

Booklet No. :

$EC - 15$

Electronics & Communication Engineering

Duration of Test : 2 Hours Max. Marks : 120

Name of the Candidate :

Date of Examination : OMR Answer Sheet No. :

Signature of the Candidate Signature of the Invigilator

INSTRUCTIONS

- 1. This Question Booklet consists of **120** multiple choice objective type questions to be answered in **120** minutes.
- 2. Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer.
- 3. Each question carries **one** mark. There are no negative marks for wrong answers.
- 4. This Booklet consists of **16** pages. Any discrepancy or any defect is found, the same may be informed to the Invigilator for replacement of Booklet.
- 5. Answer all the questions on the OMR Answer Sheet using **Blue/Black ball point pen only.**
- 6. Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully.
- 7. OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall.
- 8. Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall.
- 9. No part of the Booklet should be detached under any circumstances.
- 10. The seal of the Booklet should be opened only after signal/bell is given.

EC-15-A

ELECTRONICS & COMMUNICATION ENGINEERING (EC)

Set \cdot **A 2** EC **1.** The system of equations $x + 5y + 3z = 0$, $5x + y - pz = 0$ and $x + 2y + pz = 0$ has nontrivial solution if $p =$ (A) 0 (B) $1/2$ (C) 2 (D) 1 **2.** If two eigen values of 2 2 1 1 3 1 1 2 2 *A* $|2 \t2 \t1|$ $=\begin{vmatrix} 1 & 3 & 1 \end{vmatrix}$ $\begin{bmatrix} 1 & 2 & 2 \end{bmatrix}$ are 2 and 3 then the third eigen value is (A) 2 (B) 1 (C) 3 (D) 7 **3.** The value of \int 0 ∞ $x^3 e^{-x^2} dx$ is equal to (A) 1 2 (B) 1 $\overline{3}$ (C) 3 2 (D) 2 3 **4.** The unit normal to the surface $x^2 + y^2 + 2z^2 = 26$ at the point (2, 2, 3) is (A) $\frac{1}{2}$ (i + 2 j + 3k) 186 $i + 2j + 3k$ (B) $\frac{1}{\sqrt{1+i}}(4i+4j+12k)$ 176 $i + 4j + 12k$ (C) $4i + 2j + 3k$ $\frac{1}{\sqrt{2}}(i+2j+3k)$ 14 $i + 2j + 3k$ **5.** The integrating factor of the differential equation $(y + xy^2)dx - xdy = 0$ is (A) $\frac{1}{r^2}$ *x* (B) $\frac{1}{x^2 + y^2}$ 1 $\frac{1}{x^2 + y^2}$ (C) 1 *y* (D) $\frac{1}{n^2}$ 1 *y* **6.** The complete integral of the partial differential equation $z = px + qy + p^2q$ is (A) $bx+ay+b^2a$ (B) $ax+by+ab^2$ (C) $ax+by+a^2b$ (D) does not exist **7.** The residue of the function 2 $(z) = \frac{z}{(z-1)^2}$ $(z-1)^2(z+2)$ $f(z) = \frac{z}{z-1}$ $(z-1)^2(z)$ = $\frac{z}{(z-1)^2(z+2)}$ at the pole $z=1$ is (A) $\frac{1}{2}$ 3 (B) $\frac{1}{2}$ 9 (C) $\frac{5}{3}$ 9 (D) $\frac{2}{3}$ 9 **8.** If the random variable Z has the probability density function 1_{72} $(z) = \frac{1}{\sqrt{2}} e^{-\frac{1}{2}}$ 2 $f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z}$ $=\frac{1}{\sqrt{2}}e^{-\frac{1}{2}z^2}$ then the variance of Z is equal to (A) 0 (B) $\frac{1}{2}$ 2 (C) 2 (D) 1 **9.** If there is no repetition in the ranks and if d_i , $i = 1, ..., n$ then the rank correlation is given by (A) −1 (B) 0 2 $1-\frac{\sum d_i}{\sum d_i}$ *n* $-\frac{\sum d_i^2}{\sum (D)}$ (D) $1-\frac{6\sum d_i^2}{\sum (n^2+1)}$ 2 6 1 (n^2+1) *i d n n* − + ∑

- **10.** Picard's first approximate solution of the initial value problem $\frac{dy}{dx} = x y$ *dx* $= x - y$ with $y = 1$ when $x = 0$ is
- (A) 2 1 2 $+x+\frac{x^2}{2}$ (B) 2 1 2 $-x+\frac{x^2}{2}$ (C) 2 2 $rac{x^2}{2}$ (D) $1+x$
- **11.** Consider the network graph shown in the figure. Which one of the following is NOT a tree of this graph

12. In the following circuit the current i_1 is

$$
30 \text{ mA} \longrightarrow \text{MA} \longrightarrow \
$$

13. For the transfer function
$$
\frac{I_o(s)}{I_i(s)} = \frac{s}{s+1}
$$
, If $i_i(t) = 4\delta(t)$ then $i_o(t)$ will be

(A)
$$
\left[4\delta(t) - e^{-t}u(t)\right]A
$$

\n(B) $\left[e^{-t}u(t) - \delta(t)\right]A$
\n(C) $\left[4e^{-t}u(t) - 4\delta(t)\right]A$
\n(D) $\left[4\delta(t) - 4e^{-t}u(t)\right]A$

14. An independent voltage source in series with impedance $Z_S = R_S + jX_S$ delivers maximum average power to a load impedance Z_L when

(A)
$$
Z_L = R_S + jX_S(B)
$$
 $Z_L = R_S$ (C) $Z_L = jX_S$ (D) $Z_L = R_S - jX_S$

15. In the following circuit the voltage V_a is

$$
2 A \underbrace{\left(\begin{array}{c}\n\end{array}\right)}_{\text{100 }\Omega} \xrightarrow{\left(\begin{array}{c}\n\end{array}\right)}_{\text{100 }\Omega} \underbrace{\left(\begin{array}{c}\n\end{array}\right)}_{\text{100 }\Omega} + \underbrace{\left(\begin{array}{c}\n\end{array}\right)}_{\text{100 }\Omega} \xrightarrow{\left(\begin{array}{c}\n\end{array}\right)}_{\text{250 }\Omega}
$$
\n
$$
\text{Set} \cdot \boxed{\text{A}} \qquad \qquad \text{100 }\qquad \text{32 V} \qquad \qquad \text{(C) } \begin{array}{c}\n\text{(D) 40 V} \\
\text{(E) 32 V}\n\end{array} \qquad \text{101 } \text{102 } \text{103 } \text{104 } \text{105 } \text{106 } \text{107 } \text{108 } \text{108 } \text{108 } \text{109 } \text{100 } \text{100 } \text{100 } \text{100 } \text{101 } \text{100 } \text{101 } \text{100 } \text{101 } \text{101 } \text{102 } \text{103 } \text{106 } \text{106 } \text{107 } \text{108 } \text{108 } \text{108 } \text{100 } \text{100 } \text{101 } \text{101 } \text{101 } \text{102 } \text{101 } \text{102 } \text{103 } \text{104 } \text{105 } \text{106 } \text{107 } \text{108 } \text{108 } \text{108 } \text{109 } \text{100 } \text{100 } \text{101 } \text{101 } \text{101 } \text{102 } \text{101 } \text{102 } \text{103 } \text{104 } \text{105 } \text{106 } \text{107 } \text{108 } \text{108 } \text{109 } \text{100 } \text{101 } \text{101 } \text{101 } \text{102 } \text{101 } \text{103 } \text{103 } \text{101 } \text{103 } \text{104 } \
$$

16. Consider the circuit shown below

The current ratio transfer function $\frac{I_0}{I_0}$ $\frac{1}{I_s}$ is

- (A) $s^2 + 3s + 4$ $s(s + 4)$ $^{2}+3s+$ + (B) $(s+1)(s+3)$ $s(s+4)$ $+1)(s+$ + (C) $s(s + 4)$ $s^2 + 3s + 4$ + $+3s +$ (D) $s(s+4)$ $(s+1)(s+3)$ + $+1)(s+$
- 17. A parallel circuit has $R=2 K\Omega$, $C=50 \mu F$ and $L=10 \mu F$. The quality factor at resonance is (A) 141.42 (B) 70.7 (C) 20 (D) 32.3
- **18.** The h parameters of the circuit shown in figure are

19. The differential equation for the current i(t) in the circuit of the figure is

20. The current in 9 Ω resistor using superposition theorem is

(A)
$$
-1.4
$$
 A (B) 2 A (C) 1 A (D) 1.4 A

21. The condition for the electrical symmetry in the two port network is

(A) $h_{12} = -h_{21}$ (B) AD – BC = 1 (C) $Z_{12} = Z_{21}$ (D) A = D

22. In the ac network shown in the figure, the phasor voltage V_{AB} (in volts) is

\n- (A) 0
\n- (B)
$$
5 \perp 30^{\circ}
$$
\n- (C) $12.5 \perp 30^{\circ}$
\n- (D) $17 \perp 30^{\circ}$
\n- 23. A p-n junction diode's dynamic conductance is directly proportional to
\n- (A) The applied voltage
\n- (B) The temperature
\n

- (C) Its current (D) The thermal voltage
- **24.** If $\alpha = 0.981$, $I_{CO} = 6 \mu A$ and $I_B = 100 \mu A$ for a NPN transistor, then the value of I_C will be (A) 2.3 mA (B) 3.1 mA (C) 4.6 mA (D) 5.2 mA
- **25.** In an integrated circuit, the SiO_2 layer provides (A) Electrical connection to external circuit (B) Physical strength
(C) Isolation (D) Conducting path (D) Conducting path
- **26.** A PIN diode is frequently used as a (A) Peak clipper (B) Voltage regulator
(C) Harmonic regulator (D) Switching diode f (D) Switching diode for frequencies up to 100 MHz range
- **27.** In the monostable multivibrator as shown in Figure, R=100 k ohm and the time delay T=200 m sec. Calculate the value of C.

- 28. A diode that has no depletion layers and operates with hot carriers is called \qquad diode. (A) Schottky (B) Gunn (C) tunnel (D) PIN
- **29.** A LED is basically a _______ p-n junction.
	- (A) Forward biased (B) Reverse biased
	- (C) Lightly doped (D) Heavily doped
- **30.** For a JFET in the pinch off region as the drain voltage is increased the drain current
	- (A) Becomes zero (B) Abruptly decreases
	- (C) Abruptly increases (D) Remains constant
- **31.** In the circuit shown below $V_{ref} = 0$ V, $V_i = 1V_{p-p}$ sine wave and saturation voltage of \pm 12 V, determine threshold voltages V_{UT}

- (A) $V_{UT} = 2 \mu mV$ (B) $V_{UT} = -24 mV$
- (C) $V_{UT} = 26 \text{ mV}$ (D) $V_{UT} = -26 \text{ mV}$
- **32.** A Hall effect transducer can be used to measure
	- (A) Displacement, temperature and magnetic flux
	- (B) Displacement, position and velocity
	- (C) Position, magnetic flux and pressure
	- (D) Displacement, position and magnetic flux
- **33.** For better performance of any regulator, it should have
	- (A) Lesser line Regulation (B) High Load Regulation
	- (C) Low ripple rejection (D) High ripple rejection

34. In the Circuit shown below if $R_1 = R_2 = R_3 = R = R_F/2$, then find the value of V_0

Set \cdot **A b 6 b EC**

- **35.** In an ideal balanced differential amplifier, the common-mode gain is
	- (A) Very Low
	- (B) Zero
	- Very High
	- (D) Double of that of single ended difference amplifier
- **36.** The values of voltage V_D across a tunnel diode corresponding to peak and valley currents are V_P and V_V respectively. The range of tunnel diode voltage V_D for which the slope of its I- V_D characteristics is negative would be (A) $V_D < 0$ < 0 (B) $0 \le V_D < V_P$ (C) $V_P \le V_D < V_V(D)$ $V_D \ge V_V$ **37.** The voltage gain of a given common source JFET amplifier depends on its (A) Input impedance (B) Amplification factor (A) Input impedance (B) Amplification factor

(C) Dynamic drain resistance (D) Drain load resistance (C) Dynamic drain resistance **38.** The 'pinch-off' voltage of a JFET is 5 V. Its "cut-off" voltage is

(A) $(5.0)^{1/2}$ V (B) 2.5 V (C) 5.0 V (D) $(5.0)^{3/2}$ V (A) (5.0)^{1/2} V **39.** A transistor has a current gain of 0.99 in the CB mode. Its current gain in the CC mode is (A) 100 (B) 99 (C) 1.01 (D) 0.99
- (A) 100 (B) 99 (C) 1.01 (D) 0.99
- **40.** MOSFET can be used as a
	- (A) Current controlled capacitor (B) Voltage controlled capacitor
	- (C) Current controlled inductor (D) Voltage controlled inductor
- **41.** What is the output waveform for the circuit shown if V_i is a sinusoidal waveform ?

Set - A 7 EC

ωt

ωt

- **42.** If both emitter-base and collector-base junctions of BJT are forward biased the transistor is in
	- (A) Active region (B) Saturation region
		-
	- (C) Cut-off region (D) Inverse mode
- **43.** The depletion region in semiconductor p-n junction diode has
	-
	- (A) Electrons and holes (B) Positive and negative ions on either side
	- (C) Neither electron nor ion (D) No holes
- **44.** In the circuit shown, for achieving good stabilisation we should have $[R_b = R_1 / R_2]$

- **45.** For a transconductance amplifier the ideal values of input resistance (R_i) and output resistance(R_0) are
- (A) $R_i = \infty$, R_0 $R_i = 0, R_0 = \infty$
- (C) $R_i = \infty$, R_0 $= \infty$ (D) $R_i = 0, R_0 = 0$
- **46.** The parameters of a source follower are $g_m = 3$ mA/V. $r_d = 30$ kΩ, $R_L = 3$ kΩ. Find the output impedance (A) $333 \text{ k}\Omega$ (B) 2.7Ω (C) 3Ω (D) 300Ω
- **47.** An amplifier with midband gain A = 500 has negative feedback applied of value $\beta = 1/100$. Given the upper cut-off without feedback is 60 kHz with feedback it becomes (A) 10 kHz (B) 12 kHz (C) 300 kHz (D) 360 kHz
- **48.** An oscillator circuit is mainly (A) DC to AC convertor (B) AC to DC convertor
	-
	- (C) DC to DC convertor (D) AC to AC convertor
- **49.** The resolution of a 5-bit ADC is 0.32 Volts. For an analog input of 6.4 V, what is the output of the ADC ? (A) 10100 (B) 10010 (C) 10011 (D) 10001
	-

- **50.** D-FlipFlop is used as
	- (A) Delay Switch (B) Divider circuit
	- (C) Toggle Switch (D) Differentiator

- -
-
-
-
-

- **51.** The number of comparators in a 6-bit Flash ADC is (A) 63 (B) 64 (C) 6 (D) 62
- **52.** For the logic circuit shown, the Boolean expression in its simplest form at the output A is

Set - A 11 EC 72. The DFT of a signal x (n) of length N is X (k). When X (k) is given and x (n) is computed from it, the length of $x(n)$ (A) is increased to infinity (B) remains N (C) becomes $2N - 1$ (D) becomes N^2 **73.** The z transform of $x(n) = \sin \Omega n$ u(n) (A) $z^2 - 2z \cos \Omega + 1$ z sin $2 - 2z \cos \Omega +$ Ω (B) $2z \cos \Omega + 1$ sin $2 + 2z \cos \Omega +$ Ω *z z* (C) $z^2 - 2z \cos \Omega - 1$ z sin $2 - 2z \cos \Omega -$ Ω (D) $z^2 + 2z \cos \Omega - 1$ z sin $2 + 2z \cos \Omega -$ Ω **74.** If $x_1(k) = 2^n u(k), x_2(k) = \delta(k)$ and $x_3(k) = x_1(k) * x_2(k)$ then $X_3(\Omega)$ is given by (A) $\frac{1}{1-2e^{-j\omega}}$ 1 $-2e^{-}$ (B) $\frac{1}{1-2e^{j\omega}}$ 1 − (C) $\frac{1}{1+2e^{-j\omega}}$ 1 $+2e^{-}$ (D) $\frac{1}{1+2e^{j\omega}}$ 1 + **75.** $\int \delta(t-$ 5 2 $\delta(t-6)dt =$ (A) 1 (B) 0 (C) $\delta(6)$ (D) 3 **76.** The system having input $x(n)$ related to output $y(n)$ as $y(n) = \cos(x(n))$ is (A) causal, stable (B) causal, not stable (C) non-causal, stable (D) non-causal, not stable **77.** Negative feedback in a closed loop control system does not (A) Reduce the overall gain (B) Reduce bandwidth (C) Improve disturbance rejection (D) Reduce sensitivity to parameter variation **78.** If the unit step response of a system is a unit impulse function, then the transfer function of such a system is (A) 1 (B) s (C) $1/s$ (D) s² **79.** The transfer function $\frac{V(s)}{V(s)}$ $\overline{I(s)}$ $\frac{V(s)}{V(s)}$ in the signal flow graph shown in the figure is (A) $s^2 + s + 1$ s 2 2 $+ s +$ (B) s $s^2 - s - 1$ (C) $s + 1/s$ s + (D) $s^2 + s + 1$ s $^{2} + s +$ > $I(s)$. > > –s $-1/s$ $V(s)$

- **80.** In a linear system an input of 5 sin ωt produces an output of 10 cos ωt. The output corresponding to input 10 cos ωt will be equal to (A) $5 \sin \omega t$ (B) $-5 \sin \omega t$ (C) $20 \cos \omega t$ (D) $-20 \cos \omega t$
- **81.** For a feedback control system of type 2, the steady state error for a ramp input is (A) infinite (B) constant (C) zero (D) indeterminate
- **82.** If the characteristic equation of a system is $s^3 + 14s^2 + 56s + k = 0$ then it will be stable only if (A) $0 < k < 784$ (B) $1 < k < 64$ (C) $10 > k > 660$ (D) $4 < k < 784$
- **83.** The impulse response of an initially relaxed linear system is $e^{-2t}u(t)$. To produce a response of $te^{-2t} u(t)$, the input must be equal to

(A) $2e^{-t}u(t)$ (B) $\frac{1}{2}e^{-2t}u(t)$ 2 $\frac{1}{2}e^{-2t}u(t)$ (C) $e^{-2t}u(t)$ (D) $e^{-t}u(t)$

- **84.** The transfer function $(1 + s)$ $(1+0.5s)$ + $\frac{+0.5s}{1}$ represents a
	- (A) lead network (B) lag network
	- (C) lag-lead network (D) proportional controller
- **85.** The frequency at which the Nyquist diagram crosses the negative real axis is known as
	- (A) gain crossover frequency (B) phase crossover frequency
	- (C) damping frequency (D) natural frequency
- **86.** Obtain the transfer function for the response shown below

- **87.** The open loop transfer function of a unity feedback control system is given by $G(s) = \frac{k(s+2)}{s(s^2+2s+2)}$ $=\frac{k(s+2)}{k(s+2)}$, the centroid and angle of root locus asymptotes are respectively
	- (A) Zero and + 90°, –90° (B) –2/3 and + 60°, –60°
	- (C) Zero and $+120^{\circ}$, -120° (D) $-2/3$ and -90° and -90° , $+90^{\circ}$

Set - A 12 EC

-
-
-
-

Set - A 15 EC

SPACE FOR ROUGH WORK