

Booklet No. :

CE - 15

Civil Engineering

Duration of Test : 2 Hours

Max. Marks: 120

Hall Ticket No.

Name of the Candidate :_____

Date of Examination :_____OMR Answer Sheet No. : _____

Signature of the Candidate

Signature of the Invigilator

INSTRUCTIONS

- 1. This Question Booklet consists of **120** multiple choice objective type questions to be answered in **120** minutes.
- 2. Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer.
- 3. Each question carries **one** mark. There are no negative marks for wrong answers.
- 4. This Booklet consists of **16** pages. Any discrepancy or any defect is found, the same may be informed to the Invigilator for replacement of Booklet.
- 5. Answer all the questions on the OMR Answer Sheet using **Blue/Black ball point pen only.**
- 6. Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully.
- 7. OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall.
- 8. Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall.
- 9. No part of the Booklet should be detached under any circumstances.
- 10. The seal of the Booklet should be opened only after signal/bell is given.

CIVIL ENGINEERING (CE)

- 1. A system of *n* simultaneous equations AX = 0 in *n* unknowns has nontrivial solution if (A) $|A| \neq 1$ (B) |A| < n (C) |A| = 0 (D) A^{-1} exists
- 2. One eigen vector of the matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ is $X = (A) \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} (B) \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} (C) \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} (D) \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$

3. The shortest distance of the plane lx + my + nz = p from the origin is

(A)
$$\frac{p}{\sqrt{l^2 + m^2 + n^2}}$$
 (B) $\frac{p}{\sqrt{l + m + n}}$ (C) $\frac{1}{\sqrt{l^2 + m^2 + n^2}}$ (D) 0

4. If C is the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 then the value of $\frac{1}{2} \oint_C (xdy - ydx)$ is
(A) πab (B) $\frac{\pi ab}{2}$ (C) ab^2 (D) πa^2b

5. The value of
$$\frac{1}{D^2 - 4} \sin^2 x$$
 is
(A) $-\frac{1}{4} \sin^2 x$ (B) $\frac{1}{8} + \cos 2x$ (C) none (D) $(-1)\frac{1}{8} + \frac{1}{16} \cos 2x$

6. The Laplace transform of
$$e^{2x} x^2$$
 is
(A) $\frac{1}{(s-2)^3}$ (B) $\frac{1}{(s+2)^3}$ (C) $\frac{2}{(s-2)^3}$ (D) $\frac{2}{(s+2)^3}$

7. The residue of the function
$$f(z) = \frac{z^2}{(z-1)^2(z+2)}$$
 at the pole $z = -2$ is
(A) $\frac{5}{9}$ (B) $-\frac{1}{2}$ (C) $\frac{4}{9}$ (D) 0

8. If a random variable X has the PDF $f(x) = (1 - p)^{x-1}p$, x = 1, 2, ... and 0 . Then the mean of X is(A) <math>p + 1 (B) $p^2 + p$ (C) p (D) 1

 $(\mathbf{D}) \quad p + p \quad (\mathbf{D}) \quad p + p \quad (\mathbf{D}) \quad \mathbf{D}$

Set - A

- **9.** Monthly-breakdowns of a computer is a random variable having Poisson distribution with mean 2.0. The probability that the computer will function for a month without a breakdown is
 - (A) $e^{0.2}$ (B) $e^{-0.2}$ (C) 0.2 (D) 0

10. The condition for convergence of iteration scheme
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 is

(A) $f''(x_n)f(x_n) \le [f'(x_n)]^2$ (B) $f'(x_n) < 1$

- (C) $f'(x_n) > 1$ (D) $f''(x_n) f(x_n) \ge [f'(x_n)]^2$
- **11.** A simply supported beam PQ is subjected to a concentrated load at R, the centre of the span. The area of shear force diagram from P to R will give
 - (A) deflection at R
 - (B) shear force at R
 - (C) load at R
 - (D) difference between bending moment values at P and R
- **12.** If the shear force at a section of a beam under bending is equal to zero, then the bending moment at the section is
 - (A) zero (B) maximum (C) minimum (D) minimum or maximum
- 13. Of the four elastic constants, Young's modulus, Bulk modulus, Rigidity modulus and Poisson's ratio, the number of constants required to be determined experimentally to obtain the rest are
 - (A) one (B) two (C) three (D) four
- 14. Two bars of different materials are of the same size and are subjected to same tensile forces. If the bars have unit elongations in the ratio of 4:5, then the ratio of moduli of elasticity of the two materials is
 (A) 5:4 (B) 4:5 (C) 4:9 (D) 16:25
 - $(A) \quad J.4 \qquad (B) \quad 4.3 \qquad (C) \quad 4.9 \qquad (D) \quad 10.23$
- **15.** The major and minor principal stresses at a point are 5 MPa (compressive) and 3 MPa (tensile) respectively. The maximum shear stress at the point is
 - (A) zero (B) 2 MPa (C) 4 MPa (D) 8 MPa
- **16.** A Mohr's circle reduces a point when the body is subjected to
 - (A) pure shear
 - (B) uniaxial stress only
 - (C) equal and opposite normal stresses on two mutually perpendicular planes, which are free of shear
 - (D) equal normal stresses on two mutually perpendicular planes, which are free of shear

Set - A

- 17. The ratio of maximum shear stress to average shear stress of a rectangular beam section to that of a circular beam section is in the proportion of
 - (A) 9:8 (B) 8:9 (C) 3:4 (D) 2:3
- **18.** In a water pipe, if water freezes, the wall of the pipe is subjected to
 - (A) uniform hoop compression
 - (B) uniform hoop tension
 - (C) compression inside and tension outside
 - (D) compression outside and tension inside
- **19.** A solid circular shaft of 6m length is built in at its ends and subjected to an externally applied torque 60 kN m at a distance of 2 m from the left end. The reactive torques at the left end and the right end are respectively
 - (A) 20 kN m and 40 kN m (B) 40 kN m and 20 kN m
 - (C) 30 kN m and 30 kN m (D) 15 kN m and 45 kN m
- **20.** When both ends of a column are fixed, the crippling load is P. If one end of the column is made free, the value of crippling load is
 - (A) P/16 (B) P/4 (C) P/2 (D) 4P
- **21.** If a three hinged parabolic arch carries a uniformly distributed load over the entire span, then any section of the arch is subjected to
 - (A) normal thrust only
 - (B) normal thrust and shear force
 - (C) normal thrust and bending moment
 - (D) normal thrust, shear force and bending moment
- **22.** A simply supported beam with a rectangular cross-section is subjected to a concentrated load at the centre. If the width and depth of the beam are doubled, then the deflection at the centre of the beam will be reduced to
 - (A) 50% (B) 25% (C) 12.5% (D) 6.25%
- 23. The force method in structural analysis ensures (A) compatibility of deformations (B) kinematically admissible strains (C) equilibrium of forces (D) safety 24. The kinematic indeterminacy of a single portal frame fixed at the base is (B) two (A) one (C) three (D) zero 25. The ratio of the moment-carrying capacities of a beam of a square section of size D and a beam of circular section of diameter D is (A) $3\pi/8$ (B) $8/3\pi$ (C) $16/3\pi$ (D) $3\pi/16$

- 26. The maximum bending moment under a particular point load among a train of point loads crossing a simply supported girded occurs when that load is
 - (A) at mid-span
 - (B) at one-third span
 - (C) at one-quarter span
 - so placed that the load point and the point of CG of the train of loads are (D) equidistant from the mid-span

27. A propped cantilever beam of span L is loaded with a uniformly distributed load of intensity w/unit length all through the span, the bending moment at the fixed end is

(A) $wL^{2}/8$ (B) $wL^{2}/2$ (C) $wL^2/12$ (D) $wL^2/24$

28. A fixed beam of 6 m span supports two point loads of 300 kN each at 2 m and 4 m from one end. The bending moment under each load is (A) 400 kN m (B) 300 kN m (C) 250 kN m (D) 200 kN m

- 29. Strength of concrete increases with
 - (A) increase in water-cement ratio increase in fineness of cement (B)
 - (C) decrease in curing time (D) decrease in size of aggregate
- 30. Factors of safety for steel and concrete in RCC should be based on
 - (A) yield stress and ultimate stress respectively
 - ultimate stress and yield stress respectively (B)
 - yield stress (C)
 - (D) ultimate stress

31. In the limit state method, balanced design of a reinforced concrete beam gives

- smallest concrete section and maximum area of reinforcement (A)
- (B) largest concrete section and maximum area of reinforcement
- (C) smallest concrete section and minimum area of reinforcement
- (D) largest concrete section and minimum area of reinforcement
- 32. Minimum clear cover in mm to the main steel bars in slab, beam, column and footing respectively, are

(A)	10, 15, 20 and 25	(B)	15, 25, 40 and 75
-----	-------------------	-----	-------------------

- (C) 15, 25, 30 and 40 (D) 20, 35, 40 and 75
- 33. The following two statements are made with reference to a simply supported underreinforced RCC beam :
 - I. Failure takes place by crushing of concrete before the steel has yielded.
 - The neutral axis moves up as the load is increased. II.

Of the statements

- (A) I and II are false (B) I is true but II is false
- (C) I and II are true

- (D) I is false but II is true

Set - A

5

34.	4. For a two-way slab, limiting deflection of the slab is										
	(A) (C)	a function of t	the sho	rt span pans	(B) (D)	a function of dependent or	the loi both t	ng span the spans			
	(0)	macpenaente	i uic s	puills	(2)	aeponaent of	looui	ine spans			
35.	A sir	ply supported rectangular beam is uniformly loaded and is pre-stressed. The tendo ded for pre-stressing should be									
	(A)	straight, above	e centr	oidal axis	(B)	straight, belo	w cent	roidal axis			
	(C)	parabolic, con	nvexity	upward	(D)	parabolic, co	nvexit	y downward			
36.	The super	maximum sler rimposed load i	nderne is	ss ratio of a	comp	pression mem	ber ca	rrying both de	ead and		
	(A)	180	(B)	200	(C)	250	(D)	350			
37.	Gene	erally the purlin	ns are p	blaced at the p	anel p	oints so as to a	woid				
	(A)	axial force in	rafter	1	(B)	shear force in	n rafter	•			
	(C)	deflection in r	rafter		(D)	bending mon	nent in	rafter			
38.	Laci	ng bars in steel	colum	ns should be	design	ed to resist					
	(A)	bending mom	ent due	e to 2.5% of the	he colu	umn load					
	(B)	(B) shear force due to 2.5% of the column load									
	(C)	2.5% of the co	olumn	load							
	(D)	shear force an	nd bend	ling moment o	due to	2.5% of the co	lumn	load			
39.	In a p	plate girder, the	e web i	s primarily de	signed	l to resist					
	(A)	torsional mon	nent	1 2	(B)	shear force					
	(C)	bending mom	ent		(D)	diagonal buc	kling				
40.	The	sections when a	arrange	ed in the decre	asing	order of their	shape f	factors are			
	(A)	I, circular, dia	amond,	rectangular	(B)	circular, I, re	ctangu	lar, diamond			
	(C)	diamond circu	ular, re	ctangular, I	(D)	diamond, I, c	rcular	r, rectangular			
41.	Loes	s is an aeolain	deposi	t consisting of	f						
	(A)	fine sand – siz	ze parti	icles	(B)	clay-size par	ticles				
	(C)	silt- size parti	cles		(D)	colloidal part	ticles				
42.	The	void ratio of a s	soil sar	mple is 1, the	porosi	ty of the samp	le is				
	(A)	0.2	(B)	0.3	(C)	0.4	(D)	0.5			
43.	The critic	porosity of a co al hydraulic gr	ertain s adient	sample was fo	ound to	b be 80% and	its spe	cific gravity is	2.7, the		
	(A)	0.34	(B)	0.92	(C)	1.0	(D)	1.5			
Set -	A				6				CE		

44. On analysis of particle size distribution of a soil, it is found that $D_{10} = 0.1 \text{ mm}$, $D_{30} = 0.3 \text{ mm}$ and $D_{60} = 0.8 \text{ mm}$. The uniformity coefficient and curvature coefficient are respectively

- (A) 8 and 3
 (B) 2.67 and 1.125
 (C) 2.67 and 3
 (D) 8 and 1.125
- 45. In a wet soil mass, air occupies one-fourth of its volume and water occupies one-half of its volume. The void ratio of the soil is
 (A) 1
 (B) 2
 (C) 3
 (D) 4

46. The liquid limit (LL), plastic limit (PL) and shrinkage limit (SL), of a cohesive soil satisfy the relation
(A) LL>PL<SL (B) LL>PL>SL (C) LL<PL<SL (D) LL<PL>SL

47. A flow net under a sheet pile has $N_f = 4$, $N_d = 8$ and $K_H = 8 \times 10^{-5}$ m/s and $K_V = 2 \times 10^{-5}$ m/s. If the head loss through the soil is 2 m, the quantity of seepage per metre length of the pile is

(A) $2 \times 10^{-5} \text{ m}^3/\text{s}$ (B) $4 \times 10^{-5} \text{ m}^3/\text{s}$ (C) $8 \times 10^{-5} \text{ m}^3/\text{s}$ (D) $16 \times 10^{-5} \text{ m}^3/\text{s}$

- **48.** In a saturated clay with a unit weight of 20 kN/m³, if the water table is at ground surface, the effective stress at 3 m depth in kN/m², is (A) 60 (B) -66 (C) 30 (D) -30
- 49. A 2 m thick clay will be 90% consolidated in 6 years. The time required to achieve the same degree of consolidation in a 8 m thick stratum of the same clay is
 (A) 12 years
 (B) 48 years
 (C) 72 years
 (D) 96 years
- **50.** The ratio of compactive effort provide in modified Proctor test to standard Proctor test is (A) 2 (B) 2.5 (C) 3 (D) 4.5
- **51.** In a tri-axial compression test
 - (1) failure occurs along the weakest plane
 - (2) the stress distribution on the failure plane is more uniform
 - (3) complete control of drainage is possible

(4) the stresses on the failure plane are directly measured Of these statements,

- (A) 1, 2 and 3 are correct (B) 2, 3 and 4 are correct
- (C) 3, 4 and 1 are correct (D) 4, 1 and 2 are correct

- (A) Degree of saturation
- (B) State of compaction
- (C) Coarseness of grains
- (D) Particle shape and roughness of grain surfaces

Set - A

^{52.} Indicate the False statement. In granular soils, the value of Φ ' depends on the following factors :

53. The total active thrust on a vertical wall 3 m height retaining a horizontal sand backfill (unit weight = 20 kN/m^3 , angle of internal friction = 30°), when the water table at the bottom of the wall is

(A) 30 kN/m (B) 35 kN/m (C) 45 kN/m (D) 75 kN/m

- 54. The stability of upstream and downstream slopes of an earth dam has to be checked for
 - (A) steady seepage condition
 - (B) sudden drawdown condition
 - (C) steady seepage and sudden drawdown conditions respectively
 - (D) sudden drawdown and steady seepage conditions respectively
- **55.** The gross bearing capacity of a footing is 440 kN/m^2 . If the footing is 1.5 m wide and is at a depth of 1m in a clayey soil which has a unit weight of 20 kN/m³, the safe bearing capacity with a factor of safety of 3 is

(A) 133 kN/m^2 (B) 140 kN/m^2 (C) 160 kN/m^2 (D) 420 kN/m^2

56. The ratio of ultimate bearing capacities of circular footing and a square footing founded on the surface of a purely cohesionless soil (the side of the square footing being equal to the diameter of the circular footing) is

(A) 0.75 (B) 1.0 (C) 1.33 (D) 1.75

- 57. Ultimate settlement of footings on cohesive soils is best estimated using the data from
 - (A) plate load test (B) consolidation test
 - (C) cone penetration test (D) standard penetration test
- **58.** A 30 cm square bearing plate settles by 1.5 cm in a plate loading test on a cohesive soil when the intensity of loading is 200 kN/m². The settlement of prototype shallow footing 1m square under the same intensity of loading is
 - (A) 1.5 cm (B) 3 cm (C) 5 cm (D) 16.67 cm
- **59.** A pile of 50 cm diameter and 10 m long is embedded in a deposit of fully saturated clay. The unconfined compressive strength of clay is 120 kN/m². The skin friction capacity (kN) of the pile for an adhesion factor of 0.6, is
 - (A) 671 kN (B) 565 kN (C) 283 kN (D) 106 kN
- **60.** Negative skin friction can be developed from
 - 1. a cohesive fill placed over a cohesionless soil deposit
 - 2. a cohesionless fill placed over a compressible cohesive deposit
 - 3. lowering of ground water table with resulting ground subsidence

Which of the above are correct?

(A) 1 and 2 only (B) 2 and 3 only (C) 1 and 3 only (D) 1, 2 and 3

Set - A

- 61. Choose the correct statement :
 - Viscosity of liquids increases with increase in temperature (A)
 - **(B)** Viscosity of liquids decreases with increase in temperature
 - (C) Viscosity of gases decreases with increase in temperature
 - Viscosity of liquids and gases does not change with temperature (D)

62. The velocities at two points in a pipeline are V and 3V. Both the points are at the same elevation. The fluid density is p. The flow can be assumed to be incompressible, inviscid, steady and irrotational. The difference in pressures between the points is

(A) ρV^2 (B) $2\rho V^2$ (C) $4\rho V^2$ (D) $8\rho V^2$

63. If the Reynolds number of pipe flow is 640, the friction factor of the pipe material is (A) 0.16 (B) 0.1 (C) 0.016 (D) 0.01

64. The ratio of head loss per unit length of a pipe flowing full to that of the same pipe flowing half-full at the same mean velocity is (A) 0.25 (B) 0.5 (C) 1 (D) 2

- **65**. In network of pipes
 - (A) the algebraic sum of head (pressure and datum) drops around each circuit is zero
 - the algebraic sum of discharges around each circuit is zero (B)
 - (C) the algebraic sums of head (pressure and datum) drops and discharges around each circuit are zero
 - (D) the elevation of hydraulic gradient line is assumed for each junction point

66. The thickness of laminar boundary layer on a flat plate at a point P is 1 cm and at a point Q, 1 m downstream of P, is 2 cm. The distance of P from the leading edge of the plate is (A) 0.33 m (D) 1.25 m (B) 0.67 m (C) 1 m

- 67. Uniform flow occurs in an open channel when there is a balance between (A) gravity and frictional forces (B) gravity and inertial forces
 - (C) inertial and frictional forces (D) inertial and viscous forces
- **68**. For a critical flow in an open channel
 - (A) specific energy and specific force are minimum for a given discharge
 - (B) specific energy is maximum for a given discharge
 - (C) specific force is maximum for a given discharge
 - (D) specific energy and specific force are maximum for a given discharge
- 69. In a channel the bed slope changes from a mild slope to a steep slope. The resulting gradually varied flow profiles are

(C) M_2, S_2 (D) M_1, S_1 (A) M_1, S_2 (B) M_2, S_1 Set -9 CE

	The secti	The flow in a rectangular channel is subcritical. If the width is constricted at a certai section by a smooth transition, under unchoked flow condition, the water surface									
	(A)) at the downstream section will rise (B) at the downstream section will drop									
	(C)	at the upstrea	am sect	tion will rise	(D)	at the upst	ream sect	tion will drop			
71.	The Frou	sequent depth de number bef	ratio c fore the	of a hydraulic e jump is	: jump i	n a horizont	al rectan	gular channel i	s 5. The		
	(A)	$\sqrt{5}$	(B)	√15	(C)	√35	(D)	√120			
72.	While conducting flow measurement using a rectangular notch, an error of 2% in heat over the notch and an error of -1% in length of notch occurred, then the percentage error in discharge would be										
	(A)	4	(B)	3	(C)	2	(D)	1			
73.	The	number of π-p	aramet	ters needed to	o expres	s the function	on, F (A,	V, t, v, L) = 0 a	re		
	(A)	5	(B)	4	(C)	3	(D)	2			
74.	If th anot	e flow pattern her, the resulti	s reprond	esented by Ψ w pattern can	$y_1 = x^2 + be represented by the representation of the second $	- y^2 and Ψ_2 esented by a	$f_2 = 2xy$ at family c	re superposed	on one		
	(A)	parallel straig	ght line	es	(B)	circles	5				
	(C)	parabolas			(D)	hyperabola	as				
75.	Iden	tify the correct	t stater	nent :							
	(A)	Pumps opera	ating i	n series boo	st the d	lischarge ar	nd pumps	s operating in	parallel		
		boost the hea	iu								
	(B)	Pumps opera discharge	ting in	series boost	the hea	d and pump	s operati	ng in parallel b	boost the		
	(B) (C)	Pumps opera discharge Pumps opera	ting in ting ei	series boost	the hea	d and pump	the disch	ng in parallel t narge	boost the		
	(B) (C) (D)	Pumps opera discharge Pumps opera Pumps opera	ting in ting ei ting ei	series boost ther in series ther in series	the hea or in pa or in pa	d and pump rallel boost rallel boost	the disch	ng in parallel t narge	boost the		
76.	(B)(C)(D)A lin outle	Pumps opera discharge Pumps opera Pumps opera Pumps opera ne connecting et is an	ting in ting ei ting ei points	series boost ther in series ther in series having equa	the hea or in pa or in pa l time c	d and pump rallel boost rallel boost of travel of a	the disch the head surface r	ng in parallel t harge unoff to the ca	boost the		
76.	 (B) (C) (D) A lin outle (A) 	Pumps opera discharge Pumps opera Pumps opera Pumps opera ne connecting et is an isochrone	ting in ting ei ting ei points (B)	series boost ther in series ther in series having equa isovel	the hea or in pa or in pa l time c (C)	d and pump rallel boost rallel boost of travel of a isopleth	the disch the head surface rr (D)	ng in parallel t harge unoff to the ca isohyet	boost the		
76. 77.	 (B) (C) (D) A lin outlet (A) The 	Pumps opera discharge Pumps opera Pumps opera Pumps opera ne connecting et is an isochrone method used to	ting in ting ei ting ei points (B) o checl	series boost ther in series ther in series having equa isovel k the consiste	the hea or in pa or in pa al time c (C) ency of 1	d and pump rallel boost rallel boost of travel of isopleth raingauge re	the disch the head surface r (D) cord is	ng in parallel t harge unoff to the ca isohyet	boost the		
76. 77.	 (B) (C) (D) A lin outle (A) The (A) 	boost the hea Pumps opera discharge Pumps opera Pumps opera Pumps opera ne connecting et is an isochrone method used to normal ratio	ting in ting ei ting ei points (B) o chec	series boost ther in series ther in series having equa isovel k the consiste	the hea or in pa or in pa al time of (C) ency of 1 (B)	d and pump rallel boost rallel boost of travel of isopleth raingauge re double ma	the disch the head surface r (D) ecord is ss curve	ng in parallel t harge unoff to the ca isohyet	boost the		
76. 77.	 (B) (C) (D) A lin outle (A) The (A) (C) 	Pumps opera discharge Pumps opera Pumps opera Pumps opera ne connecting et is an isochrone method used to normal ratio moving avera	ting in ting ei ting ei points (B) o checl	series boost ther in series ther in series having equa isovel k the consiste	the hea or in pa or in pa al time c (C) ency of r (B) (D)	d and pump rallel boost rallel boost of travel of isopleth caingauge re double ma Thiessen p	the disch the head surface r (D) cord is ss curve oolygon	ng in parallel t harge unoff to the ca isohyet	boost the		
76. 77. 78.	 (B) (C) (D) A lin outle (A) The (A) (C) A 6 Φ − hour 	Pumps opera discharge Pumps opera Pumps opera Pumps opera ne connecting et is an isochrone method used to normal ratio moving avera h storm had 6 index remains s in the catchn	ting in ting ei ting ei ting ei points (B) o checl age cm of s at tho nent is	series boost ther in series ther in series having equa isovel k the consiste rainfall at un e same value	the hea or in pa or in pa al time c (C) ency of r (B) (D) iform ra	d and pump rallel boost rallel boost of travel of isopleth raingauge re double ma Thiessen p nte and the r	the disch the head surface r (D) cord is ss curve oolygon resulting r 12 cm o	ng in parallel t harge unoff to the ca isohyet runoff was 3 c f uniform rain	m. If the fall in 9		
76. 77. 78.	 (B) (C) (D) A lin outle (A) The (A) (C) A 6 Φ − hour (A) 	Pumps opera discharge Pumps opera Pumps opera Pumps opera Pumps opera ne connecting et is an isochrone method used to normal ratio moving avera h storm had 6 index remains s in the catchn 9 cm	ting in ting ei ting ei ting ei points (B) o checl age cm of s at the nent is (B)	ther in series ther in series ther in series having equa isovel k the consiste rainfall at un e same value 4.5 cm	the hea or in pa or in pa al time c (C) ency of r (B) (D) iform ra c, the run (C)	d and pump rallel boost rallel boost of travel of a isopleth raingauge re double ma Thiessen p ate and the r noff due to 6 cm	the disch the head surface r (D) cord is ss curve oolygon resulting r 12 cm o (D)	ng in parallel t harge unoff to the ca isohyet runoff was 3 c f uniform rain 7.5 cm	m. If the fall in 9		

- 79. Identify an indirect method of stream gauging from the following :
 - (A) moving-boat method (B) electromagnetic method
 - (C) ultrasonic method (D) slope-area method

80. For a catchment with an area of 200 km², the equilibrium discharge of the S – curve obtained by summation of 2 h unit hydrographs is

(A) $36 \text{ m}^3/\text{s}$ (B) $100 \text{ m}^3/\text{s}$ (C) $278 \text{ m}^3/\text{s}$ (D) $400 \text{ m}^3/\text{s}$

81. A 2 h unit hydrograph of a catchment is triangular in shape with a base of 20 hours and a peak of 100 m³/s. The unit hydrograph refers to a catchment area of

 $(A) \quad 0.36 \ \text{km}^2 \qquad (B) \quad 3.6 \ \text{km}^2 \qquad (C) \ 36 \ \text{km}^2 \qquad (D) \quad 360 \ \text{km}^2$

82. A culvert is designed for a peak flow of 10 m^3 /s on the basis of rational formula. If the storm of same intensity as used in the design but of duration thrice larger occurs, the resulting peak discharge is

(A) $3.33 \text{ m}^3/\text{s}$ (B) $5 \text{ m}^3/\text{s}$ (C) $10 \text{ m}^3/\text{s}$ (D) $30 \text{ m}^3/\text{s}$

- **83.** A linear reservoir is one in which the
 - (A) storage varies linearly with elevation
 - (B) storage varies linearly with the outflow rate
 - (C) storage varies linearly with time
 - (D) storage varies linearly with the inflow rate
- 84. The volume stored in a saturated column of aquifer with a porosity of 0.3, cross-sectional area of 2 m^2 and of 4 m depth is

(A) 1.2 m^3 (B) 2.4 m^3 (C) 4 m^3 (D) 8 m^3

85. If duty is 1200 hectares/cumec and base period is 120 days for an irrigated crop, then delta is

(A) 0.864 m (B) 0.432 m (C) 1 m (D) 10 m

- **86.** Lysimeter and Tensiometer are used to measure respectively, one of the following groups of quantities
 - (A) evaporation and permeability
 - (B) capillary potential and evapotranspiration
 - (C) evapotranspiration and capillary potential
 - (D) velocity and vapour pressure

87. Lacey's waterway for a discharge of 100 m^3 /s and a silt factor of 1 is

 $(A) \quad 10.25 \text{ m} \qquad (B) \quad 47.5 \text{ m} \qquad (C) \quad 90.75 \text{ m} \qquad (D) \quad 111 \text{ m}$

Set - A

88.	Base width of elementary profile of a gravity dam of 15 m high, built of material o specific gravity 2.25 and resisting only hydrostatic force is												
	(A)	6.67 m	(B)	10 m	(C)	13.42 m	(D)	15 m					
89.	Acco	ording to Khosl	a's th	eory, the exit g	gradier	nt in the absenc	e of d	ownstream cutoff is					
	(A)	zero	(B)	unity	(C)	zero or unity	(D)	infinity					
90.	A spi	rinkler irrigatio	on syst	em is suitable	when								
	(A)	(A) the land gradient is steep and the soil is easily erodible											
	(B) the soil is having low permeability												
	(C) the water table is low												
	(D)	the crops to be	e grow	vn have deep ro	oots								
91.	Use o	of coagulants s	uch as	alum									
	(A)	results in redu	iction	of pH of the tr	eated	water							
	(B)	results in incr	ease o	f pH of the trea	ated w	vater							
	(C)	results in no c	hange	in pH of the t	reated	water							
	(D)	may cause an	increa	ise or decrease	of pH	of the treated	water						
92.	Hardness in water is caused by												
	(A)	Nitrates			(B)	Fluorides							
	(C)	Sodium chlor	ide		(D)	Calcium and I	Magne	esium					
93.	A wa per d	ater treatment j ay, then the ch	plant t lorine	reats 6000 m ³ dosage would	of wa be	ater per day. If	per day. If it consumes 20 kg chlorine						
	(A)	3 mg/l	(B)	3.75 mg/l	(C)	4.25 mg/l	(D)	3.33 mg/l					
94.	The 1	naximum pern	nissibl	e quantity of le	ead in	water for drink	ting pu	rpose is					
	(A)	0.01 ppm	(B)	1 ppm	(C)	0.5 ppm	(D)	0.1 ppm					
95.	The o	device used to	measu	re the odour of	f wate	r is							
	(A)	Jackson's turb	oidime	eter	(B) Thermometer								
	(C)	Hydrometer			(D)	Osmoscope							
96.	Whic	$\frac{1}{2}$ ch of the follow	wing o	operational pro	oblems	s relate to the	functi	oning of rapid gravi	i ty				
	1	· Inadequate m	edia co	omprising filte	r hed								
	1. 2	Mud balls		Shipitsing inte	i beu								
	2. 3	Negative head	1										
	U. Whie	the above	∗ are co	orrect ?									
	(A)	1. 2 and 3	(B)	1 and 2 only	(C)	2 and 3 only	(D)	1 and 3 only					
C d	()	·, =	(-)	<i>u</i> <u>-</u> omy	10		(-)		OF				
Set - [A				12				UĽ				

97.	Whice wate:	ch of the follor r?	owing	reasons are r	espon	sible for adop	otion of	of post-chloring	ation of		
	1.	Chlorine dem	and is	reduced.							
	2.	Possibility of	taste a	nd odour form	ation	is reduced.					
	3.	3. Possibility of formation of carcinogenic compounds is reduced.									
	4.	Chloramines a	are for	med.	C	1					
	(A)	1, 2, 3 and 4			(B)	1, 2 and 3 onl	ly				
	(C)	1 and 4 only			(D)	2, 3 and 4 onl	ly				
	. ,						•				
98.	The pipe	most suitable 1 system is	netho	d of analysis o	of wat	er distribution	syster	n for long and	narrow		
	(A)	Circle method	1		(B)	Equivalent pi	pe me	thod			
	(C)	Hardy-Cross	metho	d	(D)	Electrical ana	lyser	method			
00	C		•,	11 1	• •	C					
99.	Sewa	age treatment u	nits ar	e normally des	signed	for		10 50			
	(A)	5 - 10 years	(B)	15 - 20 years	(C)	30 - 40 years	(D)	40 - 50 years			
100.	Most	t suitable section	on of s	ewer for both o	combi	ned and separa	te svst	tems is			
	(A)	semi-elliptica	1		(B)	circular	5				
	(C)	horse-shoe sh	aped		(D)	egg shaped					
			1								
101.	If the two s	e slope of sewe sewers will hav	er A is e a rat	1/400 and that io of (other pa	t of so ramet	ewer B is 1/10 ers being same	0, the	velocity of flor	w in the		
	(A)	1:2	(B)	2:1	(C)	1:4	(D)	4:1			
102.	Durin minin	ng sewage trea mum amount o	tment f susp	, effluent from ended solids ?	whic	h one of the f	ollowi	ng treatment u	inits has		
	(A)	Detritus chani		1	(B)	Primary sedir	nentat	ion tank	. 1		
	(C)	Secondary sec	liment	ation tank	(D)	Activated slu	dge pr	ocess aeration	tank		
103.	The (A) (A) (B) (C) (D)	drop manholes change in alig change in size change in the change from g	are pr inment of sev elevat gravity	ovided in a sev t of sewer line wers ion of ground t opressure sy	verage level vstem	e system when	there	is			
104.	The simu	unit in which ltaneously is	both	sedimentation	and	digestion pro-	cesses	of sludge tak	te place		
	(A)	Skimming tan	k		(B)	Imhoff tank					
	(C)	Detritus tank			(D)	Digestion tan	k				
105.	A se	wage sludge ha	as a w	ater content o	f 99%	. The concentr	ration	of suspended s	solids in		
	(A)	10 mg/l	(B)	100 mg/l	(C)	1000 mg/l	(D)	10,000 mg/l			
а. I		0	、 <i>/</i>	0	10	Ø	、 /	, G			
Set -	A				13				CE		

106.	Consider the following statements :									
	1.	Noise polluti	on car	be reduced us	sing do	ouble – glass	s window	y panes		
	2.	Glass absorb	s noise	2						
	3.	The air trapp noise	ed in	the double –	glass s	system acts	as an ins	sulator and redu	ices the	
	4. The noise totally reflects back due to two layers of glass									
	Which of these statements are correct ?									
	(A)	1, 2, 3 and 4			(B)	1, 2 and 3	only			
	(C)	1 and 3 only			(D)	2 and 4 on	nly			
107.	A w requ	A water supply of 15,000 m^3 per day is treated with 0.5 ppm of chlorine. T requirement of 30% bleaching powder per day is								
	(A)	2.25 kg	(B)	4.5 kg	(C)	2.5 kg	(D)	25 kg		
108.	Gree	enhouse effect	is con	sidered to be d	ue to t	he increased	d levels o	f		
	(A)	Carbon mono	oxide		(B)	Carbon die	oxide			
	(C)	Sulphur diox	ide		(D)	Chloroflur	rocarbons	8		
109.	Laro	e calorific valu	ie of s	olid wastes in	dicates	its amenabi	ility for			
1071	(A)	composting	(B)	incineration	(C)	pyrolysis	(D)	land filling		
	. ,	1 0				15 5		C		
110.	The	secondary poll	utant	among the air	polluta	unts, NO, SC	D_2 , soot a	nd O ₃ , is		
	(A)	NO	(B)	SO ₂	(C)	soot	(D)	O ₃		
111.	Cam	ber in highway	v nave	ment is provid	led to t	ake care of				
	(A)	centrifugal fo	orce	I	(B)	drainage				
	(C)	sight distance	e		(D)	off-trackin	ng			
112.	Two	bitumen sam	nles F	P and O have	softer	ing points	45° C a	nd 60° C respe	ctively	
	Con	sider the follow	ving st	tatements :		8 F			j:	
	I.	Viscosity of I	P will	be lesser than	that of	Q at the same	me tempe	erature		
	II.	Penetration v	alue o	f P will be mo	re thar	n that of Q u	inder star	dard conditions	5	
	The	correct option	evalua	ating the above	e stater	nents 1s	I II ana E	ALCE		
	(\mathbf{A})	Boun I and II	are II		(B)		and II io	ALSE		
	(C)	TIS PALSE a	.110 11 1	SIKUL	(D)	I IS I KUL		FALSE		
113.	In a	flexible pavem	nent							
	(A)	vertical comp	pressiv	ve stresses deci	rease v	with depth of	f the laye	r		
	(B)	vertical comp	oressiv	ve stress is max	kimum	at the lowe	st layer			
	(C)	tensile stresse	es get	developed						
	(D)	maximum str load on the p	ress ir aveme	nduced by a gent surface	iven t	raffic load i	is depend	lent on the loca	ation of	
Set -	Α				14				CE	

- **114.** Traffic density is the
 - (A) ability of roadway to accommodate traffic volume in terms of vehicles/hr.
 - (B) number of vehicles occupying a length of roadway at a given instant expressed as vehicles/km.
 - (C) capacity of lane to accommodate the vehicles widthwise (across the road).
 - (D) maximum attainable speed of vehicle.

115. At an intersection, the critical lane volume on the major road increases while that on the minor road remains unchanged. The green time for the signal will

- (A) increase for the major road and remain same for the minor road.
- (B) increase for the major road and decrease for the minor road.
- (C) decrease for both the roads.
- (D) remain unchanged for both the roads.
- 116. The bearings of lines OP and OQ are $20^{\circ} 30^{"}$ and $342^{\circ} 20^{"}$ respectively. The included angle QOP is

(A) 321° 50" (B) 162° 20" (C) 69° 30" (D) 38° 10"

- **117.** Reciprocal levelling eliminates the
 - 1. errors due to earth's curvature
 - 2. errors due to atmospheric refraction
 - 3. mistakes in taking levelling staff readings
 - 4. errors due to line of collimation

Which of the statements given above are correct?

- (A) 1, 2 and 3 (B) 1, 2 and 4 (C) 1, 3 and 4 (D) 2, 3 and 4
- **118.** The closing error in a traverse survey can be eliminated by
 - (A) Bowditch rule
 - (B) transit rule
 - (C) working accurately latitudes
 - (D) either Bowditch rule or transit rule as applicable
- **119.** The plotting of inaccessible points in a plane-table survey can be done by the method of (A) Interpolation (B) Radiation (C) Intersection (D) Traversing
- **120.** A 3% downgrade curve is followed by a 1% upgrade curve and rate of change of grade adopted is 0.1% per 20 m length. The length of respective vertical curve is

 $(A) \quad 800 \text{ m} \qquad (B) \quad 200 \text{ m} \qquad (C) \quad 100 \text{ m} \qquad (D) \quad 400 \text{ m}$

Set - A

SPACE FOR ROUGH WORK