

Duration of Test · 2 Hours

Booklet No.:

EC - 15

Electronics & Communication Engineering

Duration of Test : 2 Hours		Max. Marks: 120					
	Hall Ticket No.						
Name of the Candidate :							
Date of Examination:	OMR A	nswer Sheet No. :					
Signature of the Candidate		Signature of the Invigilator					

INSTRUCTIONS

- This Question Booklet consists of 120 multiple choice objective type questions to be answered in 120 minutes.
- Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer. 2.
- Each question carries **one** mark. There are no negative marks for wrong answers. 3.
- This Booklet consists of 16 pages. Any discrepancy or any defect is found, the same may be 4. informed to the Invigilator for replacement of Booklet.
- 5. Answer all the questions on the OMR Answer Sheet using **Blue/Black ball point pen only.**
- Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully.
- OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall.
- Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall.
- No part of the Booklet should be detached under any circumstances.
- 10. The seal of the Booklet should be opened only after signal/bell is given.

ELECTRONICS & COMMUNICATION ENGINEERING (EC)

The system of equations x + 5y + 3z = 0, 5x + y - pz = 0 and x + 2y + pz = 0 has 1. nontrivial solution if p =

(D) 1

If two eigen values of $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ are 2 and 3 then the third eigen value is

(A) 2 (B) 1 (C) 2 2.

The value of $\int_{0}^{1} x^3 e^{-x^2} dx$ is equal to 3.

(A) $\frac{1}{2}$ (B) $\frac{1}{3}$ (C) $\frac{3}{2}$

The unit normal to the surface $x^2 + y^2 + 2z^2 = 26$ at the point (2,2,3) is 4.

(A) $\frac{1}{\sqrt{186}}(i+2j+3k)$

(B) $\frac{1}{\sqrt{176}}(4i+4j+12k)$

(C) 4i + 2j + 3k

(D) $\frac{1}{\sqrt{14}}(i+2j+3k)$

The integrating factor of the differential equation $(y + xy^2)dx - xdy = 0$ is 5.

(B) $\frac{1}{x^2 + y^2}$ (C) $\frac{1}{y}$

The complete integral of the partial differential equation $z = px + qy + p^2q$ is 6.

(A) $bx+ay+b^2a$ (B) $ax+by+ab^2$ (C) $ax+by+a^2b$ (D) does not exist

The residue of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ at the pole z=1 is 7.

(B) $\frac{1}{9}$ (C) $\frac{5}{9}$ (D) $\frac{2}{9}$

If the random variable Z has the probability density function $f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}$ then the 8. variance of Z is equal to

 $(A) \quad 0$

(B) $\frac{1}{2}$

(C) 2

(D) 1

If there is no repetition in the ranks and if d_i , i = 1,...,n then the rank correlation is given by 9.

(A) -1

(B) 0

(C) $1 - \frac{\sum d_i^2}{n}$ (D) $1 - \frac{6\sum d_i^2}{n(n^2 + 1)}$

Set -

2

EC

- Picard's first approximate solution of the initial value problem $\frac{dy}{dx} = x y$ with y = 110. when x = 0 is
 - (A) $1+x+\frac{x^2}{2}$ (B) $1-x+\frac{x^2}{2}$ (C) $\frac{x^2}{2}$ (D) 1+x

- 11. Consider the network graph shown in the figure. Which one of the following is NOT a tree of this graph

In the following circuit the current i_1 is **12.**

- For the transfer function $\frac{I_o(s)}{I_i(s)} = \frac{s}{s+1}$, If $i_i(t) = 4\delta(t)$ then $i_o(t)$ will be **13.**
 - (A) $\left[4\delta(t) e^{-t}u(t)\right]A$
- (B) $\left[e^{-t}u(t) \delta(t)\right]A$
- (C) $\left[4e^{-t}u(t)-4\delta(t)\right]A$

Set -

- (D) $\left[4\delta(t) 4e^{-t}u(t)\right]A$
- An independent voltage source in series with impedance $Z_S = R_S + jX_S$ delivers **14.** maximum average power to a load impedance $\boldsymbol{Z}_{\!L}$ when
 - $Z_L = R_S + jX_S$ (B) $Z_L = R_S$
- (C) $Z_L = jX_S$ (D) $Z_L = R_S jX_S$

EC

In the following circuit the voltage V_a is **15.**

Consider the circuit shown below 16.

The current ratio transfer function $\frac{I_0}{I_c}$ is

(A)
$$\frac{s(s+4)}{s^2+3s+4}$$

(B)
$$\frac{s(s+4)}{(s+1)(s+3)}$$

(C)
$$\frac{s^2 + 3s + 4}{s(s+4)}$$

(B)
$$\frac{s(s+4)}{(s+1)(s+3)}$$
(D)
$$\frac{(s+1)(s+3)}{s(s+4)}$$

- **17.** A parallel circuit has $R=2 K\Omega$, $C=50 \mu F$ and L=10 mH. The quality factor at resonance is
 - (A) 141.42
- (B) 70.7
- (C) 20
- (D) 32.3
- 18. The h parameters of the circuit shown in figure are

- (A) $\begin{bmatrix} 0.03 & 1 \\ -1 & 10 \end{bmatrix}$ (B) $\begin{bmatrix} 1 & 10 \\ 0.03 & -1 \end{bmatrix}$ (C) $\begin{bmatrix} 0.3 & 1 \\ -1 & 10 \end{bmatrix}$ (D) $\begin{bmatrix} 10 & 1 \\ -1 & 0.03 \end{bmatrix}$
- 19. The differential equation for the current i(t) in the circuit of the figure is

- (A) $2\frac{d^{2}i(t)}{dt^{2}} + 3\frac{di(t)}{dt} + i(t) = \cos t$ (B) $\frac{d^{2}i(t)}{dt^{2}} + 2\frac{di(t)}{dt} + 3i(t) = \sin t$ (C) $\frac{d^{2}i(t)}{dt^{2}} + 3\frac{di(t)}{dt} + 3i(t) = \cos t$ (D) $2\frac{d^{2}i(t)}{dt^{2}} + 3\frac{di(t)}{dt} + i(t) = \sin t$

20. The current in 9 Ω resistor using superposition theorem is

- (A) -1.4 A
- 2 A
- (C)
- (D) 1.4 A
- 21. The condition for the electrical symmetry in the two port network is
 - (A) $h_{12} = -h_{21}$
- (B) AD BC = 1 (C) $Z_{12} = Z_{21}$
- (D) A = D
- In the ac network shown in the figure, the phasor voltage \boldsymbol{V}_{AB} (in volts) is 22.

- $(A) \quad 0$
- (B) 5 \(_ 30^\circ\)
- (C) 12.5 \(_\ 30\)°
- (D) 17 L 30°
- A p-n junction diode's dynamic conductance is directly proportional to
 (A) The applied voltage
 (B) The temperature 23.

 - (C) Its current
- The thermal voltage (D)
- 24. If $\alpha = 0.981$, $I_{CO} = 6 \mu A$ and $I_{B} = 100 \mu A$ for a NPN transistor, then the value of I_{C} will be
 - (A) 2.3 mA
- (B) 3.1 mA
- (C) 4.6 mA
- (D) 5.2 mA
- 25. In an integrated circuit, the SiO₂ layer provides
 - Electrical connection to external circuit (B) Physical strength
 - Isolation (C)
- (D) Conducting path
- **26.** A PIN diode is frequently used as a
 - (A) Peak clipper
- (B) Voltage regulator
- Harmonic regulator (C)
- (D) Switching diode for frequencies up to 100 MHz range
- In the monostable multivibrator as shown in Figure, R=100 k ohm and the time delay 27. T=200 m sec. Calculate the value of C.

- $8.1 \,\mu\text{F}$
- (C) 3 mF
- (D) $1.81 \,\mu\text{F}$

5

EC

- **28.** A diode that has no depletion layers and operates with hot carriers is called _____ diode.
 - (A) Schottky
- (B) Gunn
- (C) tunnel
- (D) PIN

- **29.** A LED is basically a _____ p-n junction.
 - (A) Forward biased

(B) Reverse biased

(C) Lightly doped

- (D) Heavily doped
- **30.** For a JFET in the pinch off region as the drain voltage is increased the drain current
 - (A) Becomes zero

- (B) Abruptly decreases
- (C) Abruptly increases
- (D) Remains constant
- 31. In the circuit shown below $V_{ref} = 0$ V, $V_i = 1V_{p-p}$ sine wave and saturation voltage of ± 12 V, determine threshold voltages V_{LIT}

(A) $V_{UT} = 2 \mu mV$

(B) $V_{UT} = -24 \text{ mV}$

(C) $V_{UT} = 26 \text{ mV}$

- (D) $V_{IIT} = -26 \text{ mV}$
- **32.** A Hall effect transducer can be used to measure
 - (A) Displacement, temperature and magnetic flux
 - (B) Displacement, position and velocity
 - (C) Position, magnetic flux and pressure
 - (D) Displacement, position and magnetic flux
- **33.** For better performance of any regulator, it should have
 - (A) Lesser line Regulation
- (B) High Load Regulation
- (C) Low ripple rejection
- (D) High ripple rejection
- 34. In the Circuit shown below if $R_1 = R_2 = R_3 = R = R_F/2$, then find the value of V_0

- (A) 7 V
- (\mathbf{R}) 3 V
- (C) 6 V
- (D) 8 V

- 35. In an ideal balanced differential amplifier, the common-mode gain is
 - Very Low
 - (B) Zero
 - (C) Very High
 - Double of that of single ended difference amplifier (D)
- The values of voltage V_D across a tunnel diode corresponding to peak and valley currents **36.** are V_p and V_V respectively. The range of tunnel diode voltage V_D for which the slope of its I-V_D characteristics is negative would be
 - $(A) V_D < 0$
- $(B) \quad 0 \leq V_D < V_P \quad (C) \quad V_P \leq V_D < V_V(D) \quad V_D \geq V_V$
- The voltage gain of a given common source JFET amplifier depends on its **37.**
 - Input impedance

- Amplification factor (B)
- Dynamic drain resistance (C)
- (D) Drain load resistance
- 38. The 'pinch-off' voltage of a JFET is 5 V. Its "cut-off" voltage is
 - (A) $(5.0)^{1/2}$ V
- (B) 2.5 V
- (C) 5.0 V
- (D) $(5.0)^{3/2}$ V
- A transistor has a current gain of 0.99 in the CB mode. Its current gain in the CC mode is **39.** (A) 100
- **-**99 (B)
- (C) 1.01
- (D) 0.99

- 40. MOSFET can be used as a
 - (A) Current controlled capacitor
- (B) Voltage controlled capacitor
- Current controlled inductor (C)
- Voltage controlled inductor (D)
- 41. What is the output waveform for the circuit shown if V_i is a sinusoidal waveform?

- **42.** If both emitter-base and collector-base junctions of BJT are forward biased the transistor is in
 - (A) Active region

(B) Saturation region

(C) Cut-off region

- (D) Inverse mode
- 43. The depletion region in semiconductor p-n junction diode has
 - (A) Electrons and holes
- (B) Positive and negative ions on either side
- (C) Neither electron nor ion
- (D) No holes
- 44. In the circuit shown, for achieving good stabilisation we should have $[R_b = R_1 / / R_2]$

- (A) $\frac{R_e}{R_b} \langle \langle 1 \rangle$
- (B) $\frac{R_b}{R_a} \langle \langle 1 \rangle$
- (C) $\frac{R_b}{R_e}\rangle\rangle 1$
- (D) $\frac{R_b}{R_e} \cong 1$
- **45.** For a transconductance amplifier the ideal values of input resistance (R_i) and output resistance (R_0) are
 - (A) $R_i = \infty, R_0 = 0$

(B) $R_i = 0, R_0 = \infty$

(C) $R_i = \infty$, $R_0 = \infty$

- (D) $R_i = 0, R_0 = 0$
- **46.** The parameters of a source follower are $g_m = 3$ mA/V. r_d =30 k Ω , $R_L = 3$ k Ω . Find the output impedance
 - (A) $333 \text{ k}\Omega$
- (B) 2.7Ω
- (C) 3Ω
- (D) 300Ω
- 47. An amplifier with midband gain A = 500 has negative feedback applied of value $\beta = 1/100$. Given the upper cut-off without feedback is 60 kHz with feedback it becomes
 - (A) 10 kHz
- (B) 12 kHz
- (C) 300 kHz
- (D) 360 kHz

- **48.** An oscillator circuit is mainly
 - (A) DC to AC convertor
- (B) AC to DC convertor
- (C) DC to DC convertor
- (D) AC to AC convertor
- **49.** The resolution of a 5-bit ADC is 0.32 Volts. For an analog input of 6.4 V, what is the output of the ADC?

8

- (A) 10100
- (B) 10010
- (C) 10011
- (D) 10001

- **50.** D-FlipFlop is used as
 - (A) Delay Switch

(B) Divider circuit

(C) Toggle Switch

(D) Differentiator

Set - A

51.

51.	The number of comparators in a 6-bit Flash ADC is (A) 63 (B) 64 (C) 6 (D) 62
52.	For the logic circuit shown, the Boolean expression in its simplest form at the output A is
	X Y Z
	(A) $A=X$ (B) $A=Y$ (C) $A=Z$ (D) $A=X+Y$
53.	The range of signed decimal numbers that can be represented by 5-bit is (A) -15 to $+15$ (B) -31 to $+31$ (C) -31 to $+32$ (D) -16 to $+16$
54.	The non complement output Q_n of edge trigger JK-Flip-flop is 0. If J=1, what will be the state of output Q_{n+1} (A) Cannot determined (B) Zero (C) One (D) Race around
55.	Simplify the Boolean Expression to minimum literals $\overline{x}yz + xz$ (A) $z(x + y)$ (B) $\overline{x}y$ (C) $y(x + z)$ (D) $\overline{z}(x + y)$
56.	The minimum number of NAND gates required to implement $A + A\overline{B} + A\overline{B}C$ is equal to (A) 0 (B) 1 (C) 4 (D) 7
57.	A carry look-ahead adder is frequently used for addition, because it (A) is faster (B) is more accurate (C) uses fewer gates (D) costs less
58.	A 4-bit Mod-16 ripple counter uses a J-K flip-flop. If the propagation delay of each flip-flop is 50 ms, the maximum clock frequency is equal to (A) 20 MHz (B) 10 MHz (C) 5 MHz (D) 4 MHz
59.	A divide-by-78 counter can be realized by using (A) 6 Mod-13 counters (B) 13 Mod-6 counters (C) 1 Mod-13 counter followed by 1 Mod-6 counters (D) 13 Mod-13 counters
60.	The code used to reduce the error due to ambiguity in reading of a binary encoder is (A) Octal code (B) Excess-3 code (C) Gray code (D) BCD code
Set -	

Set -	A				10				EC	
	BIB	O stable is 'a' is real and 'a'> 1			(B) (D)					
71.	The	impulse respo	nse of	a system	is $h(n)=a$	unu(n) . Th	e condit	ion for the	e system to be	
70.		The system characterized by the equation $y(t) = ax(t) + b$ is (A) linear for any value of b (B) linear if $b > 0$ (C) linear if $b < 0$ (D) non-linear								
69.	cons	ists of cosine terms	only	er series ro	(B) (D)	sine term even harr	s only	rith half w	ave symmetry	
60	(A)		` ′		(C)		(D)	•		
68.		stem is describ	ped by	$H(z) = \begin{bmatrix} -z \end{bmatrix}$	$\frac{(z+1)}{z(z-2)(z+1)}$	$\frac{1}{2}$, the fi			tem is	
67.		sing occurs whover sampled critically sam	1	signal is	(B) (D)		-			
66.		Nyquist rate fo 200 Hz		_	$= 5 \sin 20$ (C)		os 500 πt (D)			
	(A) (C)	both $x(t)$ and $x(t)$ is causal			, ,		, ,			
65.	The	convolution of	f x (t) a	and h (t) is	given by y	$v(t) = \int_{-\infty}^{\infty} x(t)$	$(\tau)h(t-\tau)$	d au , then		
64.	inter	val between tv	vo suc	cessive sar		-			then the time	
		$2\pi A \delta(\omega)$								
63.		rier transform o							1	
62.	In sta (A) (B) (C) (D)	Increase the Decrease the Facilitate a warming the	noise r outpu vired-C	nargin of t t switching OR logic co	the gate g delay onnection	-	imarily ι	ised to		
61.	relia	t is the maxim bly, with flip-f 5.8 MHz	lop de		ns and puls		strobe si			

- 72. The DFT of a signal x (n) of length N is X (k). When X (k) is given and x (n) is computed from it, the length of x(n)
 - (A) is increased to infinity
- (B) remains N

(C) becomes 2N - 1

- (D) becomes N²
- **73.** The z transform of $x(n) = \sin \Omega n u(n)$
 - $z\sin\Omega$ $\overline{z^2 - 2z \cos \Omega + 1}$

 $\frac{z\sin\Omega}{z^2 + 2z\cos\Omega + 1}$

- (C) $\frac{z \sin \Omega}{z^2 2z \cos \Omega 1}$
- (D) $\frac{z \sin \Omega}{z^2 + 2z \cos \Omega 1}$
- If $x_1(k) = 2^n u(k)$, $x_2(k) = \delta(k)$ and $x_3(k) = x_1(k) * x_2(k)$ then $X_3(\Omega)$ is given by 74.
 - (A) $\frac{1}{1-2e^{-j\omega}}$

(B) $\frac{1}{1-2e^{j\omega}}$

(C) $\frac{1}{1+2e^{-j\omega}}$

(D) $\frac{1}{1+2e^{j\omega}}$

- $\int_{0}^{3} \delta(t-6) dt =$ *75*.
- (B) 0
- (C) $\delta(6)$
- (D) 3
- **76.** The system having input x(n) related to output y(n) as $y(n) = \cos(x(n))$ is
 - (A) causal, stable

- (B) causal, not stable
- (C) non-causal, stable
- non-causal, not stable (D)
- 77. Negative feedback in a closed loop control system does not
 - Reduce the overall gain
- (B) Reduce bandwidth
- Improve disturbance rejection
- (D) Reduce sensitivity to parameter variation
- **78.** If the unit step response of a system is a unit impulse function, then the transfer function of such a system is
 - (A) 1
- (B) s
- (C) 1/s
- (D) s^2
- The transfer function $\frac{V(s)}{I(s)}$ in the signal flow graph shown in the figure is **79.**

- (B) $\frac{s^2 s 1}{s}$ (C) $\frac{s}{s + 1/s}$ (D) $\frac{s}{s^2 + s + 1}$

80. In a linear system an input of 5 sin ωt produces an output of 10 cos ωt. The output corresponding to input 10 cos \omegat will be equal to

(A) $5 \sin \omega t$

(B) $-5 \sin \omega t$

(C) $20\cos\omega t$

(D) $-20\cos\omega t$

81. For a feedback control system of type 2, the steady state error for a ramp input is

(A) infinite

(B) constant

(C) zero

(D) indeterminate

If the characteristic equation of a system is $s^3 + 14s^2 + 56s + k = 0$ then it will be stable **82.** only if

(A) 0 < k < 784

(B) 1 < k < 64

(C) 10 > k > 660 (D) 4 < k < 784

The impulse response of an initially relaxed linear system is $e^{-2t}u(t)$. To produce a 83. response of te^{-2t} u(t), the input must be equal to

 $(A) \quad 2e^{-t}u(t) \qquad (B) \quad \frac{1}{2}e^{-2t}u(t) \qquad (C) \quad e^{-2t}u(t) \qquad (D) \quad e^{-t}u(t)$

The transfer function $\frac{(1+0.5s)}{(1+s)}$ represents a 84.

lead network

(B) lag network

(C) lag-lead network

(D) proportional controller

85. The frequency at which the Nyquist diagram crosses the negative real axis is known as

(A) gain crossover frequency

(B) phase crossover frequency

(C) damping frequency (D) natural frequency

86. Obtain the transfer function for the response shown below

(C)

(D)

87. The open loop transfer function of a unity feedback control system is given by $G(s) = \frac{k(s+2)}{s(s^2+2s+2)}$, the centroid and angle of root locus asymptotes are respectively

(A) Zero and $+90^{\circ}$, -90°

(B) -2/3 and $+60^{\circ}$, -60°

(C) Zero and $+120^{\circ}$, -120°

(D) -2/3 and -90° and -90° , $+90^{\circ}$

88.	Consider the following properties attributed to state model of a system: 1. state model is unique 2. state model can be derived from the system transfer function 3. state model can be derived from time variant systems											
	(A)	1, 2 and 3 are			(B)	1 and 2 are						
	(C)	2 and 3 are co			(D)	1 and 3 are	correct					
89.	The term reset control refers to											
	(A)	proportional	contro	1	(B)	integral con	trol					
	(C)	derivative co			(D)	none of thes	se					
90.	Whe	n zero-mean C	aussia	in process is	given as	input to LTI	system	. its output	will be			
	(A)	Zero-mean G		-	2	1	,	, 1				
	(B)	Gaussian pro		-	sarily zer	o mean						
	(C)	Zero mean pr	ocess	but not nece	essarily G	aussian						
	(D)	Depends on t	he nat	ure of h(t) o	f the syst	em						
91.	Ring	modulator is a	used to	produce								
	_	DSB-SC	(B)	-	(C)	USB	(D)	VSB				
92.	Whic	Which one of the following modulations is non-linear?										
	(A)	_				SSB						
	(C)	Frequency m			(D)	Phase modu	lation					
93.	The 1	The noise figure of a super heterodyne receiver is mostly controlled by										
	(A)					mixer stage		•				
	(C)	IF stage			(D)	detector stag	ge					
94.	Com	Companding is used in PCM to										
		Reduce Band			(B)	To maintain	unifori	m S/N ratio				
	(C)	Increase S/N	ratio		(D)	Reduce Pow	ver					
95.	An S	SSB transmitte	r has a	a 24-V dc p	ower sup	ply. On voic	e peaks	the current	achieves a			
	maxi	mum of 9.3 A	. What	t will be its l	Peak Env	elope Power	?					
	(A)	223.2 W	(B)	2.5 W	(C)	446.4 W	(D)	61.9 W				
96.	Noise performance of PAM is											
	(A)	Better than di	irect ba	ase band tra	nsmissio	n						
	(B)	(B) Poorer than direct base band transmission										
	(C)	Better than CW amplitude modulation										
		(D) Poorer than CW amplitude modulation										
		Poorer than C	vv all	1								
97.	(D) Whice	ch one of the f		-		n scheme is n	not prefe	erred when	the channel			
97.	(D) Whice			-		n scheme is r BPSK	not prefe (D)	erred when	the channel			

98.		16-ary PSK, th 160 kbps	•	ool rate is 10 k 40 kbps	kbps. T (C)		(D)	(10/16) kbps		
99.	The effect of atmospheric noise is most severe in (A) medium wave band (B) shortwave band (C) VHF band (D) microwave region									
100.	power is given for a value of M equal to									
	(A)	2	(B)	4	(C)	8	(D)	16		
101.		main advantag		OM over FDM						
	(A) (C)	Needs less po		trv	(B) (D)					
	(C)	riceus simple	ciicui	иу	(D)	Gives belief s	3/1 N 1a	110		
102.		• 1	-		-	erred in GSM (•		
	(A)	FDMA	(B) F	DMA/TDMA	. (C)	CDMA	(D)	SDMA		
103.	FDM	IA technology	efficie	ncy reduced b	ecause	e of				
	(A)	gaurd bands			(B)	adjust channe	els			
	(C)	spectrum			(D)	bandwidth				
104.	Whi	ch of the follow	ving gi	ves maximum	n proba	ability error?				
	(A)	ASK	(B)	FSK	(C)	PSK	(D)	DPSK		
105.	Dive	rgence theorer	n is ap	plicable for						
	(A)	static field or	nly	-	(B)	time varying		only		
	(C)	both static a	nd time	e varying field	s (D)	electric field	s only			
106.	A w	vave is incide	ent noi	rmally on a	good	conductor. If	the	frequency of a plane		
		_				e skin depth, w				
		increase by a remain the sa			, ,	decrease by a decrease by a				
	(0)	Temam the su	.1110		(D)	decrease by a	. ractor	01 2		
107.		_	_			vector fields a				
	(A) (C)	perpendicular E is in the dir			` ′	parallel in spa H is in the di		of wave travel		
	` '				, ,					
108.	In a c (A)		uctor bo (B)	•		ne tangential co Zero	-	ent of electric field is Infinity		
	(A)	Lt	(D)	²¹³ t	(C)	ZCIO	(D)	illillity		
109.				rminated in its	chara	cteristic imped	lance,	which of the following		
	state: (A)	ment is incorre It is a smooth								
	(A) (B)			tion between i	nagnet	tic and electric	field i	s not equal		
	(C)	Standing way			•					
	(D)	Efficiency of	transn	nission of pow	er is n	naxımum				
Set -	A				14			EC		

110.	Transverse electric wave travelling in z- direction satisfies (A) $E_z = 0$; $H_z = 0$ (B) $E_z = 0$; $H_z \neq 0$									
		$E_z \neq 0; H_z = 0$				$E_z \neq 0; H_z \neq 0$				
111.					aracteristic impedance 50 ohms and the line in the VSWR produced in the transmission line will					
	(A)	+1	(B)	zero	(C)	infinity	(D)	-1		
112.	(A)	direction of en intensity of el	nergy		(B) (D)					
113.		ollow rectangula High pass filto Band pass filt	er	eguide acts as	(B) (D)	-		ator		
114.		ry small thin w 0Ω		length λ/100 h 0.08 Ω		adiation resista 7.9Ω		790 Ω		
115.	(A)	Oouble stub matching eliminates standing waves on the A) Source side of the left stub (B) Load side of the right stub (C) Both sides of the stub (D) In between the two stubs								
116.		characteristic in Real	_	nce of a distor		ess line is Capacitive	(D)	Complex		
117.	(A)	intersection of a average volta maximum vo	ge on	the line	(B)	minimum vol	tage o	n the line	n of	
118.	In Re (A) (C)	ectangular Wav Number of ha Number of ze	lf wav	e patterns	(B) (D)		ll wav	_		
119.		circularly polareen E_z and E_v i		uniform wav	e, trav	elling in x-dir	ection	, the phase	difference	
	(A)	30°	(B)	90°	(C)	45°	(D)	180°		
120.	The (A)	velocity of an E higher	EM wa	ave in a condu	ctor w	hen compared lower	to a di	electric is		
	(C)	same velocity			(D)	cannot be dec	ided			
Set - [A				15	_			EC	

SPACE FOR ROUGH WORK