

Booklet No. :

AS - 15

Aerospace Engineering

Duration of Test : 2 Hours

Max. Marks: 120

Hall Ticket No.

Name of the Candidate :_____

Date of Examination :_____OMR Answer Sheet No. : _____

Signature of the Candidate

Signature of the Invigilator

INSTRUCTION	S
-------------	---

- 1. This Question Booklet consists of **120** multiple choice objective type questions to be answered in **120** minutes.
- 2. Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer.
- 3. Each question carries **one** mark. There are no negative marks for wrong answers.
- 4. This Booklet consists of **16** pages. Any discrepancy or any defect is found, the same may be informed to the Invigilator for replacement of Booklet.
- 5. Answer all the questions on the OMR Answer Sheet using **Blue/Black ball point pen only.**
- 6. Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully.
- 7. OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall.
- 8. Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall.
- 9. No part of the Booklet should be detached under any circumstances.
- 10. The seal of the Booklet should be opened only after signal/bell is given.

AEROSPACE ENGINEERING

1. If r(A) is the rank then a set of linear equations in n variables will have infinite number of solutions if (A) r(A) = r(A:b) = n**(B)** r(A) < r(A:b) = nr(A) = r(A:b) < n(C) (D) none The largest eigen value of the matrix $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ -4 & 0 & 3 \end{bmatrix}$ is 2. (A) 3 (B) 6 (D) 0 If the function $f(x) = \frac{1}{x}$ satisfies Lagranges mean value theorem at the point c in the 3. interval [1,4] then (A) c = 2(C) c = 0(B) c = 1(D) none 4. A stationary point for the surface z = xy(1 - x - y) is (A) (-1, -1)(B) (1/3, 1/3) (C) (1, 1)(D) (0, 1) The value of $\oint_c y^2 dx - x^2 dy$ where c is the boundary of the triangle whose vertices are 5. (1, 0), (0, 1) and (-1, 0) is (A) 2/3 (B) 1/3 (C) 2 (D) -2/3 The particular integral of the differential equation $(D-2)^2 y = e^{2x} + 3$ is 6. (A) $\frac{x^2}{2}e^{2x} + \frac{3}{4}$ (B) $\frac{x}{2}e^{2x} + 3$ (C) 0 (D) $e^{2x} + 3$ 7. If F(s) and G(s) are Laplace transforms of f(t) and g(t), then the inverse Laplace transform of the product F(s) G(s) is (B) $\int_{0}^{t} f(u)g(t-u)du$ (A) $\int_{0} f(u)g(t-u)du$ f(t)g(t)(C) (D) None The convergence condition of the iterations $x_{n+1} = \phi(x_n)$ is 8. (A) $|\phi(x_n)| > 1$ (B) $|\phi(x_n)|=0$ (D) $|\phi(x_n)| < 1$ (C) does not depend on ϕ Set - A 2 AS

9. If f(x) is given in the following table then, the value of $\int f(x)dx$ by trapezoidal rule is

								0	
x	0	1	2	3	4				
$\frac{x}{f(x)}$	2	2	4	8	14				
(A) 2) 4		(C)	64	(D)	18

10. For a differential equation $\frac{dy}{dx} = x^2 + y$ subject to y(0) = 1 the next approximation with Picard iteration method is

- (A) $y_1 = 1 + x + \frac{x^3}{3}$ (B) $y_1 = 1 - x^2$ (C) $y_1 = 1 + x^2$ (D) $y_1 = 1 + 2x + \frac{x^2}{2}$
- **11.** Pressure Altitude
 - (A) Pressure differential with respect to Pressure at Sea Level
 - (B) Physical distance between aircraft and reference (e.g. Sea Level)
 - (C) Difference in density with International Standard Atmosphere (ISA) temperature
 - (D) Distance between Center of Earth and parallel surfaces around the spherical earth Gravitational potential same on a surface
- **12.** Indicated Airspeed
 - (A) airspeed measurement from difference in pressures
 - (B) airspeed correcting for instrument errors
 - (C) airspeed corrected for Compressibility effects
 - (D) actual relative speed between aircraft and airmass, corrected for difference in density at different altitudes
- **13.** Maximum glide endurance is
 - (A) minimum angle of decent
- (B) minimum rate of descent
- (C) max glide rate (D) minimum sink rate
- **14.** Elevator control effectiveness of an airplane determines the
 - (A) turn radius
 - (B) rate of climb
 - (C) most forward location of the centre of gravity
 - (D) after location of the centre of gravity
- **15.** True Airspeed is
 - (A) airspeed measurement from difference in pressures
 - (B) airspeed correcting for instrument errors
 - (C) airspeed corrected for compressibility effects
 - (D) actual relative speed between aircraft and airmass, corrected for difference in density at different altitudes

Set - A

- **16.** If the ball oscillates about the equilibrium position and the oscillations never dampen out, it Possess
 - (A) dynamic stability (B) static stability
 - (C) neutral stability (D) neutral dynamic stability
- 17. If the ball oscillates and did not slow down, but continued to climb to a higher position with each oscillation it would never return to its equilibrium position, the ball posses
 - (A) dynamic stability (B) netural stability
 - (C) negative dynamic stability (D) static stability
- 18. How do jets and props achieve max angle of climb ?
 - (A) Full throttle at L/D max, props faster than L/D max
 - (B) 85 % throttle at L/d max, props slower than L/d max
 - (C) full throttle, jets faster than L/D max, props at L/D max
 - (D) full throttle, jets at L/d max, props slower than L/d max
- **19.** Which one of the following flight instruments is used on an aircraft to determine its altitude in flight ?
 - (A) Vertical speed indicator (B) Altimeter
 - (C) Artificial Horizon (D) Turn-bank indicator
- 20. Critical aileron reversal speed can be increased by
 - (A) Increasing the offset distance between the aerodynamic center and center of twist
 - (B) Increasing the offset distance between the C.G. of the airplane and center of twist
 - (C) Increasing the stiffness of the wing
 - (D) Increasing the offset distance between the aerodynamic center and C.G. of the airplane
- 21. Schlieren technique could be used in a wind tunnel
 - (A) to measure the pressure distribution over a model being tested
 - (B) to measure the velocity distribution over a model being tested
 - (C) for optical flow visualization over a model being tested
 - (D) all of the above
- **22.** Phugoid mode is associated with
 - (A) Stick fixed static longitudinal stability
 - (B) Stick free static longitudinal stability
 - (C) Stick fixed static directional stability
 - (D) Stick fixed dynamic longitudinal stability

Set - A

- 23. Which one of the following is the most stable configuration of an airplane in roll?
 - (A) Sweep back, anhedral and low wing
 - (B) Sweep forward, dihedral and low wing
 - (C) Sweep forward, anhedral and high wing
 - (D) Sweep back, dihedral and high wing
- **24.** A supersonic airplane is expected to fly at both subsonic and supersonic speeds during its whole flight course. Which one of the following statements is TRUE ?
 - (A) Airplane will experience less stability in pitch at supersonic speeds than at subsonic speeds.
 - (B) Airplane will feel no change in pitch stability.
 - (C) Airplane will experience more stability in pitch at supersonic speeds than at subsonic speeds.
 - (D) Pitch stability cannot be inferred from the information given.
- **25.** When the airflow over the propeller blades of a failed engine keeps the propeller turning, this is known as
 - (A) Wind milling (B) Propeller braking
 - (C) Reverse thrust (D) Contra rotating
- **26.** Coordinate turn in a horizontal plane is associated with
 - (A) increased side slip (B) gain in altitude
 - (C) zero side slip angle (D) loss of altitude
- 27. Trimming of an airplane means
 - (A) $\frac{C_L}{C_D}$ is maximum
 - (B) Rate of climb is maximum
 - (C) Pitching moment about center of gravity is zero
 - (D) Maximum rate of climb is zero
- 28. One engine inoperative condition is associated with (A) Rudder (B) Elevator (C) Fuselage (D) Aileron
- **29.** NACA 4412 implies the maximum camber of airfoil occurs at
 - (A) 4% of chord (B) 40% of chord (C) 12% f h d
 - (C) 12% of chord (D) 20% of chord

30. Which one of the following is favourable for an airplane take-off ?

- (A) Head wind (B) Cross wind
- (C) Tail wind (D) Tail wind and cross wind
- 31. Which of the following pump is generally used to pump highly viscous fluid ?
 - (A) Air lift pump
- (B) Reciprocating Pump(D) Screw Pump
- (C) Centrifugal Pump

AS

Set - A

5

32.	Which one of the following is TRUE with respect to Phugoid mode of an aircraft ?(A) Long period and weak damping									
	(B)	• •	nd strong damping							
	(C)	-	nd weak damping							
	(D)	Short period a	nd strong damping							
33.		eting is associat								
	(A)	• •	litude oscillation	(B)		ly amplitud				
	(C)	Quasi steady a	amplitude oscillation	(D)	Critical	ly damped	oscillation	1		
34.			ate limiting load fac	tors fo	-		er.			
		$-1.8 \le n \le 4.4$		(B)						
	(C)	$-4.5 \le n \le 7.7$	75	(D)	$-2 \le n$	≤ 14.5				
35.	Aero	dynamic center	of an airfoil is the p	oint a	bout whi	ch				
	(A)	Pitching mom		(B)	-	g moment i				
	(C)	Pitching mom	ent is positive	(D)	Pitching	g moment i	s negative			
36.	Mini		nk is associated with							
	(A)	minimum pow		(B)		m thrust				
	(C)	minimum drag		(D)	minimu	ım lift				
37.	V-n o	diagram is a plo								
	(A)	Velocity Vs n		(B)		tric flow V				
	(C)	Velocity Vs lo	bad factor	(D)	Volume	etric flow V	's load fac	tor		
38.	Endu	• •	ropelled airplane							
	(A)		n altitude increases	(B)		es when alt		eases		
	(C)	18 max1mum a	t service ceiling	(D)	does no	t depend of	n altitude			
39.	The	aerodynamic c	center of a wing se	ection	is at 25	% of Mea	in Aerody	namic Chord		
			ep back angle. If the	-		a sweep b	ack of 35°	, the probable	,	
position of aerodynamic center in terms of MAC is										
	(A)	20%	(B) 25%	(C)	35%	(D)	70%			
40.	Statio	c margin is defi	ned as $\frac{X_1}{Mean Aeroa}$	$-X_2$. What are	X_1 and X_2	2 ?		
			Mean Aeroa	lynam	ic chord			2		
	(A)		of neutral point & X			-	-			
	(B)		of neutral point & X			-	-			
	(C)		of wing aerodynamic	c cent	er & $X_2 =$	= location c	of center of	f gravity		
	(D)	None								

(D)

Set - A

- 41. For cyclic boundary conditions choose one of the following :
 - (A) flow through CD nozzle
 - (B) flow through turbine blades
 - (C) flow through jet engine combustor
 - (D) flow over a circular cylinder
- 42. For specifying adiabatic condition, the following boundary condition is appropriate :
 - (A) Dirichet boundary condition
 - (B) Von Neumann boundary condition
 - (C) Wall temperature specification
 - (D) Both (A) & (C)
- 43. In case of shock capturing methods, the following technique can be used :
 - (A) time dependent technique (B) space marching technique
 - (C) shooting technique
- 44. Lift on a delta wing is
 - (A) calculated from Prandtl-Lanchester lifting line theory
 - (B) calculated from high angle of attack lifting line theory
 - (C) computed from empirical formula
 - (D) calculated from Polhamus's suction analogy
- 45. Downwash along the span of a wing having elliptical lift distribution
 - (A) Increases with increase in span
 - (B) Increases with increase in wing area
 - (C) Does not change
 - (D) Decreases with increase in velocity
- 46. The component of a transonic airplane for which transonic area rule applied is (A) Nose (B) Wing (C) Tail (D) Fuselage
- 47. Induced drag of an airplane can be reduced by
 - (A) Boundary layer fence (B) **Spoilers**
 - (C) Winglets (D) Decreasing aspect ratio
- 48. Prandtl – Glauret rule gives the relation between
 - (A) Viscous and inviscid flow
 - (B) Compressible and incompressible flow
 - Transonic and subsonic flow (C)
 - (D) Transonic and supersonic flow
- 49. Velocity potential is valid for
 - (A) Viscous flow (C) Rotational flow

- (B) Real flow
- (D) Irrotational flow

Set - A

7

- (D) interpolation methods

50.		odynamic effici D/L	•	of a lifting surf $C_L^{1/2} / C_D$		1	•	L/D
51.	Tran (A) (C)	sonic drag rise sonic boom very high ang			(B) (D)	shock stall none		
52.	Zero (A) (C)	Mach Number inviscid flows incompressibl	5		(B) (D)	irrotational f		
53.	Potes (A) (C)	ntial flows are irrotational flo shear flows	ows		(B) (D)	viscous flow laminar flow		
54.		e resultant win nwash.	d over	an aerofoil fl	ying a	at 300 km/h is	s tilteo	d by 1.2°, determine the
	(A)	–1.746 m/s	(B)	100 m/s	(C)	-100 m/s	(D)	1.746 m/s
55.		ing of aspect ra drag coefficier 1.95 3.82 1.396 Given data is	it expe	erienced by the	e wing	is 0.5, the lift		coefficient of 1.2. If the icient will be
56.	(A)	•	ne mid	-point of a flat	(B)	2		m of speed 30 m/s is
57.	An incompressible fluid flows over a flat plate with zero pressure gradient. The boundary layer thickness is 1 mm at a location where the Reynolds number is 1000. If the velocity of the fluid alone is increased by a factor of 4, then the boundary layer thickness at the same location, in mm will be (A) 4 (B) 2 (C) 0.5 (D) 0.25							
58.	Amb (A) (B) (C) (D)	contact with t Pressure of th Pressure as th	ne sur he obj e atmo e resul	ect osphere at the a	altitud ty thro	e at which the	e aircra	a gas which comes into aft is flying
Set - [A				8			AS

Set -	Α		9	AS						
	(A) (B) (C) (D)	create viscous effect to an inviscid create compressibility dissipate the solution reduce discretization error	equat	11011						
68.		ficial viscosity is added to numerica								
67.	Num (A) (B) (C) (D)	nerical panel methods are applicable steady, incompressible and invisci unsteady, incompressible and invis steady, compressible and inviscid unsteady, compressible and invisc	d flow scid fl flows	ows						
66.	'D'. finite discr	Similarly, denote the numerical se	olution	puter with infinite accuracy be denoted by a computed by using a real machine with an of the PDE by 'A', then we may write D-N (D) $A-N$						
65.	and (A)	airfoil using relaxation techniques :	for co (B) (D)	omputation of steady transonic flows over Murman-Cole equation Prandtl's equation						
64.		induced drag is minimum for the pla Rectangular (B) Elliptic		m which is Parabolic (D) Square						
63.	Lifti (A) (C)	ng flow over circular cylinder is obt Uniform flow + source + vortex Source + Sink + Uniform flow	(B)	by the combination of Uniform flow + sink + vortex Uniform flow + doublet + vortex						
62.	Stall (A) (C)	ling in an incompressible flow is due Sudden expansion Adiabatic compression	e to (B) (D)	Flow separation Isentropic expansion						
61.	Aero (A) (C)	odynamics of a spinning cricket ball Bernoulli's principle Kutta condition	is rela (B) (D)	ated to Magnus effect Newton's second law						
00.	(A) (C)	no bending of the beam bending and twisting	(B) (D)	only bending only twisting						
60.	(A) (C)		(B) (D)	short fiber/whiskers silicate he section of a beam, then there will be						
59.	The reinforcement used in Ceramic Matrix Composite is in the form of									

- 69. In numerical grid generation the condition for orthogonality of grids is defined as
 - (A) $x_{\xi}x_{\eta} + y_{\xi}y_{\eta} = 0$ (B) $x_{\xi}x_{\eta} y_{\xi}y_{\eta} = 0$
 - (C) $x_{\xi}y_{\eta} + x_{\xi}y_{\eta} = 0$ (D) $x_{\xi}y_{\eta} x_{\xi}y_{\eta} = 0$

70. Numerical grid generation is carried out for the following reason :

- (A) descritization of flow domain
- (B) controlling the flow domain
- (C) specifying the boundary conditions for flow domain
- (D) defining flow variables inside the flow domain
- **71.** (i) In the stiffness method of analyzing indeterminate structures, displacements are taken as the unknown quantities.
 - (ii) In the flexibility method of analyzing indeterminate structures, forces are taken as the unknown quantities.
 - (iii) The stiffness method is limited to structures that behave in a linearly elastic manner.
 - (iv) The flexibility method is limited to structures that behave in a linearly elastic manner.

Which of the above statements are true ?

- (A) All the four statements (B) (iii) alone
- (C) (iii) and (iv) (D) (i), (ii) and (iii)
- 72. A simply-supported beam of 2 m length is subject to a linearly varying distributed load of zero intensity at the left end to 50 N/m at the right end. The support reactions are R_1 at the left end and R_2 at the right end
 - (A) $R_1 = 33.33 \text{ N}$ (B) $R_2 = 16.66 \text{ N}$ (C) $R_1 = 16.66 \text{ N}$ (D) $R_1 = 25 \text{ N}$
- **73.** A given column is constrained to bend in the x-y plane. Its cross-section should be chosen such that
 - (A) the moment of inertia for bending in the x-y plane is large
 - (B) the moment of inertia for bending in the x-z plane is large
 - (C) the cross-section area is minimum for a given value of moment of inertia for bending in the x-z plane
 - (D) (B) and (C) both are correct
- 74. Which of the following statements below represent Maxwell's reciprocal theorem ?
 - (A) the deflection at point A due to a load acting at point B is equal to the deflection at point B due to the same load acting at point A.
 - (B) the angle of rotation at point A due to a force acting at point B is numerically equal to the deflection at point B due to a couple acting at point A provided the force and the couple have the same numerical value.
 - (C) both (A) and (B) are correct statements.
 - (D) both (A) and (B) are incorrect statements.

Set - A

- **75.** For a thin-walled angle section, the shear center position
 - (A) coincides with the centroid of the section
 - (B) lies at the corner of the angle
 - (C) depends on the applied load
 - (D) lies on the line which connects centroid and angle corner
- **76.** Consider a doubly symmetric thin-walled hollow rectangular section subject to a downward force through the rectangle center. At which point will the shear stress be maximum ?
 - (A) At the upper left and right corners
 - (B) At the lower left and right corners
 - (C) At the mid-points of the left and right walls
 - (D) At the rectangle center
- 77. Which of the following statements are true ?
 - (A) A beam having a doubly symmetric cross-section can never experience unsymmetric bending.
 - (B) A beam having a singly symmetric cross-section can never experience unsymmetric bending.
 - (C) Both (A) and (B) are correct statements.
 - (D) Both (A) and (B) are incorrect statements.
- **78.** A hollow shaft of same cross sectional area as solid shaft transmits
 - (A) same torque (B) less torque
 - (C) more torque (D) depends on the external diameter
- For a symmetrical section the magnitude of the cross product of inertia is(A) zero(B) minimum(C) maximum(D) none of the above
- 80. A beam with boom areas resists varying bending moment. If the walls are ineffective in bending then the shear flow variation between two boom areas is(A) linear(B) zero(C) constant(D) parabolic
- **81.** For a 3D orthotropic material, the number of independent elastic constants are (A) 4 (B) 9 (C) 2 (D) 21
- **82.** For every ply above the laminate midplane, there is an identical ply (material and orientation) an equal distance below the midplane is called
 - (A) Symmetric Laminate (B) Unsymmetric laminate
 - (C) Balanced Laminate (D) Unbalanced Laminate
- 83. A cantilever beam of length L is subjected to a bending moment M at its free end. The shear force at its midpoint is
 (A) M/(2L)
 (B) M/L
 (C) 0
 (D) M/(4L)
- Set A

11

AS

84.	A car	ntilever 6 m lo	ong carri	ies a point l	oad of 10	00 kN at it	s free end	and another load P at
	the m	iddle of its ler	ngth. If t	the maximu	m bendin	ig moment	t is 900 kN	N-m the value of P is
	(A)	200 kN	(B)	150 kN	(C)	100 kN	(D)	50 kN.

85. A circular rod of length L and torsional rigidity GJ is fixed at one end and free at the other end. If a twisting moment T is applied at a distance L/2 from fixed end, the angle of twist at free end will be
(A) TL/(2GJ)
(B) TL/(GJ)
(C) 2TL/(GJ)
(D) 4TL/(GJ)

- **86.** If the vorticity vector is zero at every point in a flow, the flow is said to be (A) rotational (B) irrotational (C) circular (D) turbulent
- 87. The Reynold's Number for fluid flow in a pipe is independent of(A) viscosity of the fluid(B) velocity of the fluid
 - (C) diameter of the pipe (D) length of the pipe
- **88.** Subspace iteration method is used to
 - (A) extract all the eigen values of the problem
 - (B) extract the least eigen value
 - (C) extract the largest eigen value
 - (D) extract the specified number of eigen values

89.	The underbody	can be used to create _	of the car's down force.			
	(A) 30%	(B) 40%	(C) 50%	(D) 60%		

90. In a two dimensional problem the state of pure shear at a point is characterized by

- (A) $\varepsilon_x = \varepsilon_y$ and $\gamma_{xy} = 0$ (B) $\varepsilon_x = -\varepsilon_y$ and $\gamma_{xy} \neq 0$
- (C) $\varepsilon_x = -2\varepsilon_y$ and $\gamma_{xy} \neq 0$ (D) $\varepsilon_x = -0.5\varepsilon_y$ and $\gamma_{xy} \neq 0$
- 91. A coil is cut into two halves. The stiffness of cut coils will be(A) double(B) half(C) same(D) quadrupled

92. The effective length of a column with one end fixed and the other end is free

- (A) its own length (B) twice its length
- (C) half its length (D) two and half its length
- **93.** Castigliano's theorem is valid for
 - (A) Elastic structure (B) Truss
 - (C) Beam

(D) Linear structure

only bending

only twisting

- 94. If the load passes through the shear center of the section of a beam, then there will be
 - (A) no bending of the beam
 - (C) bending with twisting

Set - A

(D) 12

(B)

- **95.** A propeller aircraft is flying at high subsonic speed. As propeller r.p.m. is increased shocks, on the propeller, would first appear at
 - (A) root of propeller blades
- (B) tips of propeller blades
- (C) propeller hub (D) simultaneously all over propeller
- **96.** Buckling of the fuselage skin can be delayed by
 - (A) increasing internal pressure
 - (B) placing stiffeners farther apart
 - (C) reducing skin thickness
 - (D) placing stiffeners farther and decreasing internal pressure
- 97. Which of the following action induce torsional stresses on the fuselage structure ?
 - (A) Rudder deflection (B) Landing gear actuation
 - (C) Elevator deflection (D) Aileron deflection
- 98. In curved beams the distribution of bending stress is(A) linear (B) parabolic (C) uniform (D) hyperbolic
- 99. A cantilever of length 2L is subjected to a tip load P. The transverse deflection at the midpoint of the cantilever is
 (A) 5PL³/6EI
 (B) 5PL²/6EI
 (C) 6PL³/EI
 (D) 6PL²/5EI
- **100.** If a convergent divergent nozzle is under 'choked flow' condition then mass flow through the nozzle
 - (A) is zero
 - (B) remains constant with reduction in exit pressure
 - (C) decreases with reduction in exit pressure
 - (D) increases with reduction in exit pressure
- 101. On a variable pitch propeller, the largest obtainable pitch angle is known as
 - (A) Fine pitch (B) Take-off pitch
 - (C) Optimum pitch (D) Coarse pitch
- 102. One of the reasons for combustion instability of scramjet engine is due to
 - (A) expansion of the working medium
 - (B) compression due to heat addition
 - (C) compression in isolator
 - (D) compression due to fuel injection
- **103.** Choose the correct statement :

Bell shaped nozzles have the value of $\chi = \frac{1 + \cos \chi}{2}$ in the following range :

- **104.** The phenomenon 'rotating stall' is peculiar to the following :
 - (A) Axial flow compressor blade passage
 - (B) Centrifugal flow compressor blade passage
 - (C) Axial flow turbine blade passage
 - (D) Wing sections of turbojet aircraft

```
Set - A
```

- 105. An over-expanded supersonic nozzle is one, in which
 - (A) the nozzle exit pressure is greater than the ambient pressure
 - (B) the nozzle exit pressure is equal to the ambient pressure
 - (C) the nozzle exit pressure is lower than the ambient pressure
 - (D) the nozzle throat pressure is greater than the ambient pressure

106. Direct fuel injection is often used in aero piston engines, in preference to float chamber carburetors. Which of these statements applies to the direct fuel injection system ?

- (A) The fuel does not have to be vaporized
- (B) It cannot operate inverted
- (C) A throttle butterfly is unnecessary
- (D) There is no choke in the intake
- 107. The operational range of Mach number for a ramjet engine is between(A) 2 and 5(B) 0.3 and 0.8(C) 0.1 and 0.3(D) 1.2 and 2.0
- 108. The following type of engine is widely used for civil transportation by airplanes :(A) turbojet(B) turboprop(C) turbofan(D) piston type
- 109. The aircraft powered by the following engine requires the longest runway :(A) ramjet(B) turbojet(C) turboprop(D) turbofan
- **110.** "Blade twist" in a propeller helps to
 - (A) make feathering possible
 - (B) make the blade stronger and lighter
 - (C) reduce noise levels
 - (D) even out the thrust along the length of the blade
- 111. In the critical operation of supersonic inlets the normal shock position is
 - (A) at the lip of the inlet
 - (B) inside the inlet
 - (C) outside the inlet
 - (D) at the exit section of the inlet
- 112. For a simply supported beam with central load, at the location of the load
 - (A) Deflection is maximum with zero slope
 - (B) Deflection is maximum with maximum slope
 - (C) Deflection and slope are zero
 - (D) Deflection is zero with maximum slope

Set - A

- **113.** The overall air to fuel ratio in a turbojet engine is approximately (A) 67 (B) 15 (C) 8 (D) 4
- 114. The order of pressure ratio that can be achieved in a single sided centrifugal compressor is(A) 24 (B) 6 (C) 42 (D) 2
- **115.** For turbine blade cooling, the coolant air is tapped from the following range of stages of a multistage axial flow compressor :

(A) 10 to 12 (B) 4 to 6 (C) 18 to 20 (D) $1^{st} \& 2^{nd}$ stages

- 116. In an optimally expanded jet engine nozzle, the nozzle exist pressure is equal to
 - (A) half of ambient pressure
 - (B) ambient pressure
 - (C) one-fourth of combustion chamber pressure
 - (D) pressure at inlet section of the intake of the engine
- **117.** The typical value of temperature in gas turbine engine combustion chamber primary zone is about
 - (A) 2600 K (B) 4000 K (C) 1200 K (D) 600 K
- **118.** Flame stability is ensured when
 - (A) reaction time more than residence time of the internal flow medium
 - (B) the residence time is more than the reaction time of the medium
 - (C) flame velocity is more than internal velocity
 - (D) internal flow velocity is more than flame velocity
- 119. The bypass ratio in a modern turbofan engine lies in the range of(A) 0.1 to 0.5(B) 5 to 9(C) 1.1 to 2(D) 0.8 to 1.2
- **120.** The type of compression that a working medium undergoes in a ramjet engine inlet is in the following order :
 - (A) shock compression, subsonic ram compression and mechanical compression
 - (B) shock compression, mechanical compression and subsonic ram compression
 - (C) subsonic ram compression and shock compression
 - (D) shock compression, subsonic ram compression

Set - A

SPACE FOR ROUGH WORK