

Booklet No.:

CH - 15

Chemical Engineering

Duration of Test : 2 Hours		Max. Marks: 120
	Hall Ticket No.	
Name of the Candidate :		
Date of Examination:	OMR A	answer Sheet No. :
Signature of the Candidate		Signature of the Invigilator

INSTRUCTIONS

- 1. This Question Booklet consists of **120** multiple choice objective type questions to be answered in **120** minutes.
- 2. Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer.
- 3. Each question carries **one** mark. There are no negative marks for wrong answers.
- 4. This Booklet consists of **16** pages. Any discrepancy or any defect is found, the same may be informed to the Invigilator for replacement of Booklet.
- 5. Answer all the questions on the OMR Answer Sheet using **Blue/Black ball point pen only.**
- 6. Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully.
- 7. OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall.
- 8. Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall.
- 9. No part of the Booklet should be detached under any circumstances.
- 10. The seal of the Booklet should be opened only after signal/bell is given.

CH-15-A

CHEMICAL ENGINEERING (CH)

- The value of k so that the equations x+y+3z=0, 4x+3y+kz=0 and 2x+y+2z=01. have nontrivial solution is
 - (A) 1
- (B) 0
- (C) 8
- (D) -4
- If $-\sqrt{5}$ and $\sqrt{5}$ are eigen values of the matrix $\begin{bmatrix} -1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$ then the third eigen value is 2.
 - (A) 2
- (B) $\sqrt{5}$
- (C) 0
- (D) 1
- **3.** The percentage of error in the area of an ellipse when an error of +1 percentage is made in measuring the major and minor axis is
 - (A) -2
- (B) +2
- (C) 0
- (D) 1
- The curl of the vector field $\overline{A} = (x^2 + xy^2)i + (y^2 + x^2y)j$ is 4.
 - (A) $\hat{0}$
- (B) i-j (C) 2i+3j (D) -i
- The particular integral of the differential equation $(D^2 + 4)y = \cos 2x$ is 5.
 - (A) $\frac{x}{4}\sin 2x$ (B) $\frac{x}{4}\cos 2x$ (C) $\frac{1}{8}\sin 2x$ (D) $\frac{1}{4}\sin 2x$

- The Laplace transform of the function $\frac{1}{\sqrt{\pi t}}$ is 6.
 - (A) $\frac{1}{\sqrt{\pi}}$ (B) $\frac{\pi}{\sqrt{s}}$ (C) $\frac{1}{s^2}$ (D) $\frac{1}{\sqrt{s}}$

- The residue at the pole 2 of the function $\frac{2z+1}{z^2-z-2}$ 7.
- (B) $-\frac{3}{2}$ (C) $-\frac{1}{2}$
- 8. If P(A) = 0.4, P(B) = p and $P(A \cup B) = 0.6$, then the value of p so that A and B are independent is
 - (A) 0.7
- (B) $\frac{1}{2}$
 - (C) 0.4 (D) $\frac{1}{3}$

Set - A

2

CH

9.	The order of convergence	of the Newton	Raphson method is
			- T

(A) 1st

(B) 3rd

(C) 4th

(D) 2^{nd}

10. If h is the step size and if f(x) is given in the table then by Simpson $1/3^{rd}$ method $\int_{x_0}^{x_5} y(x) dx$ is equal to

x	x_0	x_1	x_2	x_3	X_4	x_5
y (<i>x</i>)	y_0	y_1	y_2	y_3	y_4	y_5

(A)
$$\frac{h}{2} \left[y_0 + 2(y_1 + y_3) + 4(y_2 + y_4) + y_5 \right]$$

(B)
$$\frac{h}{3} \left[y_0 + 4(y_1 + y_3) + 2(y_2 + y_4) + y_5 \right]$$

(C)
$$\frac{h}{2} \left[y_0 + 2(y_1 + y_2 + y_3 + y_4) + y_5 \right]$$

(D)
$$\frac{h}{3} \left[y_0 + 2(y_1 + y_3) + 4(y_2 + y_4) + y_5 \right]$$

11. The pressure difference between inside and outside of a liquid drop is

(A) $16\sigma/d$

(B) $8\sigma/d$

(C) $4\sigma/d$

(D) $2\sigma/d$

12. Weight of liquid that rises in a capillary tube is supported by

- (A) horizontal component of surface tension
- (B) the Drag force
- (C) vertical component of surface tension
- (D) the viscous force

13. The continuity equation is a mathematical statement of

(A) law of conservation of energy

(B) law of conservation of mass

(C) law of conservation of momentum (D)

(D) law of conservation of mass and energy

14. The ratio of inertial forces to gravitational forces is better known as

(A) Reynolds number

(B) Weber number

(C) Euler number

(D) Froude number

15. Dynamic similarity is

(A) the similarity of discharge

(B) the similarity of forces

(C) the similarity of stream line patterns (D) the similarity of location

Set - A

3

CH

16.	Buo	yant force actin	ng on a	a floating/subr	nerged	body is					
	(A)	equal to the v	veight	of liquid disp	laced a	and acts vertic	cally do	wnwards			
	(B)	the net force	acting	on a body due	e to the	surrounding	fluid				
	(C)	the net force	necess	sary to maintai	in equi	librium of the	e body				
	(D)	equal to the v	weight	of liquid disp	laced a	and acts vertice	cally up	wards			
17.	The	ratio of pressur	re forc	es to inertial f	orces i	orces is					
	(A)	Froude numb	er		(B)	Weber num	ber				
	(C)	Euler number	r		(D)	Mach numb	er				
18.	A bo	ody falls freely	for dis	stance S from	rest. It	s velocity v is	S				
	(A)	$K (Sg)^{0.5}$	(B)	K (Sg)	(C)	$K (Sg)^2$	(D)	$K (Sg)^{1.5}$			
19.	The	ratio of point v	elocit	y to the maxin	num ve	elocity in lam	inar flo	w through a p	pipe is		
	(A)	$1 - (r/R)^2$	(B)	1 - (r/R)	(C)	$(r/R)^2$	(D)	(r/R)			
20.	In su	ıdden enlargen	nent in	a horizontal p	oipe, th	e velocity he	ad is co	nverted to			
	(A)	potential head	d (B)	kinetic head	(C)	not converte	ed (D)	pressure he	ad		
21.	Navi	ier–Stokes equ	ation i	s useful for							
	(A)	non-viscous	flow		(B)	Viscous flo	W				
	(C)	turbulent flov	N		(D)	in viscid flo	w				
22.	A sta	agnation point	is whe	ere							
	(A)	the pressure i	s zero		(B)	the flow vel	locity is	zero			
	(C)	the total ener	gy is z	ero	(D)	the flow res	istance	is the maxim	ium		
23.	A fo	ot valve is a									
	(A)	direction con	trol va	lve	(B)	relief valve					
	(C)	pressure redu	icing v	alve	(D)	back pressu	re valve	e			
24.	For	compressing ar	nd mov	ving gases, the	e pressi	ure difference	produc	ced is the max	ximum for		
	(A)	Fans			(B)	Vacuum Pu	•				
	(C)	Blowers			(D)	Compressor	rs				
25.	The	equivalent dia	meter (of a 6 cm x 12	cm co	onduit is,					
	(A)	2 cm	(B)	8 cm	(C)	72 cm	(D)	6 cm			
Set -	A				4				СН		

26.	For a	a cylindrical pa	article,	whose L/D is	one, tl	ne sphericity i	is		
	(A)	21/2	(B)	1	(C)	<1	(D)	2	
27.		ratio of the ac series is	tual m	esh dimension	of any	screen to that	at in the	e next smaller scre	en in
	(A)	1.41	(B)	2	(C)	1.19	(D)	1.73	
28.	The	specific surfac	e of sp	oherical partic	les – di	ameter relation	on is		
	(A)	proportional	to diar	neter ²	(B)	directly proj	portiona	al	
	(C)	inversely pro	portio	nal	(D)	proportional	l to equ	ivalent diameter ²	
29.	The	crushing effici	iency c	of a machine w	vill be a	about			
	(A)	20 %	(B)	80 %	(C)	10 %	(D)	2 %	
30.	Ritti	nger's law rela	ates the	e work require	d in cr	ushing to			
	(A)	the number of	of parti	cles crushed	(B)	the new surf	face cre	ated	
	(C)	the hardness	of the	particles	(D)	the surface a	area of t	the feed particles	
31.	The	mechanism of	size re	eduction in Ul	tra fine	grinders is p	rimarily	7	
	(A)	cutting	(B)	attrition	(C)	impact	(D)	compression	
32.	Criti	cal speed of a	ball m	ill depends on	(r is b	all radius and	R is m	ill radius)	
	(A)	only on mill	radius,	, R	(B)	Only on bal	l radius	, r	
	(C)	Difference in	R and	l r	(D)	$(R - r)^{1/2}$			
33.	A fil	ter aid in the s	lurry v	vill					
	(A)	increase the	cake po	orosity	(B)	Decrease ca	ke poro	sity	
	(C)	increase cake	e comp	ressibility	(D)	Decrease ca	ke com	pressibility	
34.	Duri	ng constant pr	essure	filtration, the	flow ra	ate of the filtra	ate		
	(A)	is constant	(B)	increases	(C)	is steady	(D)	decreases	
35.	The	dimensions of	filter 1	medium resist	ance ar	re			
	(A)	ML^{-1}	(B)	L^{-1}	(C)	$M^{-1}L$	(D)	$M^{-1}L^{-1}$	
36.	If a ₁	plot of time vs	. filtrat	e volume is pr	repared	l, it will be a			
	(A)	parabola	(B)	straight line	(C)	hyperbola	(D)	exponential curv	e
Set -	A				5				СН

Set -	A				6				CH
45.		on is a polymer CF ₄	-	duct of $CH_2 = CHF$	(C)	C_2F_2	(D)	C_2F_4	
44.	Which (A)	ch one among t Polyethylene		e	moplas (C)	stic ? Bakelite	(D)	polyester	
43.	Which (A)	ch of the follow Charcoal	•	s a crystalline i Diamond		f carbon '? Lampblack	(D)	Soot	
40	****				•			-	
	(A) C)	Low temperat High tempera		-	(B) (D)	•		0 1	
42.		perature and pr				2	_	3	
	(C)	Difference in	partic	le sizes	(D)	Difference in	liquic	l-solid density	
41.	Diffe	erential settling Difference in		-	(B)	Difference in	termi	nal velocities	
	(C)	the piping res	istanc	e	(D)	All the above)		
40.	(A)	the cake resist		e controlling is	(B)	the filter med	lium re	esistance	
40.	In a	rotary drum filt	er the	e controlling r	esistan	ce is			
	(D)	can have large	e discl	harge under hi	gh pre	ssures			
	(C)	do not depend		-		neir operation			
	(A) (B)	cannot provid			nent				
39.	Vane (A)	e pumps operate at low	effic	iencies					
	(C)	Screw pump			(D)	Lobe pump			
	(A)	Centrifugal pu	ımp		(B)	Gear pump			
38.	A pu	mp normally p	referr	ed for pumpin	g slurr	ies			
	(D)	velocity head	+ pre	ssure head, at	discha	rge – vapor pre	essure	of liquid	
	(C)	velocity head	+ pre	ssure head, at	suction	n – vapor press	ure of	liquid	
	(B)	velocity head	+ pre	ssure head, at	discha	rge			
	(A)	velocity head		· · · · · ·					
37.	Net 1	oositive suction	head	(NPSH) of a	centrif	ugal pump is d	efined	las	

46.	Paste	eurization of m	ilk in	volves					
	(A)	Heating to bo	iling						
	(B)	Cooling follo	wed b	y moderate hea	ating				
	(C)	Cooling to 0	°C						
	(D)	Moderate hea	ting f	followed by coo	oling				
47.	Cata	lyst normally ι	ısed ir	n the hydrogena	ation c	of oils is a fine	ely divi	ded	
	(A)	Copper	(B)	Iron	(C)	Nickel	(D)	Silver	
48.	A sy	nthetic deterge	nt cor	nstituent, that p	revent	ts re–depositio	on of di	rt on the fabric, is	
	(A)	Sodium carbo	oxy m	ethyl cellulose	(B)	Sodium silic	eate		
	(C)	Sodium tripo	lypho	sphate	(D)	Sodium sulf	ate		
49.	The	anodic reaction	n in th	e electrolysis o	f brin	e solution is			
	(A)	Oxidation of	chlori	ne ions	(B)	Reduction o	f sodiu	m ions	
	(C)	Oxidation of	sodiu	m ions	(D)	Reduction o	f chlori	ne ions	
50.	The	major constitue	ents o	f coke oven gas	are				
	(A)	CH ₄ , CO ₂ and	d H ₂ O)	(B)	CH ₄ , CO an	dH_2		
	(C)	CH ₄ , CO and	N_2		(D)	CO ₂ , CO an	dH_2		
51.	Tem	porary hardnes	s of w	vater can be ren	noved	by adding			
		CaCO ₃	(B)		(C)	•	(D)	NaHCO ₃	
52.	Four	rier number is a	ssoci	ated with					
	(A)	Convection	(B)	Conduction	(C)	Radiation	(D)	none of the abov	e
53.	A sp	ohere, a cube a	nd a t	hin circular pla	ite, all	made of the	same r	naterial and havin	g the
				e at a tempera t will provide th				ey are exposed to	o the
	(A)	circular plate	o o jee.	will provide th	(B)	cube	101 1410	•	
	(C)	sphere			(D)	all will cool	at the s	same rate	
54.	Usua	ally, the therma	ıl cond	ductivity of a no	on–ho	mogeneous m	naterial		
	(A)	<u> </u>		easing tempera		C			
	(B)	decreases wit	h incr	easing apparen	t bulk	density			
	(C)	increases wit density	h incr	easing tempera	iture b	out decreases	with in	creasing apparent	bulk
	(D)	· ·	h with	increasing tem	perat	ure and increa	sing ap	parent bulk densit	zy.
Set -	A				7				СН

Set -	A	8	СН								
	(D)	is characterized by a thin liquid film forming over the entire surface									
	(C)	is characterized by high heat transfer coefficients than that for drop condensation	wise								
	(B)	occurs on non-wettable surfaces									
	(A)	is less common than drop wise condensation									
60.	Film	n wise condensation									
	(D)	linear with radius for familiar flow									
	(C)	parabolic with radius for turbulent flow linear with radius for laminar flow									
	(B)	linear with radius for both laminar and turbulent flows									
	(A)	parabolic with radius for both laminar and turbulent flows									
59.		distribution of shear stress in a stream of fluid in a circular tube is									
	(D)	disappears									
	(C)	is thinner than the hydrodynamic boundary layer									
	(B)	3) is thicker than the hydrodynamic boundary layer									
	(A)	A) and hydrodynamic boundary layer are identical									
58.	Whe	en the Prandtl number is greater than unity, the thermal boundary layer									
	(D)	none of the above									
	(C)	both A and B									
	(B)	buoyant forces arising from changes in density									
	(A)	surface tension forces									
57.	In na	atural convection, fluid moves under the influence of									
	(C)	Stanton number (D) Grashof number									
	(A)	Prandtl number (B) Rayleigh number									
56.	The	ratio of Buoyant forces to viscous forces is better known as									
	(D)	the product of thermal conductivity and heat transfer coefficient									
	(C)	the radius of the pipe									
	(B)	the ratio of heat transfer coefficient to thermal conductivity									
	(A)	the ratio of thermal conductivity to heat transfer coefficient									
55.	The	maximum heat loss from a pipe occurs when the radius of insulation equals									

The average heat transfer coefficient for drop wise condensation is

61.

	(A)	less than that	of filn	n wise condens	ation				
	(B)	greater than the	nat of	drop wise cond	lensati	ion			
	(C)	equal to that of	of film	wise condensa	ation				
	(D)	cannot be con	nparec	d					
62.	The	total emissive p	ower	(E) of a gray b	ody at	t a surface temp	eratu	re of T is given by	
	(A)	$E = \varepsilon \sigma T^4$	(B)	$E = (1 - \varepsilon)\sigma T^4$	(C)	$E = (\varepsilon - 1)\sigma T^4$	(D)	$E = \sigma T^4$	
63.		the same proce iter flow in liqu		•		-	aralle	flow to the LMTD in	1
	(A)	<1	(B)	=1	(C)	>1	(D)	∞	
64.	If so	me of the tubes	in a l	neat exchanger	are se	aled, the effect	ive he	eat transfer area will	
	(A)	increase	(B)	remain same	(C)	decrease	(D)	none	
65.	3 an	nperes current ch was operated	at 200	0 volts. The li	quid i	s continuously	stirre	e resistor, which draws ed by a paddle wheel ergy transferred to the	,
	(A)	480 kJ	(B)	360 kJ	(C)	800 kJ	(D)	240 kJ	
66.		thermal efficie					than	that of a Carnot cycle	•
	(A)	energy rejecti	on do	es not take plac	e at c	onstant tempera	ature		
	(B)	the turbine is	not re	versible and ad	iabati	c			
	(C)	energy addition	on doe	es not take plac	e at co	onstant tempera	ture		
	(D)	the pump is n	ot rev	ersible and adia	abatic				
67.								initial state (P_1, V_1) to work done on the gas)
	(A)	$n(P_1V_1 - P_2V$	2)		(B)	$\frac{P_2V_2 - P_1V_1}{1 - n}$			
	(C)	$\frac{P(V_1 - V_2)}{n}$			(D)	$\frac{P(V_1 - V_2)}{1 - n}$			
Set -	A				9			CI	Η

68.	Whe	en wet steam	is thrott	led to a low p	pressure,	its tempe	rature					
	(A)	increases			(B)	does not	change					
	(C)	gets halved			(D)	decrease	S					
69.		Identify the correct set of approximations made in the thermodynamic analysis of internal combustion engines										
	P.	The combus	stion pro	ocess is repla	ced by a	n equival	ent energy	addition proce	ess			
	Q.	The workin	g fluid i	s a mixture o	of carbor	dioxide a	and water v	apor				
	R.	The exhaus	t proces	s is replaced	by an ec	quivalent e	energy reje	ction process				
	S.	The workin	g fluids	have constar	nt heat ca	apacities						
	(A)	P, R, S	(B)	P, R	(C)	R, S	(D)	P, Q, R				
70.	1000		. If the	cost of elec		0.	•	rate of 10 is annual cost				
	(A)	₹ 10000	(B)	₹ 5000	(C)	₹ 6000	(D)	₹12000				
71.	Acti	vity coefficie	nt is a p	artial molar _J	property	with resp	ect to					
	(A)	G ^R /RT	(B)	Δ G /RT	(C)	G ^E /RT	(D)	G/RT				
72.	The	coordinates o	of Molli	er diagram ar	e							
	(A)	S & H	(B)	ln P & H	(C)	T & S	(D)	T & H				
73.	•	ystem, going on direction if		~				30 kJ of wor	k. In the			
	(A)	–70 kJ	(B)	– 100 kJ	(C)	– 40 kJ	(D)	–130 kJ				
74.	The	meaning of s	econd la	aw of thermo	dynamic	es is						
	(A)	Work conve	ersion to	heat imposs	sible							
	(B)	Heat conver	rsion to	work imposs	sible							
	(C)	Work conve	ersion to	heat is parti	al							
	(D)	Heat conver	rsion to	work is parti	al							
75.	Wha	at is the mass	of CO c	contained in a	a contain	er of volu	ıme 44.8 m	³ at STP?				
	(A)	28 kg	(B)	56 kg	(C)	14 kg	(D)	44 kg				
76.	Bina	ry Diffusion	Coeffic	ient for gases	s vary wi	ith						
	(A)	temp	(B)	(temp) ^{1.5}	(C)	(temp) ²	(D)	(temp) ⁻¹				
Set -	A				10				СН			

77.	Whi	ch of the foll	lowing v	vill have the d	limensi	ons of lengt	th/time		
	(A)	Film thicks	ness						
	(B)	Diffusion o	coefficie	nt					
	(C)	Volumetric	mass tr	ansfer coeffic	eient				
	(D)	Mass trans	fer coef	ficient					
78.	Schr	nidt number	is the ra	tio of					
	(A)	thermal dif	fusivity	to mass diffus	sivity				
	(B)	momentum	diffusi	vity to therma	l diffus	ivity			
	(C)	momentum	diffusi	vity to mass d	iffusivi	ty			
	(D)	none of the	above						
79.		tive volatilit x that in the	-	ned as (y is n	nole fra	ection of mo	ore volatile	e component in	vapour
	(A)	y / (1-y)			(B)	y / x			
	(C)	(1-y) / y (1	(-x)		(D)	y(1-x)/x	x (1–y)		
80.	Gas	Permeability	(P) is d	lefined as					
	(A)	P = Volum	e/ pressi	ure gradient	(B)	P = 1/Dif	ffusivity		
	(C)	P = volume	e x press	sure gradient	(D)	P = Diffus	sivity / Sol	lubility	
81.	Acco	ording to sur	face ren	ewal theory, n	nass tra	nsfer coeffi	icient is pr	oportional to	
	(A)	$\mathrm{D_{AB}}^{0.5}$	(B)	D_{AB}	(C)	$D_{AB}^{1.5}$	(D)	$D_{AB}^{0.7}$	
82.	Acco	ording to Ch	ilton–Co	olburn analogy	y for ma	ass transfer			
	(A)	$N_{St} N_{Sc}^{2/3}$	= f/8		(B)	$N_{St} N_{Sc}^{1/3}$	$^3 = f/2$		
	(C)	$N_{St} N_{Sc}^{2/3}$	= f/2		(D)	$N_{St} N_{Sc}^{1/3}$	$^3 = f/8$		
83.		-		ch a gas-vapo act with water		kture gets s	saturated o	on cooling at c	constant
	(A)	Bubble ten	nperatur	e	(B)	Dew temp	perature		
	(C)	Wet bulb to	emperat	ure	(D)	Saturation	n Tempera	ture	
84.		nber of inde at azeotropi	-		oinary 1	mixture in	vapour –li	iquid equilibrit	ım will
	(A)	-	(B)		(C)	3	(D)	2	
Set -	A				11				СН

85.		e activity coef ry mixture cha		•		le fraction of i	more v	olatile co	omponent in a
	(A)	an azeotrope	is form	ned	(B)	the separation	n is eas	sier	
	(C)	the separation	n is dif	ficult	(D)	the system is	ideal		
86.	Abso	orption factor i	İS						
	(A)	Slope of the	driving	force line/sl	ope of	the operating l	ine		
	(B)	Number of tr	ansfer	units/ number	of the	oretical plates			
	(C)	Slope of the	equilib	rium curve / s	slope of	the operating	line		
	(D)	Slope of the	operati	ng line / slope	e of the	equilibrium c	urve		
87.	A ho	orizontal q–line	e in Mo	Cabe –Thiele	proced	dure indicates	that th	e feed is a	ì
	(A)	Saturated liq	uid		(B)	Saturated Va	pour		
	(C)	Vapour-liqu	id mixt	ure	(D)	Unsaturated	liquid		
88.		e vapour press er, then the wat			•	olid is less tha	n the v	vapour pr	essure of pure
	(A)	Critical Mois	sture co	ontent	(B)	Free Moistur	e conte	ent	
	(C)	Bound Moist	ture		(D)	Equilibrium 1	Moistu	ire conter	it
89. An analytical expression to determ specified separation by fractionation							ber of	stages r	equired for a
	(A)	Rayleigh equ	ation		(B)	Kremser equ	ation		
	(C)	McCabe equ	ation		(D)	Fenske equat	ion		
90.	In fla	ashing, the fina	al press	sure is					
	(A)	the bubble pr	essure		(B)	the dew press	sure		
	(C)	Between bub	ble and	dew pressur	es (D)	above dew pr	ressure	;	
91.		id A decomption is 20 min.						d the hal	lf-life of this
	(A)	30 min	(B)	35 min	(C)	40 min	(D)	25 min	
92.		chemical react bled. What is the	-			rate increases	4-fold,	as the co	ncentration is
	(A)	1	(B)	2	(C)	1.5	(D)	4	
93.	The	dimensions of	rate co	onstant are (n	is the o	rder of the rea	ction)		
	(A)	time ⁻¹ (Conc	entratio	on)	(B)	time ⁻¹ (Conc	entrati	on) ⁿ	
	(C)	time (Concer			(D)	time ⁻¹ (Conc		,	
Set -	A				12				СН
	_								

94.	Higher activation energy of a reaction indicates that the reaction is										
	(A)	Temperature	sensit	ive	(B)	Temperature insensitive					
	(C)	More Compl	ete		(D)	D) Higher temperatures are prefe			referable		
95.		A reaction, $2A \rightarrow$ products exhibit second order kinetics. A plot of t vs $X_A/(1-X_A)$ will then have a slope of									
	(A)	KC_{AO}	(B)	KC_{AO}^{2}	(C)	1/(KC _{AO})	(D)	C_{AO}			
96.		or an isothermal gas phase reaction, $A \rightarrow 2B$ +C, the fractional change in volume of the estem between complete and no conversion is									
	(A)	3	(B)	1	(C)	4	(D)	2			
97.	For identical C_{AO} , F_{AO} and X_A , and for all positive reaction orders, the ratio of volume of a CSTR to that of a plug flow reactor is										
	(A)	<1	(B)	>1	(C)	=1	(D)	= rea	ction order		
98.	N plug flow reactors in series, each with a volume of V/N will give the same conversion as a single plug flow reactor of volume V, all else remaining the same. This is valid for										
	(A)	first order re	actions	,	(B)	second order reactions					
	(C)	all reaction orders				Zero order reactions					
99.	Exit age distribution of fluid leaving a vessel is useful to										
	(A) study the flow pattern in the reactor										
	(B)	(B) study the reaction mechanism and progress									
	(C)										
	(D)	determine th	e flow	rates							
100.	The action of a catalyst is due to its ability to change the										
	(A)										
	(B)	Heat of react	ion								
	(C)	Equilibrium	consta	nt							
	(D)	Temperature	& pre	ssure depende	nce						
101.		large values o tion, effective			$D)^{1/2}$), in case	of sol	id cata	lyzed first order			
	(A)	$\varepsilon = 1$	(B)	1 / L(k/D)	(C)	$\varepsilon = 1 / L(k/D)$	$(1/2)^{1/2}$	(D)	$L(k/D)^{1/2}$		
Set -	A				13				СН		

102.	Whi			ng is a dynam	nic char (B)	racteristic of a measuring instrument? Speed of response						
	(C)	Sensitivity	iiity		(D)	Range and	-					
103.	3. As temperature is increased, refractive index of a liquid											
	(A)	decreases			(B)	increases						
	(C)	not affected			(D)	varies with square of temperature						
104.	An e	An example for a natural second order system is										
	(A)	thermomete	r		(B)	two capacity liquid level system						
	(C)	Thermomete	er in a t	hermo well	(D)	U-tube Manometer						
105.	When a first order system(time constant T) is subjected to a ramp input(At), the dynamic error is											
	(A)	$(AT)^{0.5}$	(B)	AT	(C)	0.5 AT	(D)	2 AT				
106.	Bolo	ometer is used	in the	measurement	of							
	(A)	Pressure	(B)	Level	(C)	Flow	(D)	Temperature				
107.	Ioniz	zation gauge i	s used	to measure								
	(A)	Low pressur	res		(B)	High pressures						
	(C)	Near atmosp	oheric p	oressures	(D)	Ionization current						
108.	Phas	Phase angle of a second order system to a sinusoidal input is										
	(A)	between 0 a	nd +90		(B)	between 0 and -180						
	(C)	between 0 a	nd +18	0	(D)	between –90 and +90						
109.	A de	A decrease in proportional band of a controller										
	(A)	decreases de	ecay rat	io	(B)	improves the stability of a system						
	(C)	increases de	cay rat	io	(D)	decreases offset						
110.	For a (–18	•	n, as pe	er Bode stabili	ity crite	erion, the am	plitude 1	ratio at a phase	angle of			
	(A)	shall be grea	ater tha	n unity	(B)	shall be equ	ual to ze	ero				
	(C)	shall be less	than u	nity	(D)	shall be equ	ual to un	nity				
111.	An equal percentage valve is of											
	(A)	increasing s			(B)	decreasing		ity type				
	(C)	constant sen	sitivity	type	(D)	insensitive	type					
Set -	A				14				CH			

112.	Biochemical digestion of an effluent is basically a process of										
	(A)	Reduction	(B)	Hydration	(C)	Dehydration	(D)	Oxidation			
113.	A piece of equipment has an initial value of ₹ 25000, a service life of 8 years a salvage value of ₹ 1000. What is the annual depreciation cost as per stimethod?								•		
	(A)	₹ 2400	(B)	₹ 2500	(C)	₹ 2600	(D)	₹ 3000			
114.	Grad	ling of a compl	lex fer	tilizer is base	d on the	e following:					
	(A)	N:P:K			(B)	$N: P_2O_5: K$					
	(C)	$N: P_2O_5: K_2$	O		(D)	$N:P:K_2O$					
115.	Whi	ch of the follow	ving h	ydrocarbon se	eries is	almost absent i	n cruc	le petroleum ?			
	(A)	Naphthenes	(B)	Aromatics	(C)	Paraffins	(D)	Olefins			
116.	The	emission of a f	3–parti	cle causes the	e resulta	ant nucleus to h	ave				
	(A)	less atomic w	eight		(B)	less atomic nu	ımber				
	(C)	more atomic	weigh	t	(D)	more atomic i	numbe	er			
117.	The angle subtended by a vertical line to the point directly overhead on the line of sight of the sun is called										
	(A)	latitude angle	;		(B)	declination an	gle				
	(D)	Incident angle	e		(D)	Zenith angle					
118. Which method of depreciation computation will provide the lowe times					west book value	at all					
	(A)	Straight line	metho	d	(B)	Diminishing b	oalanc	e method			
	(C)	Sinking fund	metho	od	(D)	Sum of the ye	ars di	git methods			
119.		A dimensionless number used to modify capital cost required to erect a chemical plant from a past date to a later time, is known as									
	(A)	Cost Index			(B)	Scale up facto	or				
	(C)	Six-tenth fac	tor		(D)	Inflation inde	X				
120.	•	vlindrical vessesure. Which clo		· ·	_	· .	y vola	itile liquid, under	high		
	(A)	Hemispherica	al	-	(B)	Torispherical					
	(C)	Ellipsoidal			(D)	Flat end					
G [A				1.5	_			OII.		
Set -	A				15				CH		

SPACE FOR ROUGH WORK