biogas is                       | ,               |     |                      |            | ,          |            |
|     | (A)         | 500 - 550  kJ/kg                                   |                 |     |                      |            | ··         |            |
|     | (B)         | 2094 - 2303  kJ/kg                                 |                 | •   |                      |            |            |            |
| ,   | (C)         | 5000 – 5500 kJ/kg                                  |                 |     | ,                    | '.         | •          | ,          |
|     | D).         | 20935 – 23028 kJ/kg                                |                 | ,   |                      |            |            |            |
|     |             |                                                    |                 |     | •                    |            |            |            |
| 44. | One<br>hour | mantle lamp of 100 candle                          | power capac     | ity | requires             |            | - m³ of 1  | biogas per |
|     | (A)         | 0.41 to 0.52                                       | (]              | В)  | 0.22 to 0.41         |            |            |            |
|     | 4           | 0.11 to 0.15                                       | (1              | D)  | 0.04 to 0.05         |            |            |            |
| ,   |             |                                                    |                 |     |                      |            |            | ,          |
| 45. | In a        | naerobic digestion process, ———— will be released. |                 | ial | acid formation       | n stage    | large, a   | imount of  |
|     | · (A) ·     | CH <sub>4</sub>                                    | ¥               | 5)  | $_{\mathrm{CO}_{2}}$ |            |            |            |
|     | (C)         | $\mathrm{H_2S}$                                    | · . (I          | D)  | NH <sub>3</sub>      | ,          |            |            |
|     |             |                                                    | . <del>-</del>  |     |                      |            | -          |            |
| 46. | Gene        | erally, the total solid content                    | of feed mate    | ria | 1 is                 | % ir       | dry for    | mentation  |
|     | proce       | •                                                  |                 | /   | 1 10                 | 70 11      | r dry ler. | memanor    |
|     | (A)         | <10%                                               | (I              | 3)  | 10-20%               | •          | •          | ,          |
|     | 40          | 25-30%                                             | I)              | ))  | >40%                 | ,          |            |            |
| 4   | •           | · · · · · · · · · · · · · · · · · · ·              |                 |     |                      |            | • •        | •          |
| 47. | ✓The r      | resultant fuel in thermal gas                      | ification proce | ess | is                   |            |            |            |
|     | 4           | Producer gas                                       | (I              |     | Bio gas              | · .        | ٠          |            |
|     | (C)         | Biochar                                            | (I              | •   | Bio oil              | ,          |            |            |
|     |             |                                                    | ,               |     |                      |            | •          |            |
| CEA | GE/18       | <b>,</b>                                           | 10              |     | •                    |            |            | ₹5         |

- 48. Formula for determining equivalent diameter of irregular shaped particles (a, b, c maximum, internal and minimum mutually perpendicular dimensional.
  - (A)  $\frac{(abc)^{1/2}}{a}$

(B)  $\frac{(abc)^{1/3}}{a}$ 

(C)  $\frac{(abc)}{3}$ 

- $(abc)^{1/3}$
- 49. The optimum moisture content of range for paddy harvesting is
  - (A) 16 18

(B) 12 - 14%

20 - 22%

- (D) 10 12%
- 50. In vacuum oven method, the moisture content of grain is determined by heating at

96°C

(B) 72°C

100°C

(A)

- (D) 130°C
- 51. Determine the bone dry weight of 2 tonnes of paddy with 22% moisture content during drying
  - (A) 1780 kg

(B) 220 kg

(C) 440 kg

- 1560 kg
- 52. Higher percentage of open area in air-screen grain cleaners will result in
  - (A) Increase in capacity and decrease screening efficiency
  - (B) Decrease in capacity and decrease screen efficiency
  - Increase in capacity and increase screening efficiency
  - (D) Decrease in capacity and increase screen efficiency

| JJ.         |       | onne.                                   | eating w  | 7th linseed oil at the rate of ——————————————————————————————————— |
|-------------|-------|-----------------------------------------|-----------|--------------------------------------------------------------------|
| ,           | (A)   | 1.0 to 1.5                              | (B)       | 1.5 to 3                                                           |
| •           | (C)   | 2.0 to 3                                |           | 1.5-2.5                                                            |
| •           |       |                                         | _         |                                                                    |
| 54.         | Gern  | n from corn is separated by using       |           |                                                                    |
| ,           | (A)   | Centrifuge                              | (B)       | Filteration                                                        |
|             | (C)   | Grinding                                |           | Hydroclone                                                         |
|             |       |                                         | •         |                                                                    |
| 55.         | Whic  | ch of the following is a continuous bu  | cket elev | vator?                                                             |
|             | (Å) · | Centrifugal discharge elevator          | (B)       | Positive discharge elevator                                        |
|             | (C)   | Marine leg elevator                     | CF /      | Super capacity bucket elevator                                     |
| •           | ·     |                                         | •         |                                                                    |
| 56.         | In be | est conveyor, spacing between idlers s  | should n  | ot exceed                                                          |
|             | (A)   | 1.5 m                                   | (B)       | 1.8 m                                                              |
|             | (C)   | 2.0 m                                   | 0         | 1.2 m                                                              |
| •           |       |                                         |           |                                                                    |
| <b>57</b> . | Name  | e the fumigant used in storage of gra   | ins       |                                                                    |
|             | (A)   | DDVP                                    | (B)       | Malethion                                                          |
|             | مري   | Methyl Bromide                          | (D)       | Ethylene •                                                         |
|             |       |                                         |           |                                                                    |
| 58.         | Insec | ts are killed when the oxygen legisles. | evel in   | the intergranular space falls to abou                              |
| ٨           | (A)   | 5%                                      | (B)       | 4%                                                                 |
| ·. ;        | (C)   | 3%                                      | (E)       | 2%                                                                 |
| • •         |       |                                         | •         | , <b></b> ,                                                        |
| 59.         | The o | il content of shelled groundnuts is in  | the ren   | go of                                                              |
|             | (A)   | 20 - 25%                                |           |                                                                    |
|             | (24)  | 45 - 50 %                               | (B)       | 30 - 35%                                                           |
|             | • )   | ±0 - 00 \ \( \)                         | (D)       | 55 - 60%                                                           |
| CEAC        | £E/18 |                                         | 12        | Ď                                                                  |

| (A) Raoult's Law  (B) Boyle's Law  (D) Stoke's Law  (E) Duhring's Rule  (D) Stoke's Law  (E) Duhring's Rule  (D) Stoke's Law  (E) Stoke's Law  (D) Stoke's Law  | 60.          | BOIII | ng point elevation i | n evaporators c                       | an be estii  | nated using    |              |                                       |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|----------------------|---------------------------------------|--------------|----------------|--------------|---------------------------------------|--------|
| 61. The terminal velocity of the solid particle in a fluid medium is proportional to of the diameter of the particle.  Square (B) Square root (C) Cube (D) Cube root  62. Cream separator works on the principle of force. (A) Gravitational (C) Abrasive (D) Impact  63. "The work required in crushing is proportional to the new surface created". This principle is (A) Kick's law (B) Bond's law (C) Rittinger's law (D) Work index  64. Hammer mill works on the principle of force in size reduction. (A) Centrifugal (C) Abrasive (D) Gravitational  65. Sedimentation uses forces to separate particulate material from fluistreams. (A) Centrifugal (B) Impact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | (A)   | Raoult's Law         |                                       | (B)          | Boyle's Law    | •            |                                       | •      |
| of the diameter of the particle.  Square  (B) Square root  (C) Cube  (D) Cube root  62. Cream separator works on the principle of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |       | Duhring's Rule       | •                                     | . (D)        | Stoke's Law    |              |                                       |        |
| of the diameter of the particle.  Square  (B) Square root  (C) Cube  (D) Cube root  62. Cream separator works on the principle of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |       |                      |                                       |              |                |              | ,                                     |        |
| of the diameter of the particle.  Square  (B) Square root  (C) Cube  (D) Cube root  62. Cream separator works on the principle of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61           | The f | terminal velocity of | the solid parti                       | cle in a flu | uid medium is  | proportion   | al to ——                              |        |
| (C) Cube  (D) Cube root  (C) Cube (D) Cube root  (A) Gravitational (C) Centrifugal (C) Abrasive (D) Impact  (A) Kick's law (B) Bond's law (C) Rittinger's law (D) Work index  (A) Centrifugal (C) Abrasive (D) Gravitational  (B) Gravitational (D) Gravitational                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |       |                      | •                                     |              |                | •            | · · · · · · · · · · · · · · · · · · · |        |
| Cream separator works on the principle of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | 4     | Square               |                                       | (B)          | Square root    |              |                                       |        |
| (A) Gravitational (C) Abrasive (D) Impact  (3. "The work required in crushing is proportional to the new surface created". This principle is (A) Kick's law (B) Bond's law (C) Work index  (A) Centrifugal (B) Impact (C) Abrasive (C) Abrasive (D) Gravitational  (E) Gravitational  (C) Abrasive (D) Gravitational                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | (C)   | Cube                 |                                       | (D)          | Cube root      | -            |                                       |        |
| (A) Gravitational (C) Abrasive (D) Impact  (3. "The work required in crushing is proportional to the new surface created". This principle is (A) Kick's law (B) Bond's law (C) Work index  (A) Centrifugal (B) Impact (C) Abrasive (C) Abrasive (D) Gravitational  (E) Gravitational  (C) Abrasive (D) Gravitational                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |       | ,                    | .•                                    |              | •              |              |                                       | •      |
| (A) Gravitational (C) Abrasive (D) Impact  (3. "The work required in crushing is proportional to the new surface created". This principle is (A) Kick's law (B) Bond's law (C) Work index  (A) Centrifugal (B) Impact (C) Abrasive (C) Abrasive (D) Gravitational  (E) Gravitational  (C) Abrasive (D) Gravitational                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 62           | Crea  | m senarator works    | on the principle                      | of           | forc           | e.           |                                       |        |
| (C) Abrasive (D) Impact  (C) Abrasive (D) Impact  (C) Abrasive (D) Impact  (D) Impact  (E) Bond's law  (E) Bon | о <u>ш</u> . |       | •                    |                                       |              |                |              |                                       |        |
| (A) Kick's law (B) Bond's law (C) Work index  (B) Work index  (B) Bond's law (C) Work index  (D) Work index  (E) Bond's law (D) Work index  (E) Gravitational  (E) Gravitational  (C) Abrasive (D) Gravitational  (E) Gravitational  (E) Sedimentation uses ——————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |       | •                    |                                       | · (D)        |                |              |                                       |        |
| (A) Kick's law (B) Bond's law (C) Work index  (B) Bond's law (D) Work index  (E) Hammer mill works on the principle of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | (0)   | Abrasive             |                                       | <i>(</i> D)  | Impact         |              |                                       |        |
| (A) Kick's law (B) Bond's law (C) Work index  (B) Bond's law (D) Work index  (E) Hammer mill works on the principle of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •            |       | ·                    |                                       |              | •              |              |                                       |        |
| Rittinger's law  (D) Work index  64. Hammer mill works on the principle of ———————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 63.          | "The  | work required in cr  | ushing is propo                       | ortional to  | the new surfac | e created".  | This princip                          | ole is |
| Hammer mill works on the principle of ———————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | (A)   | Kick's law           | •                                     | (B)          | Bond's law     |              | . ·                                   |        |
| (A) Centrifugal (C) Abrasive (D) Gravitational  Sedimentation uses — forces to separate particulate material from fluistreams.  (A) Centrifugal (B) Impact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | 4     | Rittinger's law      |                                       | (D)          | Work index .   |              |                                       |        |
| (A) Centrifugal (C) Abrasive (D) Gravitational  Sedimentation uses — forces to separate particulate material from fluistreams.  (A) Centrifugal (B) Impact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |       |                      |                                       |              | a *            |              |                                       |        |
| (A) Centrifugal (C) Abrasive (D) Gravitational  Sedimentation uses — forces to separate particulate material from fluistreams.  (A) Centrifugal (B) Impact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 <b>4</b> . | Hami  | mer mill works on t  | he principle of                       |              | force in       | ı size reduc | ction.                                |        |
| (C) Abrasive (D) Gravitational  55. Sedimentation uses — forces to separate particulate material from flui streams.  (A) Centrifugal (B) Impact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |       |                      |                                       |              | Impact         |              |                                       |        |
| Sedimentation uses ——————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •            | (C)   |                      |                                       | (D)          | Gravitational  | ,            |                                       |        |
| streams.  (A) Centrifugal  (B) Impact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |       |                      | · · ·                                 |              | . *            |              |                                       |        |
| streams.  (A) Centrifugal  (B) Impact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a w          | a i.  |                      | · · · · · · · · · · · · · · · · · · · |              |                |              |                                       | ėn ·   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |       |                      |                                       | forces to    | separate part  | iculate ma   | terial from                           | Huio   |
| (C) Abrasive Gravitational                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •            | (A) · | Centrifugal          |                                       | (B)          | Impact         | •            | ,                                     |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | (C)   | Abrasive             |                                       |              | Gravitational  |              |                                       | •      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |       |                      |                                       |              |                | •            | ·<br>:                                |        |

| (C) two fluid absorption system three fluid absorption system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 66.  |            |                                       | oods is | s maintained throughout the storage period  | L |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|---------------------------------------|---------|---------------------------------------------|---|
| Controlled atmosphere packaging  (C) Vacuum packaging  (D) Active modified atmosphere packaging  67. Milk containing 3% fat and 8.5% SNF from the combination of fresh and reconstitute is generally referred to as  (A) double tonned milk  (B) homogenized milk  (C) standardised milk  (B) homogenized milk  (C) standardised milk  (D) standardised milk  (E) homogenized milk  (E) homogenized milk  (E) homogenized milk  (E) homogenized milk  (E) standardised milk  (E) na efficiently homogenized milk, the fat globules are sub divided to less than or equally a function meter  (C) 1μm  (D) 3 μm  (D) 3 μm  (E) Tearing  (C) Tearing  (C) Tearing  (C) Tearing  (C) Tearing  (C) Tearing  (C) two fluid absorption system  (B) three non refrigerant absorbent system  (C) two fluid absorption system  (D) three fluid absorption system  (E) three fluid absorption system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | is kno     |                                       |         |                                             |   |
| <ul> <li>(C) Vacuum packaging</li> <li>(D) Active modified atmosphere packaging</li> <li>67. Milk containing 3% fat and 8.5% SNF from the combination of fresh and reconstitute is generally referred to as</li> <li>(A) double tonned milk</li> <li>(B) homogenized milk</li> <li>(C) toned milk</li> <li>(D) standardised milk</li> <li>(E) toned m</li></ul> |      | (A) .      | Modified atmosphere packaging         | :       |                                             |   |
| <ul> <li>(D) Active modified atmosphere packaging</li> <li>67. Milk containing 3% fat and 8.5% SNF from the combination of fresh and reconstitute is generally referred to as <ul> <li>(A) double tonned milk</li> <li>(B) homogenized milk</li> </ul> </li> <li>68. In an efficiently homogenized milk, the fat globules are sub divided to less than or equal to 2 μm (micron meter)</li> <li>(B) 0.5 μm</li> <li>(C) 1 μm</li> <li>(D) 3 μm</li> </ul> <li>69. —— is the method used to extract oil from oil seeds and juice from sugar (A) Cutting <ul> <li>(C) Tearing</li> <li>(D) Shearing</li> <li>(C) Tearing</li> <li>(C) Trushing</li> </ul> </li> <li>70. An electrolux refrigerator is <ul> <li>(A) single fluid absorption system</li> <li>(B) three non refrigerant absorbent system</li> <li>(C) two fluid absorption system</li> <li>(D) three fluid absorption system</li> </ul> </li> <li>71. In a vapour compression refrigeration cycle, enthalpy at suction: 190 compressor = 210 kJ/kg, condenser = 80 kJ/kg, then the C.O.P. would be</li> <li>(A) 5.0</li> <li>(B) 4.5</li>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | (3)        | Controlled atmosphere packaging       |         |                                             |   |
| <ul> <li>67. Milk containing 3% fat and 8.5% SNF from the combination of fresh and reconstitute is generally referred to as <ul> <li>(A) double tonned milk</li> <li>(B) homogenized milk</li> </ul> </li> <li>68. In an efficiently homogenized milk, the fat globules are sub divided to less than or equivally 2 μm (micron meter)</li> <li>(B) 0.5 μm</li> <li>(C) 1 μm</li> <li>(D) 3 μm</li> </ul> <li>69 is the method used to extract oil from oil seeds and juice from sugar (A) Cutting <ul> <li>(C) Tearing</li> <li>(D) Shearing</li> <li>(C) Tearing</li> <li>(D) Shearing</li> <li>(E) Crushing</li> </ul> </li> <li>70. An electrolux refrigerator is <ul> <li>(A) single fluid absorption system</li> <li>(B) three non refrigerant absorbent system</li> </ul> </li> <li>71. In a vapour compression refrigeration cycle, enthalpy at suction: 190 compressor = 210 kJ/kg, condenser = 80 kJ/kg, then the C.O.P. would be</li> <li>(A) 5.0</li> <li>(B) 4.5</li>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | (C)        | Vacuum packaging                      |         |                                             |   |
| is generally referred to as  (A) double tonned milk (B) homogenized milk (D) standardised milk  68. In an efficiently homogenized milk, the fat globules are sub divided to less than or equal 2 \( \mu \) m (micron meter) (B) 0.5 \( \mu \) m  (C) 1\( \mu \) m  (D) 3 \( \mu \) m  (E) Tearing (C) Tearing (B) Shearing (C) Tearing (C) Toushing  70. An electrolux refrigerator is (A) single fluid absorption system (B) three non refrigerant absorbent system (C) two fluid absorption system (B) three fluid absorption system  71. In a vapour compression refrigeration cycle, enthalpy at suction: 190 compressor = 210 kJ/kg, condenser = 80 kJ/kg, then the C.O.P. would be (A) 5.0 (B) 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | (D)        | Active modified atmosphere packagir   | ıg      |                                             |   |
| is generally referred to as  (A) double tonned milk (B) homogenized milk (D) standardised milk  68. In an efficiently homogenized milk, the fat globules are sub divided to less than or equal 2 \( \mu \) m (micron meter) (B) 0.5 \( \mu \) m  (C) 1\( \mu \) m  (D) 3 \( \mu \) m  (E) Tearing (C) Tearing (B) Shearing (C) Tearing (C) Toushing  70. An electrolux refrigerator is (A) single fluid absorption system (B) three non refrigerant absorbent system (C) two fluid absorption system (B) three fluid absorption system  71. In a vapour compression refrigeration cycle, enthalpy at suction: 190 compressor = 210 kJ/kg, condenser = 80 kJ/kg, then the C.O.P. would be (A) 5.0 (B) 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |            |                                       | _       |                                             |   |
| toned milk  (D) standardised milk  (8) In an efficiently homogenized milk, the fat globules are sub divided to less than or equal (B) 0.5 μm  (C) 1μm  (D) 3 μm  (E) 3 μm  (E) 1μm  (E) 3 μm  (E) 5 cm sugar (B) 5 cm sugar (C) 6 cm sugar (C) 7 cm sugar (C) 8 cm sugar            | 67.  |            |                                       | the co  | ombination of fresh and reconstituted mill  | _ |
| <ul> <li>68. In an efficiently homogenized milk, the fat globules are sub divided to less than or equal (B) 0.5 μm</li> <li>(C) 1 μm (D) 3 μm</li> <li>69. ————————————————————————————————————</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •    | (A)        | double tonned milk                    | (B)     | homogenized milk                            |   |
| <ul> <li>(C) 1 μm</li> <li>(D) 3 μm</li> <li>(E) 4.5 μm</li> <li>(E) 3 μm</li> <li>(E) 4.5 μm</li> <li>(E) 3 μm</li> <li>(E) 3 μm</li> <li>(E) 4.5 μm</li> <li>(E) 4.5 μm</li> <li>(E) 3 μm</li> <li>(E) 3 μm</li> <li>(E) 3 μm</li> <li>(E) 4.5 μm</li> <li>(E) 3 μm</li> <li>(E) 3 μm</li> <li>(E) 3 μm</li> <li>(E) 4.5 μm</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |            | toned milk                            | (D)     | standardised milk                           |   |
| <ul> <li>(C) 1 μm</li> <li>(D) 3 μm</li> <li>(E) 4.5 μm</li> <li>(E) 3 μm</li> <li>(E) 4.5 μm</li> <li>(E) 3 μm</li> <li>(E) 3 μm</li> <li>(E) 4.5 μm</li> <li>(E) 4.5 μm</li> <li>(E) 3 μm</li> <li>(E) 3 μm</li> <li>(E) 3 μm</li> <li>(E) 4.5 μm</li> <li>(E) 3 μm</li> <li>(E) 3 μm</li> <li>(E) 3 μm</li> <li>(E) 4.5 μm</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |            |                                       |         |                                             |   |
| <ul> <li>(C) 1 μm</li> <li>(D) 3 μm</li> <li>(E) 4 μm</li> <li>(E</li></ul> | 68.  | In an      | efficiently homogenized milk, the fat | globul  | es are sub divided to less than or equal to |   |
| 69. ————————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |            | $2 \mu m$ (micron meter)              | (B)     | $0.5~\mu\mathrm{m}$                         | ٠ |
| (A) Cutting (C) Tearing  (C) Tearing  (C) Tearing  (C) Tearing  (C) An electrolux refrigerator is (A) single fluid absorption system (B) three non refrigerant absorbent sy (C) two fluid absorption system  (B) three fluid absorption system  (C) two fluid absorption system  (D) three fluid absorption system  (E) three fluid absorpt          |      | (C)        | $1\mu\mathrm{m}$                      | (D)     | 3 μm                                        |   |
| (A) Cutting (C) Tearing  (C) Tearing  (C) Tearing  (C) Tearing  (C) An electrolux refrigerator is (A) single fluid absorption system (B) three non refrigerant absorbent sy (C) two fluid absorption system  (B) three fluid absorption system  (C) two fluid absorption system  (D) three fluid absorption system  (E) three fluid absorpt          | ,    |            |                                       |         |                                             |   |
| (A) Cutting (C) Tearing  (C) Tearing  (C) Tearing  (C) Tearing  (C) An electrolux refrigerator is (A) single fluid absorption system (B) three non refrigerant absorbent sy (C) two fluid absorption system  (B) three fluid absorption system  (C) two fluid absorption system  (D) three fluid absorption system  (E) three fluid absorpt          | 60   |            | is the method used to ext             | ract oi | il from oil seeds and juice from sugarcane. |   |
| (C) Tearing Crushing  70. An electrolux refrigerator is  (A) single fluid absorption system (B) three non refrigerant absorbent sy  (C) two fluid absorption system  Three fluid absorption system  71. In a vapour compression refrigeration cycle, enthalpy at suction: 190 compressor = 210 kJ/kg, condenser = 80 kJ/kg, then the C.O.P. would be  (A) 5.0  (B) 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .03. | (4)        | •                                     |         | · .                                         |   |
| 70. An electrolux refrigerator is  (A) single fluid absorption system (B) three non refrigerant absorbent sy  (C) two fluid absorption system  three fluid absorption system  71. In a vapour compression refrigeration cycle, enthalpy at suction: 190 compressor = 210 kJ/kg, condenser = 80 kJ/kg, then the C.O.P. would be  (A) 5.0  (B) 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |            |                                       | (D)     |                                             |   |
| <ul> <li>(A) single fluid absorption system</li> <li>(B) three non refrigerant absorbent system</li> <li>(C) two fluid absorption system</li> <li>Three fluid absorption system</li> <li>71. In a vapour compression refrigeration cycle, enthalpy at suction: 190 compressor = 210 kJ/kg, condenser = 80 kJ/kg, then the C.O.P. would be</li> <li>(A) 5.0</li> <li>(B) 4.5</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •    | (C)<br>. · | rearing -                             | (       | Orushing                                    |   |
| <ul> <li>(A) single fluid absorption system</li> <li>(B) three non refrigerant absorbent system</li> <li>(C) two fluid absorption system</li> <li>Three fluid absorption system</li> <li>71. In a vapour compression refrigeration cycle, enthalpy at suction: 190 compressor = 210 kJ/kg, condenser = 80 kJ/kg, then the C.O.P. would be</li> <li>(A) 5.0</li> <li>(B) 4.5</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |            | •                                     |         |                                             |   |
| (C) two fluid absorption system  three fluid absorption system  71. In a vapour compression refrigeration cycle, enthalpy at suction: 190 compressor = 210 kJ/kg, condenser = 80 kJ/kg, then the C.O.P. would be  (A) 5.0  (B) 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70.  | An e       | lectrolux refrigerator is             |         |                                             |   |
| 71. In a vapour compression refrigeration cycle, enthalpy at suction: 190 compressor = 210 kJ/kg, condenser = 80 kJ/kg, then the C.O.P. would be  (A) 5.0 (B) 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .,   | (A)        | single fluid absorption system        | (B)     | three non refrigerant absorbent system      |   |
| compressor = $210 \text{ kJ/kg}$ , condenser = $80 \text{ kJ/kg}$ , then the C.O.P. would be  (A) $5.0$ (B) $4.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | (C)        | two fluid absorption system           |         | three fluid absorption system               |   |
| compressor = $210 \text{ kJ/kg}$ , condenser = $80 \text{ kJ/kg}$ , then the C.O.P. would be  (A) $5.0$ (B) $4.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . ,  |            |                                       | •       | er en   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 71.  |            |                                       | •       | •                                           | 3 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | (A)        | 5.0                                   | (B)     | 4.5                                         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |            | 5.5                                   | (D)     | 6.5                                         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | •          |                                       |         |                                             |   |

| ,           | 4                   | Afforestation                                                                                                                  | ·<br>·     | (B)                           | ) Pasture cultivation                    |                                         |   |
|-------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------|------------------------------------------|-----------------------------------------|---|
|             | (C)                 | Silvi pasture                                                                                                                  |            | (D)                           | ) Olericulture                           | · ,                                     |   |
| •           |                     |                                                                                                                                |            |                               |                                          | ;                                       |   |
| 73.         | Whi                 | ch of the following are th                                                                                                     | e modes o  | f particip                    | ation under participat                   | orv rural appraisal?                    |   |
|             | (i)                 | Participation to supply                                                                                                        |            |                               | 2012 - 111 - 12 - 12 - 12 - 12 - 12 - 12 | orly it strong orbitations.             |   |
|             | (ii)                | Active participation                                                                                                           |            |                               |                                          |                                         |   |
|             | (iii)               | Passive participation                                                                                                          | <i>.</i>   |                               |                                          |                                         |   |
|             | 4                   | (i) and (ii) only                                                                                                              |            | (B)                           | (i) and (iii) only                       | •                                       |   |
|             | , '(C)              | (ii) and (iii) only                                                                                                            |            | (D)                           | (i), (ii) and (iii)                      | , , , , , , , , , , , , , , , , , , , , |   |
|             |                     |                                                                                                                                | • ,        |                               |                                          |                                         |   |
| 74.         |                     | project proposals for wa                                                                                                       | •          | _                             | •                                        |                                         | s |
|             | prob                | lems, economic justificati                                                                                                     | on for the | protection                    | on and improvement is                    | known as                                |   |
|             | (1)                 | Work plans                                                                                                                     |            | (B)                           | Maps                                     |                                         |   |
| •           | (C)                 | Estimates                                                                                                                      |            | (D)                           | Execution                                | •                                       |   |
|             |                     |                                                                                                                                | •          | ` ,                           |                                          | •                                       |   |
|             |                     |                                                                                                                                | •          |                               |                                          |                                         |   |
| <b>7</b> 5. | A de                | ep narrow gorge is called                                                                                                      | ,          | · · · · · ·                   |                                          |                                         | - |
| <b>7</b> 5. | A de (A)            | ep narrow gorge is called<br>Rill                                                                                              |            | (B)                           |                                          |                                         | • |
| <b>7</b> 5. |                     |                                                                                                                                |            |                               | Gully                                    |                                         |   |
| <b>7</b> 5. |                     | Rill                                                                                                                           |            | (B)                           | Gully                                    |                                         | • |
|             | (A)                 | Rill<br>Ravine                                                                                                                 |            | (B)<br>(D)                    | Gully<br>Canyon                          | •                                       |   |
| 75.<br>76.  | (A) The v           | Rill Ravine water collection in the fai                                                                                        |            | (B)<br>(D)                    | Gully<br>Canyon                          |                                         |   |
|             | (A)                 | Rill Ravine water collection in the far Fish culture alone                                                                     | rm pond i  | (B)<br>(D)                    | Gully<br>Canyon                          |                                         |   |
|             | (A) The v           | Rill Ravine water collection in the fai                                                                                        | rm pond i  | (B)<br>(D)                    | Gully<br>Canyon                          |                                         |   |
|             | (A) The v (A)       | Rill Ravine water collection in the far Fish culture alone                                                                     | rm pond is | (B) (D) s directly            | Gully<br>Canyon<br>used for              |                                         | ٠ |
|             | (A) The v (A)       | Rill Ravine water collection in the far Fish culture alone Protective irrigation alo                                           | rm pond is | (B) (D) s directly            | Gully<br>Canyon<br>used for              |                                         |   |
|             | (A) The (A) (B)     | Rill Ravine water collection in the far Fish culture alone Protective irrigation alo Both fish culture and p                   | rm pond is | (B) (D) s directly            | Gully<br>Canyon<br>used for              |                                         | • |
| 76.         | (A) The (A) (B) (D) | Rill Ravine  water collection in the far Fish culture alone Protective irrigation ale Both fish culture and p Recreation alone | rm pond is | (B) (D) s directly irrigation | Gully<br>Canyon<br>used for              |                                         |   |
|             | (A) The (A) (B) (D) | Rill Ravine water collection in the far Fish culture alone Protective irrigation alo Both fish culture and p                   | rm pond is | (B) (D) s directly irrigation | Gully<br>Canyon<br>used for              |                                         |   |

| 78. | Which of the following can be studied system?                   | using remote sensing and geographic information                             |
|-----|-----------------------------------------------------------------|-----------------------------------------------------------------------------|
|     | (i) Forest cover                                                |                                                                             |
|     | (ii) Forest ecosystem                                           |                                                                             |
|     | (iii) Forest fire prediction                                    |                                                                             |
|     | (iv) Strategies for forest protection                           |                                                                             |
|     | (A) (i), (ii), (iii)                                            | (i), (ii), (iv)                                                             |
|     | (C) (i), (iii), (iv)                                            | (D) (i), (ii), (iii) and (iv)                                               |
|     |                                                                 |                                                                             |
| 79. | In a toposheet with R.F.= $\frac{1}{50,000}$ , one of           | entimeter in the map represents                                             |
|     | meter in the ground.                                            |                                                                             |
|     | (A) 5                                                           | (B) 50                                                                      |
| •   | 500                                                             | (D) 50000                                                                   |
|     |                                                                 |                                                                             |
| 80. | different wave bands of electromagnetic                         |                                                                             |
| _   | (A) Geographic Information System                               | (B) Global Positioning System                                               |
| ,   | Remote Sensing                                                  | (D) Information Technology                                                  |
|     | •                                                               |                                                                             |
| 81. | In air borne remote sensing, the success that a percent overlap | sive photographs of terrain are taken in such a wa<br>in forward direction. |
|     | (A) 100                                                         | (B) 80                                                                      |
|     | 60                                                              | (D) 40                                                                      |
|     |                                                                 |                                                                             |
| 00  | 777 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                          | . 1'                                                                        |
| 82. |                                                                 | ndia perform all the following operations except                            |
|     | (A) Digging and elevating                                       |                                                                             |
|     | (B) Separating clods and soil                                   |                                                                             |
|     | Removal of groundnut pod from v                                 | ines                                                                        |
|     | (D) Windrowing the harvested plants                             |                                                                             |
|     |                                                                 |                                                                             |
|     |                                                                 |                                                                             |

| 83.       |              | bottoms with sharply turing the considerable | rned mould   | boar   | ds do a sup                           | erior job   | of pulva: | rization | but   |
|-----------|--------------|----------------------------------------------|--------------|--------|---------------------------------------|-------------|-----------|----------|-------|
|           | (A)          | Low vertical suction                         |              |        |                                       | -           |           |          |       |
| ٠         | (B)          | Low operational speed                        |              |        |                                       |             |           |          |       |
| ,<br>-    | (C)·         | High cost                                    |              |        |                                       |             |           |          |       |
|           |              | Draft                                        |              |        |                                       |             | ,         |          |       |
|           | <u>-</u> *   |                                              |              |        | • ,                                   |             |           |          | •     |
| 84.       | The          | useful life of a wheel type tr               | actor is     |        |                                       |             |           | , ,      |       |
|           | (A)          | 8 years                                      |              |        | 10 years                              | •           | ,         | •        | •     |
|           | <b>(C)</b> . | 14 years                                     |              | (D)    | 15 years                              |             |           | •        |       |
|           |              |                                              | ,            |        |                                       | •           |           | •        |       |
| 85.       |              | sher which are not fitted w                  |              | or uni | t have got or                         | ıly one blo | wer whic  | ch blows | s aír |
|           | (A)          | Aspirator thresher                           | • .          | ÷      |                                       |             |           | •        |       |
|           |              | Drummy thresher                              |              |        |                                       |             |           |          |       |
|           | (C)          | Olpad thresher                               |              |        |                                       |             |           |          |       |
|           | (D)          | Hammermill thresher                          | V .          |        | × •                                   |             |           |          |       |
|           |              |                                              |              |        | ,                                     | •           |           | •        | ,     |
| 86.       | The s        | size for the self propelled co               | mbine varie  | s fron | 1                                     | •           |           |          |       |
| ,         |              | 2 to 4 meters                                |              | (B)    | 1 to 1.5 me                           | ter         |           |          |       |
|           | (C)          | 1.5 to 1.75 meters                           |              | (D)    | 4.5 to 10 m                           | eters       | . •       |          |       |
|           |              |                                              |              |        |                                       |             | • • • •   | *        |       |
| 87.       | The t        | ype of universal joint gener                 | ally used on | ı Farn | n Machinery                           | is known    | as .      |          |       |
| •         | W.           | Cardan joint                                 | •            | (B)    |                                       |             |           |          |       |
|           | (C)          | Knuckle joint                                |              | (D)    | Pin joint                             |             |           | · · .•   |       |
| •         |              |                                              |              |        | -                                     | ٠           |           |          |       |
| 38.       | Redu         | ction in value of a machine                  | with the pas | ssage  | of time is ca                         | lled as     |           |          |       |
| · · · · · |              | Depreciation                                 |              | (B)    | Appreciatio                           |             |           |          |       |
| • •       | (C)          | Salvage value                                |              | (D)    | Junk value                            |             | •         |          | •     |
|           | ,            |                                              |              | رب)    | · · · · · · · · · · · · · · · · · · · |             | •         |          |       |
| ~(.       |              |                                              |              |        |                                       |             |           | T A ~ T  | 140   |

|              | Size of the plough                                                                                                      |               | (B) ·  | Throat clearance                        |
|--------------|-------------------------------------------------------------------------------------------------------------------------|---------------|--------|-----------------------------------------|
| (C)          | Horizontal suction                                                                                                      |               | (D)    | Vertical suction                        |
|              | Horizontal suction                                                                                                      | •             | (D)    | vermear succion                         |
| A / 'TT      |                                                                                                                         |               | · •    |                                         |
| A till       | lage system in which only is                                                                                            | solated band  |        |                                         |
| (0)          | Strip tillage                                                                                                           |               | (B)    | Minimum tillage                         |
| (C)          | Mulch tillage                                                                                                           |               | (D)    | Rotary tillage                          |
|              |                                                                                                                         |               |        |                                         |
| Elect        | trolite used in tractor bat                                                                                             |               |        | al reaction usually consist of about    |
| (A)          | Nitric                                                                                                                  | . •           |        | Sulphuric                               |
| (C)          | Hydrochloric                                                                                                            |               | (D)    | Any acid                                |
|              |                                                                                                                         | ,             |        |                                         |
| Tf two       | o bullooke woighing 350 kg                                                                                              | : each are ni | ılling | an implement with a speed of 3 km/hr    |
|              | er developed by the bullock                                                                                             |               | annig  | an implement with a speed of 6 km/m     |
| (A)          | 2 hp                                                                                                                    | · ,           | (B)    | 5.72 kW                                 |
|              | 0 500 1 577                                                                                                             |               | (D)    | 0.5 hp                                  |
|              | ~ 0.572 kW                                                                                                              |               |        |                                         |
|              | 0.572 kW                                                                                                                |               | •      | •                                       |
| In           |                                                                                                                         | system oil    | ie nun | nned directly to the crank shaft, conne |
| In — rod,    |                                                                                                                         | •             |        | nped directly to the crank shaft, conne |
|              | lubrication                                                                                                             | •             |        | •                                       |
| rod,<br>(A)  | ——————————lubrication<br>piston pin and cam shaft of                                                                    | •             |        | •                                       |
| rod,         | lubrication piston pin and cam shaft of Splash system Oil circulation system                                            | •             |        | •                                       |
| rod, (A) (B) | lubrication piston pin and cam shaft of Splash system Oil circulation system Forced feed system                         | •             |        | •                                       |
| rod,<br>(A)  | lubrication piston pin and cam shaft of Splash system Oil circulation system                                            | •             |        | •                                       |
| rod, (A) (B) | lubrication piston pin and cam shaft of Splash system Oil circulation system Forced feed system Direct injection system | the engine    | throug | gh suitable paths of oil:               |
| rod, (A) (B) | lubrication piston pin and cam shaft of Splash system Oil circulation system Forced feed system Direct injection system | the engine    | throug | •                                       |

| 95.     | The s | specific fuel consumpti                                             | on limits for   | 36 to 55 H | Ib tractor fixed by Govt.             | of India is            |
|---------|-------|---------------------------------------------------------------------|-----------------|------------|---------------------------------------|------------------------|
|         | (A)   | 205 g/PTO HP/hr                                                     |                 | ·(B)       | 200 g/PTO HP/hr                       |                        |
|         | 1     | 195 g/PTO HP/hr                                                     |                 | (D) ·      | 185 g/PTO HP/hr                       |                        |
|         |       |                                                                     |                 | •          |                                       |                        |
| 96.     | Weig  | ht transfer is represer                                             | ited by         |            |                                       |                        |
| •       |       | $\frac{\text{Pull} \times \text{Hitch height}}{\text{Wheel base}}$  |                 |            |                                       |                        |
|         | (B)   | $\frac{\text{Pull} \times \text{Wheel base}}{\text{Hitch height}}$  |                 |            |                                       |                        |
|         | (C)   | $\frac{\text{Pull} \times \text{Hitch height}}{\text{Wheel treed}}$ |                 | .,         | · · · .                               |                        |
|         | (D)   | Pull×Wheel base Wheel treed                                         | •               | · · · ·    |                                       |                        |
| ,       |       |                                                                     |                 | ,          |                                       |                        |
| 97.     | A pu  | mp in which the pistor                                              | n travel is per | pendicula  | ar to the pump axis is kno            | own as                 |
|         | (A)   | Axial piston pump                                                   |                 |            |                                       |                        |
|         |       | Radial piston pump                                                  |                 |            |                                       |                        |
|         | (C)   | Tangential piston pu                                                | ımp.            | .·         | · · · · · · · · · · · · · · · · · · · |                        |
|         | (D)   | Co-axial piston pum                                                 | <b>p</b>        | . '        |                                       |                        |
|         |       |                                                                     |                 | • • •      |                                       |                        |
| 98.     | The l | hydraulic brake works                                               | on the princ    | iple of    |                                       |                        |
| ,       | (A).  | Joules Law                                                          | •               |            | Pascal's Law                          |                        |
| · · · . | (C)   | Boyles Law                                                          |                 | (D)        | Charles Law                           |                        |
|         | ,     |                                                                     |                 |            |                                       |                        |
| 99.     | With  | respect to engine, oil                                              | bath air cleai  | ners are a | lways maintained                      |                        |
|         | (A)   | horizontally                                                        |                 |            | vertically                            | •                      |
|         | (C)   | 45' inclination                                                     | •               | (D)        | 30' inclination                       | -                      |
| Φ       |       | , , , ,                                                             |                 | 19         |                                       | CEAGE/18<br>[Turn over |

https://www.freshersnow.com/previous-year-question-papers/

| 100. | The    | principle of chain surveying is          |          |                        |
|------|--------|------------------------------------------|----------|------------------------|
|      |        | Triangulation                            | (B)      | Parallelism            |
|      | (C)    | Traversing                               | (D)      | Resection              |
| •    |        |                                          |          |                        |
| 101. | The    | curvature of the earth is ignored in     |          | •                      |
| •    | (A)    | geodetic surveying                       | (D)      | plane surveying        |
|      | (C)    | hydrographic surveying                   | (D)      | trignometric surveying |
|      |        | ·                                        |          |                        |
| 102. | Leng   | eth of Gunter's chain is                 |          |                        |
| •    | (A)    | 20'                                      | (B)      | 33'                    |
|      | (0)    | 66'                                      | (D)      | 100'                   |
| ٠.   |        |                                          |          | •                      |
| 103. | A cro  | oss-staff is used for                    |          |                        |
|      | (A)    | marking of survey station                |          |                        |
|      | 0      | setting perpendicular lines to survey    | line     |                        |
|      | .(C)   | alignment of a survey line               | •        |                        |
|      | (D)    | setting a line at an angle to a survey   | line at  | a point                |
|      |        |                                          |          |                        |
| 104. | A 20   | m chain is divided into                  | ,        |                        |
|      | 4      | 100 links                                | (B)      | 150 links              |
|      | (C)    | 200 links                                | (D)      | 250 links              |
|      |        |                                          | , •      | _                      |
| 105. | Oper   | n traverse is suitable in the survey of  |          |                        |
| •    | (A)    | Ponds                                    |          | Rivers                 |
|      | (C)    | Estates                                  | (D)      | Forest                 |
|      | ·      |                                          |          |                        |
| 106. | If a v | vooded area obstructs the chain line the | en it is | crossed by the         |
|      | (A)    | Projection line                          | (B)      | Profile line           |
|      | (C)    | Check line                               |          | Random line            |
| •    |        |                                          |          |                        |

| 107.      | The s | standard recording raingauge adopte                                      | d in Ind | ia is of                                       |    |
|-----------|-------|--------------------------------------------------------------------------|----------|------------------------------------------------|----|
|           | (A)   | Weighing bucket type                                                     | . (1)    | Natural siphon type                            |    |
|           | (C)   | Tipping bucket type                                                      | (D)      | Telemetry type                                 |    |
| • ,       |       |                                                                          | • • •    |                                                |    |
| 108.      | A 6-1 | n storm had 6 cm of rainfall and the n                                   | esulting | g runoff was 3 cm. If the $\phi$ index remains | a  |
|           | the s | ame value the runoff due to 12 cm of                                     | rainfall | in 9 h in the catchment is                     |    |
|           | (A)   | 4.5 cm -                                                                 | (B)      | 6.0 cm                                         |    |
|           | S).   | 7.5 cm                                                                   | (D)      | 9.0 cm                                         |    |
|           |       |                                                                          |          |                                                |    |
| 109.      | An ir | ntermittent stream                                                       |          |                                                |    |
|           | (A)   | has water table above the stream b                                       | ed thro  | ughout the year                                |    |
|           | (B)   | has only flash flows in response to                                      | storms   | •                                              |    |
|           | JES . | has flows in the stream during wet                                       | season   | due to contribution of ground water            |    |
|           | (D)   | does not have any contribution of g                                      | roundw   | ater at any time                               |    |
|           |       |                                                                          |          |                                                |    |
| 110.      | Direc | ct runoff is made up of                                                  | ••       |                                                |    |
| ٠.        | (1)   | surface runoff, prompt interflow ar                                      | nd chann | nel precipitation                              |    |
| :         | (B)   | surface runoff, infiltration and eva                                     | potransı | piration                                       |    |
|           | (C)   | overland flow only                                                       |          |                                                |    |
|           | (D)   | rainfall and evaporation                                                 |          |                                                |    |
|           |       |                                                                          | •        |                                                |    |
| ,<br>111. | The   | geophysical method of ground wate                                        | r explor | ation which is suitable for both cased ar      | 1  |
|           |       | sed formation is                                                         | :        |                                                |    |
|           | (A)   | electrical resistivity method                                            | (B)      | electric logging                               | •  |
|           | 10    | gamma ray logging                                                        | (D)      | seismic refraction surveying                   |    |
|           |       |                                                                          |          |                                                |    |
| 112.      | The   | optimum length of a well screen for ———————————————————————————————————— |          | well in a confined aquifer should extend       | t. |
|           | (A)   | 50-60%                                                                   | (B)      | 60-70%                                         |    |
| ۰         |       | 70-80%                                                                   | (D)      | Full depth                                     |    |
| . `       |       |                                                                          |          |                                                |    |
| * r       |       |                                                                          | 0.1      | OE A OE/1                                      | c  |

| 113. | Appl   | ication of any plant res                         | sidues or the o                       | other ma          | terials to cover the top | soil surface is c | alled .    |
|------|--------|--------------------------------------------------|---------------------------------------|-------------------|--------------------------|-------------------|------------|
|      | (A)    | Tillage                                          |                                       | (B)               | Mulch tillage            |                   |            |
| •    | 5      | Mulching                                         | :                                     | (D)               | Crop cover               |                   | * .        |
|      |        |                                                  |                                       |                   |                          | •                 |            |
| 114. | The    | graded bunds are not s                           | uitable for co                        | nstructio         | n on the land slopes gr  | eater than        |            |
|      | .(A)   | 2%                                               | •                                     |                   | 6%                       |                   |            |
|      | (C)    | 10%                                              | · · · · · · · · · · · · · · · · · · · | (D)               | 20%                      | •                 | , .        |
| •    | _      |                                                  | ·<br>,                                |                   | •                        |                   | . ,        |
| 115. | Whic   | ch of the following is le                        | ast permanen                          | t of all ch       | neck dams?               |                   |            |
|      | (A)    | Woven wire dam                                   | <b>^</b> · · · ·                      |                   | Brush dam                |                   |            |
|      | (C)    | Loose rock dam                                   |                                       | · (D)             | Plank dam                |                   | ,          |
| •    |        | ;                                                |                                       |                   |                          |                   |            |
| 116. | . Whic | ch of the following is th                        | ie most commi                         | on gully d        | control structure?       |                   |            |
| ,    | (A)    | Check dam                                        |                                       | on guny (         | Drop structure           |                   |            |
|      | (C)    | Chute spill way                                  |                                       | (D)               | Drop inlet spill way     |                   | •          |
| · .  | `. ′   |                                                  |                                       |                   | r                        | •                 | -          |
| 117. | Amo    | ng the three trace                               | of marraman't                         | of soil .         |                          |                   | •          |
| TT.  |        | ng the three types o<br>onsible for transporting |                                       |                   |                          |                   | ne is      |
| •    | (A)    | Suspension                                       |                                       |                   |                          | •                 |            |
|      |        | Saltation                                        |                                       |                   |                          |                   | •          |
|      | (C)    | Surface creep                                    |                                       |                   |                          |                   | ٠          |
|      | (D)    | All the three moveme                             | ents contribut                        | e equally         | 7                        |                   | -          |
|      |        |                                                  |                                       |                   |                          |                   | ,          |
| 118. | Whic   | ch of the following state                        | ement(s) is/ar                        | e true?           |                          | •                 |            |
|      | (i)    | A wind break is any                              |                                       | •                 | ection from winds        |                   |            |
|      | (ii)   | Wind breaks are long                             |                                       |                   | •                        |                   |            |
| ,    | (iii)  | An ideal form of shel                            |                                       |                   |                          | ·                 | •          |
|      | (A)    | (i) and (ii) only                                | , '                                   |                   | (i) and (iii) only       |                   |            |
|      | (C)    | (ii) and (iii) only                              |                                       | (D)               | (i), (ii) and (iii)      |                   |            |
|      |        |                                                  | •                                     | •                 | •                        | ·                 |            |
| 119. | Susp   | ension accounts for —                            | ·                                     | ner cent c        | of total soil loss moven | ent by wind       |            |
|      | Jusp   | 15                                               |                                       | (B)               | 35                       | ·                 |            |
|      | (C)    | 50                                               |                                       | (D)               | 75                       | •                 | ,          |
|      |        | . '                                              | · · · · · · · · · · · · · · · · · · · | ( <del>-</del> ), |                          |                   |            |
| CEA  | GE/18  | · · · · · · · · · · · · · · · · · · ·            |                                       | <b>22</b>         | • .                      |                   | $\Diamond$ |

| 120. | USL                                   | E equation is presented l                                                    | oy ·                                                        |                  | •                                  |                             | ,       | •                                     |
|------|---------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------|------------------|------------------------------------|-----------------------------|---------|---------------------------------------|
|      | (A)                                   | Hermsmeier                                                                   |                                                             | (B) ·            | Mutchler                           |                             |         |                                       |
|      | (C)                                   | Lal                                                                          |                                                             | (D)              | Wischmei                           | er ·                        |         |                                       |
|      | ,                                     | ·                                                                            | •                                                           |                  |                                    | •                           |         | ÷                                     |
| 121. |                                       | ects having a culturable<br>sified as medium irrigatio                       |                                                             | of —             |                                    | — ha to —                   |         | — ha are                              |
| ,    | (A)                                   | 1000 to 2000                                                                 |                                                             | T)               | 2000 to 10                         | 0,000                       | -       |                                       |
|      | (C)                                   | 10,000 to 15,000                                                             | · · · · · ·                                                 | (D)              | 15,000 to                          | 20,000                      |         |                                       |
|      | •                                     |                                                                              | ,                                                           | •                | ·                                  | •                           |         |                                       |
| 122. | Whi                                   | ch of the following staten                                                   | ent(s) is/are tr                                            | ue?              |                                    |                             | v       |                                       |
| 144. | , , , , , , , , , , , , , , , , , , , |                                                                              |                                                             |                  | <i>i</i> .                         |                             | •       | :                                     |
|      | (i)                                   | The structure of soil is                                                     | dynamic                                                     |                  |                                    | •                           |         | • .                                   |
|      | (ii)                                  | Soil structure regulates                                                     | porosity                                                    | • ;              |                                    |                             | •       |                                       |
|      | (iii)                                 | Platy structures norma                                                       | lly aid free drai                                           | nage             |                                    | ,                           |         | •                                     |
|      | (A)                                   | (i) only                                                                     |                                                             | (3)              | (i) and (ii)                       | only                        |         |                                       |
|      | (C)                                   | (ii) and (iii) only                                                          |                                                             | (D)              | (i), (ii) an                       | d (iii)                     | · .     | •                                     |
|      | (,-)                                  | \", \", \", \"                                                               |                                                             |                  | . •                                | •                           |         |                                       |
| 123. | A 66<br>True<br>(A)                   | 60 cm <sup>3</sup> soil core taken by<br>e specific gravity of soil w<br>60% | a core sample<br>as 2.65. Deterr                            | r from<br>nine t | n a field wo<br>he porosity<br>40% | eighed 1.055<br>of the soil | kg on o | ven drying.                           |
|      | (C)                                   | 0.06%                                                                        |                                                             | (D)              | 0.04%                              |                             |         |                                       |
|      | (0)                                   |                                                                              |                                                             | (-)              |                                    | *                           | ý       | , .                                   |
|      | ٠.                                    |                                                                              |                                                             |                  |                                    |                             |         |                                       |
| 124. | Mat                                   | ch the following:                                                            | Dhasiaa                                                     | 1 alima a        | naion                              |                             |         |                                       |
| •    | (-)                                   | Property Hydraulic conductivity                                              | $\begin{array}{ccc} & \text{Physica} \\ 1. & L \end{array}$ | i dime           | HSIOH ·                            | •                           |         |                                       |
| •    | (a)                                   | Intrinsic permeability                                                       | $egin{array}{lll} 2. & LT^{-1} \end{array}$                 |                  | ٠.                                 |                             |         |                                       |
| •    | (b)                                   | Hydraulic radius                                                             | 3. $ML^{-3}$                                                |                  |                                    |                             |         |                                       |
|      | (c)                                   |                                                                              | 3. $ML$ 4. $L^2T^{-1}$                                      | •                | •                                  |                             |         | · · · · · · · · · · · · · · · · · · · |
|      | (d)                                   | Bulk density                                                                 | 4. LI                                                       |                  | ,                                  | ,                           |         | • .                                   |
|      |                                       | (a) (b) (c)                                                                  | (d)                                                         |                  | ,                                  |                             | :       |                                       |
| ٠    | (A)                                   | 2 3 4                                                                        | 1                                                           |                  | ٠.                                 |                             |         |                                       |
|      |                                       | $2 \qquad 4 \qquad 1$                                                        | 3 .                                                         | ··               | ·.                                 |                             |         |                                       |
| •    | (C)                                   | 2 4 3                                                                        | 1                                                           | •                |                                    |                             | •       |                                       |
|      | / <b>(D)</b>                          | 1 4 3                                                                        | . 2                                                         |                  | ,* ,                               |                             |         | •                                     |
|      |                                       |                                                                              |                                                             |                  |                                    | •                           | •       |                                       |

|      | (a)    | Contour     | furrow irrig  | gation       | 1.       | When     | general slope i | s gradual and | l very little |
|------|--------|-------------|---------------|--------------|----------|----------|-----------------|---------------|---------------|
| •    | (b)    | Straight    | border irrig  | gation       | 2.       |          | hat bake and f  | •             |               |
|      | (c)    | Basin irr   | igation       |              | •        |          | ed is uneven ar | •             | ography       |
|      | (d)    | Corrugat    | ion irrigatio | on .         |          |          | for fruit crops |               |               |
|      | ,      | (a) (l      | b) (c)        | (d)          | ,        |          |                 |               |               |
|      | (A)    | 2 . 1       | 4             | 3            | •        |          | ·<br>           |               |               |
| •    | (B)    | 1 . 2       | 4             | 3            |          |          |                 |               |               |
| ٠.,  | 100    | 3 1         | 4             | 2            |          | •        |                 | ,             |               |
| ,    | (D)    | 3 2         | 4             | 1            |          |          |                 |               |               |
|      |        | ٠.          | ٠             |              |          |          |                 |               |               |
| 126. | The    | width of a  | border strij  | p usually r  | anges    | betwee   | n.              |               |               |
|      | (A)    | 1 to 5 m    |               |              |          | (B)      | 2 to 10 m       | •             |               |
|      | م      | 3 to 15 r   | n ·           |              | . •      | (D)      | 4 to 20 m       |               |               |
|      |        |             |               |              |          |          |                 | · _           | •             |
| 127. | Inflo  | ow-outflow  | method car    | ı be used to | o deter  | mines    |                 | - in furrows. |               |
|      | (A)    | Depth of    | •             |              |          | ·<br>(B) | Width of furr   |               |               |
|      | (C)    | Soil moi    | sture         | ٠            |          |          | Infiltration    |               |               |
| ٠    |        |             |               | •            |          | •        | · .             | <i>.</i> ·    | •             |
| 128. | A hi   | gh pressur  | e revolving   | head sprin   | kler o   | perates  | s at a pressure | of            | . KSC.        |
| •    | (A)    | 0.25        |               |              |          | (B)      | 0.5             |               | 1250.         |
|      | (C)    | 0.75        |               | •            |          |          | 9.              | •             | •             |
|      | (0)    |             |               |              |          | •        | Δ,              |               |               |
| 129. | The    | type of spr | inkler head   | s adonted    | for irri | Gating   | lawne aro       |               |               |
|      |        |             | prinklers     | is adopted.  | TOT IIII | (B)      | Micro-sprinkl   | ora .         | •             |
|      | (C)    | •           |               |              |          |          |                 | CIS           |               |
| •    | (U)    | notary s    | prinklers     | · ·          |          | (D)      | Rain gun        |               | ·             |
| CEA  | CIE/19 | 8           | •             | `            | 9        | 4        |                 |               |               |

Match the following:

125.

| 30.          | Whic  | ich of the following is/are correct?                                             | ••                                      |
|--------------|-------|----------------------------------------------------------------------------------|-----------------------------------------|
|              | I.    | The farm stead should be located near the centre of the farm                     |                                         |
|              | II.   | Site for farm stead should have high elevation and good drainage                 |                                         |
|              | III.  | The farm stead should be near a source of permanent water supply                 |                                         |
| •            | (A)   | I and II (B) II and III                                                          |                                         |
| •            | (Ċ)   | I and III                                                                        |                                         |
|              |       |                                                                                  |                                         |
| 31.          | The p | percentage of area of a farm stead out of the total farm area should be          |                                         |
|              | (A)   | 1 to 2% (B) 2 to 4%                                                              |                                         |
| ,            |       | 3 to 5% (D) 4 to 6%                                                              |                                         |
|              | •     |                                                                                  |                                         |
| 32.          | Whic  | ich of the following is/are correct?                                             |                                         |
|              | Ι. ·  | In Bedroom of farm house, cross ventilation with one side exposed to the p       | revailing                               |
| ٠            | •     | breeze                                                                           | • • • • • • • • • • • • • • • • • • • • |
|              | ΙĮ.   | The kitchen must have an eastern location                                        | •                                       |
|              | III.  | The store room should be located near the kitchen                                | •                                       |
| .:           | (A)   | I and II (B) II and III                                                          | ٠.,                                     |
|              | (C)   | I and III                                                                        |                                         |
|              |       |                                                                                  |                                         |
|              | The   | e wall constructed for seepage control around masonry structures is called       |                                         |
|              | (A)   | End sill Cut-off wall                                                            | ,                                       |
|              | (C)   |                                                                                  |                                         |
|              |       |                                                                                  | •                                       |
| L3 <b>4.</b> | The   | e channel crossing structure used when the road fill is sufficiently high and th | e channel                               |
|              |       | l lies on the field surface is                                                   | 4                                       |
|              | (A)   | Inverted siphon (B) Flume                                                        | •                                       |
| ٠.           |       | Culvert (D) Turn out                                                             |                                         |
| '            | •     | OF CI                                                                            | EAGE/18                                 |
| ≱ .          |       |                                                                                  | irn over                                |
|              |       |                                                                                  | *.                                      |

https://www.freshersnow.com/previous-year-question-papers/

| 135. | The          | Gutters in the stanchi                        | on barn shou                          | ıld have a ı | minimum slope o     | f              | %.            |
|------|--------------|-----------------------------------------------|---------------------------------------|--------------|---------------------|----------------|---------------|
|      | (A)          | 1%                                            | ·                                     | D            | 2%                  |                |               |
| -,   | (C)          | 3%                                            |                                       | (D)          | 4%                  |                |               |
|      |              |                                               |                                       |              |                     |                | •             |
| 136. | Duri<br>than | ng slump test perform                         | ned to determ<br>should be re         |              | asticity of concret | e, if concrete | e slumps more |
|      | (A)          | 10.                                           |                                       | <b>O</b>     | 12.5                | ,              |               |
|      | (C)          | 15                                            |                                       | (D)          | 17.5                |                | •             |
| ,    |              | •                                             |                                       |              |                     | .*             | **<br>*       |
| 137. | In w         | ire floored poultry ho                        | ouses, the flo                        | or is place  | ed about ———        | cm             | above ground  |
|      | (A)          | 30                                            |                                       | (B)          | 35                  |                |               |
|      | .(C)         | 40                                            |                                       |              | 45                  | •              |               |
|      |              |                                               |                                       |              |                     |                |               |
| 138. | Stan         | chion barn is also call                       | ed the                                |              | • .                 |                |               |
|      | 4            | general purpose bar                           | n.                                    | · (B)        | open air barn       |                |               |
| J    | (C)          | loose housing barn                            | · · · · · · · · · · · · · · · · · · · | (D)          | milking parlour     |                |               |
|      |              |                                               |                                       |              |                     | :              |               |
| 139. | The :        | average floor area req                        | uired per ani                         | mal for cov  | w stall with alleys | s is in the ra | nge of        |
| •    | (A)          | 2.20 sq.m.                                    |                                       | (B)          | 3.50 sq.m.          | ,              | ٠.            |
|      | (C)          | 5.20 sq.m,                                    |                                       |              | 6.00 sq.m.          |                |               |
|      |              |                                               |                                       |              | ·                   |                |               |
| 140. | The          | passage between the c                         | outer wall an                         | d the mans   | ger is called       |                |               |
|      | (A)          | Milking parlour                               |                                       | (B)          | Cow stall           |                | ,             |
|      | 6            | Feed alley                                    |                                       | (D)          | Gutters             | •              |               |
| •    |              |                                               |                                       |              |                     |                | •             |
| 141. |              | barn structure whe<br>entrate, etc are suppli |                                       |              |                     | •              | ne roughages  |
| -    |              | Community barn                                | ÷ .                                   | (B)          | Pen barn            |                |               |
| ·:   | (C)          | Stanchion barn                                |                                       | (D)          | Hering bone bar     | r <b>n</b>     |               |
|      | . •          | •                                             |                                       |              |                     |                |               |
| CEA  | GE/18        | 8.                                            | •                                     | <b>26</b>    |                     |                | <b>‡</b>      |

| 142.    | Maxi             | mum Power Point Tracking (MPPT) is used                                             |
|---------|------------------|-------------------------------------------------------------------------------------|
|         | (A) <sub>.</sub> | to protect the battery from over charging                                           |
|         | (B)              | to protect the PV module from over power production                                 |
| . •     | مهي              | to match the impedance of the module with that of the load/battery                  |
|         | (D)              | to track the sun to produce more power                                              |
| ,       |                  |                                                                                     |
| 143.    | Estin            | nate the available wind power at 10 m/s wind velocity in a wind will rotor diameter |
| ··· ·   | -01 00           | 173.2 kw (B) 346.4 kw                                                               |
|         | (C)              | 1732.3 kw (D) 3464.7 kw                                                             |
|         | (0)              | 1702.0 KW                                                                           |
|         |                  |                                                                                     |
| 144.    |                  | h of the statements are correct?                                                    |
| *       | ·Solar           | photo voltaics is                                                                   |
|         | (i)              | Conversion of light into electricity                                                |
|         | (ii)             | Generation of electromotive force from the ionizing solar radiation                 |
|         | (iii)            | Conversion of solar thermal energy into electricity                                 |
| ,       | (iv)             | Electrical energy generation using solar heliostat                                  |
|         |                  | (i) and (ii) (B) (ii) and (iii)                                                     |
|         | (C)              | (iii) and (iv) (D) (iv) and (i)                                                     |
| ÷       | •                |                                                                                     |
| 145.    | Yaw              | mechanism in horizontal axis wind turbine helps to                                  |
|         | -                | turn the rotor according to the wind direction                                      |
|         | (B)              | raise the rotor according to wind availability                                      |
|         | (C)              | change the pitch angle of the rotor                                                 |
| • •     | • • •            | rotate rotor according to the wind power                                            |
|         | (D)              | Totale 10tol according to the wind perior                                           |
|         |                  |                                                                                     |
| 146.    | Savo             | nius rotors are ———————————————————————————————————                                 |
| · · · , | (4)              | self starting (B) high speed                                                        |
|         | (C)              | high efficiency (D) low solidity                                                    |
| •       | ,                | CEACE/10                                                                            |

| 147.         | The t | thermo chemical conversion efficiency                               | of gasi | fication process is                   |
|--------------|-------|---------------------------------------------------------------------|---------|---------------------------------------|
|              | (A)   | 10-30%                                                              | (B)     | 30-60%                                |
|              | (5).  | 60-90%                                                              | (D)     | more than 90%                         |
| ~            | •     |                                                                     |         |                                       |
| 148.         | Iņ bi | o mass gasification process, the Boudo                              | ouard r | eaction is given by                   |
| •            | 4     | $C + CO_2 \rightarrow 2CO$                                          | (B)     | $C + 2H_2 \rightarrow CH_4$           |
| :            | (C)   | $\mathbf{C} + \mathbf{H_2O} \rightarrow \mathbf{CO} + \mathbf{H_2}$ | (D)     | $C + O_2 \rightarrow CO_2$            |
| `            | • .   |                                                                     |         |                                       |
| 149.         | The   | charcoal produced is about —                                        |         | kg, when 100 kg dry biomass is fed ir |
|              | charc | coal retorts operating at 600° C.                                   | ,       |                                       |
| 4            | U     | 30                                                                  | (B)     | 50                                    |
|              | (C)   | 70                                                                  | (Ď)     | 90                                    |
|              |       |                                                                     |         |                                       |
| 150.         | Trad  | itional charcoal making is done by the                              | follow  | ing process                           |
|              | (A)   | Combustion                                                          |         |                                       |
|              | (B)   | Gasification                                                        |         |                                       |
|              | (C)   | Pyrolysis                                                           | •       |                                       |
| • •          | (D)   | Anaerobic fermentation                                              |         |                                       |
|              |       |                                                                     |         |                                       |
| 151.         | The c | common micro organism used for etha                                 | nol pro | duction is                            |
|              | (A)   | Methanogenic bacteria                                               | (B)     | Acedogenic bacteria                   |
| . •          |       | Saccharomyces cerevisiae                                            | (D)     | Enzymes                               |
|              |       |                                                                     |         |                                       |
| <b>1</b> 52. | The c | ozone layer acts as an efficient filter f                           | or harn | nful solar UV-B rays is in the —————  |
|              |       | n of the earth's atmosphere.                                        |         |                                       |
|              | (A)   | Troposphere                                                         | P       | Stratosphere                          |

CEAGE/18

(C)

Mesosphere

Hetrosphere

- 153. Recirculatory batch dryers are
  - (A) batch non mixing type grain dryer
  - (B) batch mixing type grain dryer
  - continuous flow non mixing type grain dryer
    - (D) continuous flow mixing type grain dryer
- 154. Equation for the conversion of percent moisture content in wet basis (m) to percent moisture content on dry basis (M) is
  - (A)  $M = \frac{100 m}{100 m}$

 $M = \frac{100 \, m}{100 - m}$ 

(C)  $M = \frac{m - 100}{100 \, m}$ 

- (D)  $M = \frac{100 m}{100}$
- - (A) 12 14

(3) 14 - 16

(C) 16 - 18

- (D) 18 20
- 156. Parboiling of Paddy is a process.
  - (A) Soaking

(B) Steaming

(C) Drying

- Hydrothermal
- 157. Centrifugal dehusker removes husk from paddy based on ———— force
  - (A) Frictional

(B) Shear

(C) Compression

- Impact
- 158. The differential speed of break rolls of a wheat mill is in the proportion of
  - (A) 3.5:1

(B) 3:1

2.5:1

(D) 2:1'

| •    |       | • • • • • • • • • • • • • • • • • • • • |                 | •         |                       |       |
|------|-------|-----------------------------------------|-----------------|-----------|-----------------------|-------|
| 159. |       | is commo                                | only used for t | he produc | ction of activated ca | rbon. |
| ٠.   |       | Coconut shell                           |                 | · (B)     | Coconut husk          |       |
|      | (C)   | Coconut kernel                          | •               | (D)       | Coirpith              |       |
|      | · · · | · .                                     | ,               |           |                       | •     |
| 160. | ·     | hastens                                 | the ripening o  | f fruits. |                       | •     |
|      |       | Ethylene                                |                 | (B)       | Carbon dioxide        |       |

- 161. Stefan Boltzmann's Law is related to ———— heat transfer.
  - (A) Conduction

(C)

(B) Forced convection

Nitrogen

- Radiation
- (D) Natural convection
- 162. Thermal diffusivity is given by
  - (A)  $\frac{C_p}{K\rho}$
  - $\int \frac{K}{aC}$

(B)  $p/K\rho C_p$ 

(D)

Carbon monoxide

- (D)  $\frac{KC_p}{\rho}$
- 163. The economy of evaporation of given by
  - (A)  $1 \frac{\text{mass of water evaporated}}{\text{mass of steam supplied}}$
  - (B)  $1 \frac{\text{mass of steam supplied}}{\text{mass of water evaporated}}$
  - mass of water evaporated mass of steam supplied
    - (D)  $\frac{\text{mass of steam supplied}}{\text{mass of water removed}}$

| 164. | Blar  | nching of vegetables is done  | to .          |           |                |             |         | ·         |
|------|-------|-------------------------------|---------------|-----------|----------------|-------------|---------|-----------|
|      | (i)   | Inactivate enzymes            |               |           |                | ,           | -       |           |
| •    | (ii)  | To destroy peroxides          |               |           |                |             |         |           |
|      | (iii) | To kill pathogens             |               |           |                | •           |         |           |
| ,    | (iv)  | To kill micro organisms       | :             |           |                | , .         | *•      |           |
| •    | (A)   | (iii) and (iv)                |               | · (B)     | (ii) and (iii) |             | . ,     |           |
|      | (C)   | (i) and (iv)                  |               |           | (i) and (ii).  |             | •       | •         |
| •    |       |                               | •,            |           |                | •           |         | ٠         |
| 165. | Deci  | mal reduction time in micr    | obial destr   | uction is | s inversely pr | roportional | to .    |           |
|      | (A)   | Universal gas constant        | ,             |           | ,              |             | •       |           |
| ·    | ·(B)  | Initial concentration         |               |           | ,              |             |         | •         |
|      |       | Z value                       | ٠.,           |           |                |             | •       |           |
|      | (D)   | Reaction rate                 | •             |           | . •            |             |         |           |
| • .  |       |                               |               |           |                | ·<br>·      |         |           |
| 166. | An e  | extruder does not have the    | following co  | omponer   | nt             | •           |         |           |
|      | (A)   | Screw                         | •             | (B)       | Barrel         |             | ; · · . |           |
|      | (C)   | Die                           |               |           | Compressor     |             | , .     |           |
|      | ٠     |                               |               |           |                |             |         |           |
| 167. | Sepa  | aration of liquid from solids | by applica    | tion of p | oressure is kr | nown as     |         | •         |
|      | (A)   | Extraction                    | · .           | (B)       | Leaching       |             |         |           |
|      | (C)   | Filtration                    | • • • • • • • |           | Expression     |             |         |           |
|      |       |                               |               |           |                |             |         |           |
| 168. | Неат  | t is generated due to         | · ,           | - in food | material in 1  | nicrowave   | heating | of foods. |
|      |       | Explosion of molecules        |               | ,         | •              |             |         |           |
|      | (A)   |                               | •             |           | • • •          |             | •       |           |
| · ·  | (B)   | Electroporation               | •             |           |                | •           |         |           |
| •    | (C)   | Electrical resistance         | •             |           |                | •           |         |           |
| . •  | (10)  | Change of polarity            | •             |           |                | •           |         |           |
| •    | •     |                               |               |           | / -            |             |         |           |

| <ul> <li>(A) Assess runoff</li> <li>(B) Estimating area extent</li> <li>(Carry out soil and water conservation activities</li> <li>(D) Prepare hydrograph</li> <li>170. Watersheds and macro watersheds can be delineated with the aid of imagery.</li> <li>(A) 1: 2,00,000</li> <li>(B) 1: 1,00,000</li> <li>(C) 1: 50,000</li> <li>(D) 1: 25,000</li> </ul> |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Carry out soil and water conservation activities  (D) Prepare hydrograph  170. Watersheds and macro watersheds can be delineated with the aid of imagery.  (A) 1:2,00,000  (B) 1:1,00,000                                                                                                                                                                     |          |
| <ul> <li>(D) Prepare hydrograph</li> <li>170. Watersheds and macro watersheds can be delineated with the aid of imagery.</li> <li>(A) 1:2,00,000</li> <li>(B) 1:1,00,000</li> </ul>                                                                                                                                                                           | •        |
| 170. Watersheds and macro watersheds can be delineated with the aid of imagery.  (A) 1:2,00,000  (B) 1:1,00,000                                                                                                                                                                                                                                               | ,        |
| imagery. (A) $1:2,00,000$ (B) $1:1,00,000$                                                                                                                                                                                                                                                                                                                    | · J.     |
| imagery. (A) $1:2,00,000$ (B) $1:1,00,000$                                                                                                                                                                                                                                                                                                                    |          |
|                                                                                                                                                                                                                                                                                                                                                               | ——— scal |
| 1:50,000 (D) 1:25,000                                                                                                                                                                                                                                                                                                                                         |          |
|                                                                                                                                                                                                                                                                                                                                                               |          |
|                                                                                                                                                                                                                                                                                                                                                               |          |
| 171. In watershed domain, what does SWAT stands for?                                                                                                                                                                                                                                                                                                          |          |
| (A) Strength and Weakness Assignment Technique                                                                                                                                                                                                                                                                                                                |          |
| Soil and Water Assessment Tool                                                                                                                                                                                                                                                                                                                                |          |
| (C) Soil and Water Analysis Tool                                                                                                                                                                                                                                                                                                                              | ,        |
| (D) Soil and Water Tool                                                                                                                                                                                                                                                                                                                                       |          |
|                                                                                                                                                                                                                                                                                                                                                               | •        |
| 172. Geo-Hydrological unit with a common drainage outlet is called                                                                                                                                                                                                                                                                                            |          |
| (A) Catchent area (B) Command area                                                                                                                                                                                                                                                                                                                            | • ,      |
| (C) Ayacut area Watershed                                                                                                                                                                                                                                                                                                                                     | •        |
|                                                                                                                                                                                                                                                                                                                                                               |          |
| 173. Main principles of watershed management includes                                                                                                                                                                                                                                                                                                         |          |
| I. Utilizing the land based on its capability                                                                                                                                                                                                                                                                                                                 | • . •    |
| II. Protecting fertile top still                                                                                                                                                                                                                                                                                                                              | • • • •  |
| III. Minimizing sitting up of tanks, reservoirs                                                                                                                                                                                                                                                                                                               | •        |
| (A) I and II only (B) II and III only                                                                                                                                                                                                                                                                                                                         |          |
| (C) I and III only I, II and III                                                                                                                                                                                                                                                                                                                              |          |
|                                                                                                                                                                                                                                                                                                                                                               |          |

| 174. |                      | menting the entry of rain water or                                                                                  |            |                             | gical formation by  |
|------|----------------------|---------------------------------------------------------------------------------------------------------------------|------------|-----------------------------|---------------------|
|      | char                 | nging the natural conditions of the soi                                                                             | l profile  | is defined as               |                     |
|      | (A)                  | Watershed development                                                                                               | -          |                             | :                   |
| •    |                      | Artificial ground water recharge                                                                                    |            | •                           | •                   |
|      | (C)                  | Ground water exploration                                                                                            | .'         |                             | •                   |
|      | (D) ,                | Bio drainage                                                                                                        |            |                             |                     |
| 175. | Max                  | imum rate of feeding of water by the                                                                                | recharge   | e well to the aquifer is kr | nown as             |
| •    | (A)                  | Specific capacity                                                                                                   | VD)        | Recharge capacity           |                     |
|      | (C)                  | Specific recharge rate                                                                                              | (D)        | Well discharge              |                     |
| •    |                      |                                                                                                                     | :          | •                           |                     |
| 176. | Whi                  | ch of the following statements are TR                                                                               | UE, for    | selecting a site to constr  | uct a farm Pond?    |
| r    | (i)<br>(ii)<br>(iii) | Site should not cause excessive seep<br>Pond should be near to the area who<br>Large area of shallow water to be av | ere wate   | r is to be used             |                     |
|      | (A)                  | (i) and (ii) only                                                                                                   | (B)        | (i) and (iii) only          |                     |
| •    | (C)                  | (ii) and (iii) only                                                                                                 |            | (i), (ii) and (iii) only    |                     |
|      |                      |                                                                                                                     |            | •                           |                     |
| 177. | The                  | capacity of farm pond is computed by                                                                                | using      |                             |                     |
|      | مرين                 | Trapezoidal formula                                                                                                 | (B)        | Rational formula            |                     |
|      | (C)                  | Clark's formula                                                                                                     | (D)        | Rhosla's formula            |                     |
|      |                      | · · · · · · · · · · · · · · · · · · ·                                                                               |            |                             |                     |
| 178. |                      | ve hedge planted just above the bend                                                                                | ch acts a  | as a soil filter preventin  | g soil erosion with |
|      |                      | makes the terraced bed                                                                                              |            | . In our old or our         |                     |
| •    | (A)                  | more sloppy                                                                                                         | <b>(B)</b> | less sloppy                 |                     |
|      | (C)                  | flatter                                                                                                             | (D)        | adverse slop                |                     |
| ⇔    |                      |                                                                                                                     | 33         |                             | CEAGE/18            |

|      |            |                                          |                         | *           |               | •           | •                     |
|------|------------|------------------------------------------|-------------------------|-------------|---------------|-------------|-----------------------|
| 179. |            | ay harvesters of flail shrede            |                         | knives rota | ating in —    |             | plane                 |
|      | para       | llel with the direction of trave         | 1.                      |             |               |             |                       |
|      | (2)        | Vertical                                 | •                       |             |               | , , , , , , | ,                     |
|      | (B)        | Horizontal                               |                         | •           | •             |             |                       |
| •    | (C)        | Tilting                                  |                         |             | ;             |             |                       |
|      | (D)        | Circular                                 | •                       | •           |               |             |                       |
| •    |            |                                          |                         |             |               |             |                       |
| 180. | The        | aiga of the hourd faces as is de-        |                         |             |               |             |                       |
| 100. |            | size of the bund former in de<br>een the | ermined by m            | easuring t  | he maximui    | n horizont  | tal distance          |
|      | (A)        | Bunds                                    |                         |             |               |             |                       |
|      | . (A)      |                                          |                         |             |               |             | •                     |
| ,    | <b>(5)</b> | Two rear ends of the formin              |                         |             |               | ,           |                       |
|      | (C)        | Two front sides of the forming           | ng boards               |             |               |             |                       |
|      | (D)        | Two adjacent bunds                       | ·. ·                    | •           |               |             |                       |
|      |            |                                          | •                       |             | ŕ             |             |                       |
| 181. | If the     | e seed emergence is 90% and r            | ·<br>ecommenced p       | lant popula | ation is 50,0 | 00 plants   | per hectare           |
|      |            | w spacing of 60cm and two sec            |                         |             |               |             |                       |
|      | to         |                                          |                         | ,           |               |             |                       |
|      | (A)        | 30 cm                                    | (B)                     | 6 cm        |               |             |                       |
| ,    |            | 60 cm                                    | (D)                     | 15 cm       |               |             |                       |
|      |            |                                          | 3                       | •           | •             |             |                       |
| 182. | In n       | nanually operated knapsack               | COMOTION O              | 2000000000  | .e            |             | 1                     |
| ,    |            | tained in the pressure chambe            | •                       | pressure    | OI -          |             | kg/cm <sup>2</sup> is |
| ,    |            | 3 - 5                                    | (B)                     | 6 - 9       | ;             |             |                       |
|      | (C)        | 12 - 15                                  |                         | •           |               |             |                       |
|      | (0)        | 12 - 15                                  | (D)                     | 20 - 25     |               | • •         |                       |
|      | ř          |                                          |                         |             |               |             | •                     |
| 183. |            | power required to pull a four            |                         | plough wo   | rking at 20   | cm depth,   | 4 kms per             |
|      | hour       | speed and soil resistance of 0.          | 7 kg/cm <sup>2</sup> is |             | •             |             |                       |
|      | (A)        | 18.29 hp                                 | (B)                     | 28.39 kw    | ,             |             |                       |
| ,    | (C)        | 36.53 kw                                 |                         | 18.29 kw    |               |             |                       |
| ٠.,  | ,          |                                          | •                       |             |               | ,           |                       |
| CEA  | GE/18      | <b>3</b>                                 | · <b>34</b>             |             |               |             | . 🌣                   |

| .84.       |                                      | chine to cut herbage crops<br>Mower                                                                                                                                                                                | •                                                         | (B)                            | Reaper                                                            |                                                   |           |            |       |
|------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------|-------------------------------------------------------------------|---------------------------------------------------|-----------|------------|-------|
|            | (C)                                  | Reaper binder                                                                                                                                                                                                      |                                                           | (D)                            | Sickle                                                            | •                                                 |           |            |       |
|            | (0)                                  | reaper billuer                                                                                                                                                                                                     |                                                           | (D)                            | ·                                                                 | •                                                 |           |            | ,     |
|            |                                      |                                                                                                                                                                                                                    |                                                           |                                |                                                                   | ,                                                 |           |            | •     |
| 85.        | •                                    | of the sowing machine wlurrow is called as                                                                                                                                                                         | hich conveys                                              | s the s                        | eeds or tert                                                      | ılızer fron                                       | i the de. | livery tul | be to |
| ٠,         |                                      | Boot                                                                                                                                                                                                               |                                                           | (B)                            | Seed tube                                                         | •                                                 | ·         |            |       |
|            | (C)                                  | Seed conveyor                                                                                                                                                                                                      |                                                           | (D)                            | Standard                                                          |                                                   | •         | •          |       |
| •          | ٠                                    |                                                                                                                                                                                                                    | •                                                         | •                              |                                                                   |                                                   |           | ·          |       |
| .86.       | . A me                               | thod of plonting, in which                                                                                                                                                                                         | row to row a                                              | and pla                        | ant to plant                                                      | distance is                                       | s uniforr | n is calle | d as  |
|            | (A)                                  | Hill dropping                                                                                                                                                                                                      | , •                                                       |                                |                                                                   |                                                   |           |            | •     |
| ,          |                                      | Check row planting                                                                                                                                                                                                 |                                                           |                                |                                                                   |                                                   |           |            |       |
| •          | (C)                                  | Broadcasting                                                                                                                                                                                                       |                                                           | •                              |                                                                   |                                                   |           | •          |       |
|            | $(\mathbf{O})$                       | Dioadcasum                                                                                                                                                                                                         |                                                           |                                |                                                                   | •                                                 |           |            |       |
|            |                                      |                                                                                                                                                                                                                    | e plough                                                  |                                | •                                                                 |                                                   |           |            |       |
|            | (D)                                  | Seed dropping behind th                                                                                                                                                                                            | e plough                                                  | ·                              |                                                                   |                                                   |           | •          | . •   |
| 87.        | (D)                                  | Seed dropping behind th                                                                                                                                                                                            | of thick disc                                             |                                | •                                                                 |                                                   |           |            |       |
| 87.        | (D) A rol                            | Seed dropping behind the ler comprising a number of the periphery joined base to                                                                                                                                   | of thick disc                                             | laced o                        | on the same                                                       | shaft with                                        |           |            |       |
| 87.        | (D)                                  | Seed dropping behind the ler comprising a number of the periphery joined base to Cage roller                                                                                                                       | of thick disc                                             | laced o                        | on the same<br>Weeder M                                           | shaft with                                        |           |            |       |
| 87.        | (D) A rol                            | Seed dropping behind the ler comprising a number of the periphery joined base to                                                                                                                                   | of thick disc                                             | laced o                        | on the same                                                       | shaft with                                        |           |            |       |
| •          | (D) A rol smoo (A)                   | Seed dropping behind the ler comprising a number of the periphery joined base to Cage roller  Cambridge roller                                                                                                     | of thick disc<br>o base and p                             | laced of (B) (D)               | on the same<br>Weeder M<br>Land Pack                              | shaft with<br>ulchev<br>cer                       | nout gap  | is called  | ,     |
| •          | (D) A rol smoo (A) Calcu             | Seed dropping behind the ler comprising a number of the periphery joined base to Cage roller                                                                                                                       | of thick disc<br>o base and p                             | (B) (D) day o                  | on the same Weeder M Land Pack                                    | shaft with<br>ulchev<br>cer                       | nout gap  | is called  | ,     |
| •          | (D) A rol smoo (A) Calcu             | Seed dropping behind the ler comprising a number of the periphery joined base to Cage roller  Cambridge roller                                                                                                     | of thick disc<br>o base and p                             | (B) (D) day o                  | on the same Weeder M Land Pack                                    | shaft with<br>ulchev<br>cer<br>oy a tracto        | nout gap  | is called  | ,     |
| •          | (D) A rol smoo (A) Calcu             | Seed dropping behind the ler comprising a number of the periphery joined base to Cage roller  Cambridge roller  clate the theoretical area in plough if the speed of the                                           | of thick disc<br>o base and p                             | (B) (D) day of is 6 km (B)     | on the same Weeder M Land Pack of 8 hours b                       | shaft with<br>ulchev<br>cer<br>by a tracto        | nout gap  | is called  | ,     |
| 87.<br>88. | (D) A rol smoo (A) Calcu 35 cm       | Seed dropping behind the ler comprising a number of the periphery joined base to Cage roller  Cambridge roller  clate the theoretical area in plough if the speed of the 6.72 hectare                              | of thick disc<br>o base and p                             | (B) (D) day o                  | on the same Weeder M Land Pack of 8 hours b n per hour 6.32 hecta | shaft with<br>ulchev<br>cer<br>by a tracto        | nout gap  | is called  |       |
| 88.        | (D) A rol smoo (A) Calcu 35 cm (C)   | Seed dropping behind the ler comprising a number of the periphery joined base to Cage roller  Cambridge roller  clate the theoretical area in plough if the speed of the 6.72 hectare  6.52 hectare                | of thick disc<br>base and p<br>covered per<br>ploughing i | (B) (D) day of is 6 km (B) (D) | Weeder M Land Pack of 8 hours because hour 6.32 hecta 6.42 hecta  | shaft with<br>ulchev<br>ser<br>by a tractor<br>re | out gap   | is called  | ttom  |
| 88.        | (D)  A rol smoo (A)  Calcu 35 cm (C) | Seed dropping behind the ler comprising a number of the periphery joined base to Cage roller  Cambridge roller  clate the theoretical area in plough if the speed of the 6.72 hectare                              | of thick disc<br>base and p<br>covered per<br>ploughing i | (B) (D) day of is 6 km (B) (D) | Weeder M Land Pack of 8 hours because hour 6.32 hecta 6.42 hecta  | shaft with<br>ulchev<br>ser<br>by a tractor<br>re | out gap   | is called  | ttom  |
| 88.        | (D)  A rol smoo (A)  Calcu 35 cm (C) | Seed dropping behind the ler comprising a number of the periphery joined base to Cage roller Cambridge roller Cambridge roller  clate the theoretical area in plough if the speed of the 6.72 hectare 6.52 hectare | of thick disc<br>base and p<br>covered per<br>ploughing i | (B) (D) day of is 6 km (B) (D) | Weeder M Land Pack of 8 hours because hour 6.32 hecta 6.42 hecta  | shaft with<br>ulchev<br>ser<br>by a tractor<br>re | out gap   | is called  | ttom  |

| 190. | The 1  | rate of circulation of th             | ne water pum   | ip should i | not be less than         |                   |
|------|--------|---------------------------------------|----------------|-------------|--------------------------|-------------------|
|      | (A)    | $0.2\ \mathrm{litre/BHP/min}$         | •              | ·           |                          |                   |
|      |        | 0.5 litre/BHP/min                     |                | ٠           |                          |                   |
|      | (C)    | 0.4 litre/BHP/min                     |                |             |                          |                   |
| •    | (D)    | 0.3 litre/BHP/min                     |                | · ,         |                          | •                 |
|      | ,<br>, |                                       |                |             |                          |                   |
| 191. | The p  | oin that connects the p               | oiston to the  | connecting  | g rod is known as        |                   |
| ,    | . (A)  | Crank pin                             |                | (B)         | Connection pin           |                   |
| ,    |        | Gudgeon pin                           |                | (D)         | Steel pin                |                   |
|      |        |                                       | . •            |             | ·                        | •                 |
| 192. | The. c | change of state of a ga               | s with respec  | t to pressi | are and volume when te   | emperature remain |
|      | const  | ant is known as                       |                |             |                          |                   |
| -    |        | Isothermal change                     | `              |             | •                        | ÷                 |
|      | (B)    | Isobaric change                       |                | •           |                          | ,                 |
|      | (C)    | Adiabatic change                      |                |             |                          |                   |
|      | (D)    | Total change                          |                |             |                          |                   |
| 193. | Centr  | ral Region Farm mach                  | inery trainin  | g and test  | ing institute is located | at                |
|      | (A)    | HISSAR                                |                | (B)         | ANANTPUR                 |                   |
|      |        | BUDNI                                 |                | · (D)       | BHOPAL                   |                   |
|      |        | •                                     |                |             | •                        | , .               |
| 194. | Powe   | r developed by an ave                 | rage pair of b | ullocks is  | about                    |                   |
|      |        | 1 hp                                  | •              | · (B)       | 1.2 hp                   |                   |
|      | · (C)  | 2.0 hp                                |                | (D)         | 0.5 hp                   |                   |
| •    |        | •                                     |                |             |                          | ,                 |
| CEA  | GE/18  | , , , , , , , , , , , , , , , , , , , |                | 36          |                          |                   |

https://www.freshersnow.com/previous-year-question-papers/

| 105  |          | ia o dor                                          | tion used for inc | reagir  | ng the air pressure into the | e engine so that |
|------|----------|---------------------------------------------------|-------------------|---------|------------------------------|------------------|
| 195. | more     | fuel can be burnt and e                           |                   |         | •                            | • .              |
|      | (A)      | Air charger                                       | ,                 | (B)     | Blow charger                 |                  |
|      |          | Super charger                                     |                   | (D)     | Compresses                   |                  |
|      | <b>(</b> | Super onargor                                     |                   |         |                              | •                |
| 196. |          | n an implement is mou<br>upper links intersect at |                   |         | t hitch, the lines projected | from the lower   |
|      | (A)      | Centre of gravity                                 | •                 | (3)     | Centre of pull               |                  |
|      | (C)      | Centre of draft                                   |                   | (D)     | Line- of pull                |                  |
|      |          |                                                   |                   |         |                              |                  |
| 197. | Most     | engine tests are condu                            | cted using ——     |         | type dynamometer.            |                  |
| ٠.   | (A)      | Transmission                                      |                   | (B)     | Resistance                   | <i>;</i> , , ,   |
| •    |          | Absorption                                        |                   | (D)     | Load                         |                  |
| :    |          | . ^ .                                             |                   |         |                              | ,                |
| 198. | Bekk     | er equation for traction                          | n theory is       |         |                              | ٠                |
|      | موس      | $F = AC + W \tan \theta$                          |                   | (B)     | $F = AW + C \tan \theta$     |                  |
|      | (C)      | $F = CW + A \tan \theta$                          |                   | (D)     | $F = A(C + W \tan \theta)$   | ,                |
| `    |          |                                                   |                   |         |                              |                  |
| 199. |          | horizontal distance be<br>nd contact is known as  | •                 | t and   | rear wheels of a tractor r   | neasured at the  |
|      | (A) -    | Wheel tread                                       |                   |         |                              | • .              |
| ,    |          | Wheel base                                        |                   | •       |                              |                  |
|      | (C)      | Turning space                                     |                   |         |                              | •                |
|      | (D)      | Ground clearance                                  |                   |         |                              |                  |
|      | • •      |                                                   | ,<br>,            |         |                              | •                |
| 200. | The      | commercial diesel fuels                           | have got cetane   | e ratir | ng varying from              |                  |
|      | (A)      | 40 to 70                                          |                   | (20)    | 30 to 60                     |                  |
|      | (C)      | 20 to 50                                          |                   | (D)     | 45 to 75                     |                  |

## SAVCE LOB BOUGH WORK

## SPACE FOR ROUGH WORK



CEAGE/18