

Booklet No.:

EE - 15

Electrical Engineering

Duration of Test : 2 Hours		Max. Marks: 120
	Hall Ticket No.	
Name of the Candidate :		
Date of Examination :	OMR A	answer Sheet No. :
Signature of the Candidate		Signature of the Invigilator

INSTRUCTIONS

- 1. This Question Booklet consists of **120** multiple choice objective type questions to be answered in **120** minutes.
- 2. Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer.
- 3. Each question carries **one** mark. There are no negative marks for wrong answers.
- 4. This Booklet consists of **16** pages. Any discrepancy or any defect is found, the same may be informed the Invigilator for replacement of Booklet.
- 5. Answer all the questions on the OMR Answer Sheet using **Blue/Black ball point pen only.**
- 6. Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully.
- 7. OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall.
- 8. Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall.
- 9. No part of the Booklet should be detached under any circumstances.
- 10. The seal of the Booklet should be opened only after signal/bell is given.

EE-15-A

ELECTRICAL ENGINEERING (EE)

1. If
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$$
, then which one of the following is true?

(A)
$$A^3 - 5A^2 + 7A + 3I = 0$$

(A)
$$A^3 - 5A^2 + 7A + 3I = 0$$
 (B) $A^3 + 5A^2 + 7A - 3I = 0$ (C) $A^3 - 5A^2 + 7A - 3I = 0$ (D) $A^3 + 5A^2 + 7A + 3I = 0$

(C)
$$A^3 - 5A^2 + 7A - 3I = 0$$

(D)
$$A^3 + 5A^2 + 7A + 3I = 0$$

The directional derivative of xy + yz + zx at the point (1, 2, 0) in the direction of 2. i + 2j + 2k is

(A)
$$\frac{10}{\sqrt{14}}$$
 (B) $\frac{10}{\sqrt{3}}$ (C) $\frac{10}{3}$ (D) $\frac{10}{14}$

(B)
$$\frac{10}{\sqrt{3}}$$

(C)
$$\frac{10}{3}$$

(D)
$$\frac{10}{14}$$

If u = xy, v = x + y, then $\frac{\partial(u, v)}{\partial(x, y)} =$ 3.

(A)
$$(x - y) (y - z) (z - x)$$

(B)
$$x + y + z$$

$$(C)$$
 xyz

(D)
$$(x-y)(z-y)(z-x)$$

The P.I. of $(D^2 + 16)y = \cos 4x$ is 4.

(A)
$$-\frac{x}{8}\cos 4x$$
 (B) $\frac{x}{8}\sin 4x$

(B)
$$\frac{x}{8} \sin 4x$$

(C)
$$x \cos 4x$$

(C)
$$x \cos 4x$$
 (D) $x \sin 4x$

The half range Fourier sine series of f(x) = 1, $0 < x < \pi$ is 5.

(A)
$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n - 1}{n\pi} \sin nx$$

(A)
$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n - 1}{n\pi} \sin nx$$
 (B) $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n + 1}{n\pi} \sin nx$

(C)
$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n\pi} \sin nx$$

(C)
$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n\pi} \sin nx$$
 (D) $f(x) = \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{n\pi} \sin nx$

The solution of $3\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0$, $u(x, 0) = 4e^{-x}$ is 6.

(A)
$$u(x, y) = 4e^{x - \frac{3}{2}y}$$

(B)
$$u(x, y) = 4e^{-x - \frac{3}{2}y}$$

(C)
$$u(x, y) = 4e^{-x + \frac{3}{2}y}$$

(D)
$$u(x, y) = 4e^{-x} + y$$

7. $\int \frac{(z^2 + 1)}{(z^2 - 1)} dz$, where c : |z - 1| = 1 is

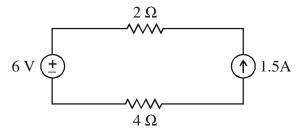
- (B) πi/2 (C) 2πi (D) -πi

If $f(x) = \begin{cases} k(1-x^2) & \text{for } 0 < x < 1 \\ 0 & \text{elsewhere} \end{cases}$ represents the probability density of a random 8. variable X, then k =

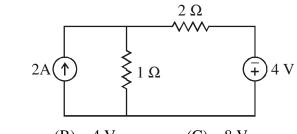
- (A) 2/3
- (B) 3/2
- (C) 1/2
- (D) 1

The correlation coefficient of twelve pairs of data having $\Sigma x = 730$, $\Sigma y = 1017$, 9. $\Sigma x^2 = 44932$, $\Sigma y^2 = 86801$ and $\Sigma xy = 62352$ is

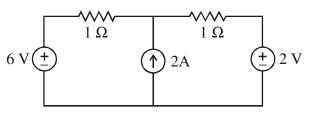
- (A) 0.5674
- (C) 0.83
- (D) 0.857


Set - A

2

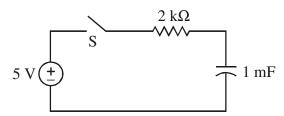

 $\mathbf{E}\mathbf{E}$

- 10. The solution of y' = x + y, y(0) = 1 at x = 0.2, using Euler's method, is
 - (A) 1.24
- (B) 0.2
- (C) 1.02
- (D) 1.1


- 11. A tree of a network graph consists of
 - (A) (n-1) nodes
 - (B) n branches
 - (C) one or two nodes left in isolated position
 - (D) no closed paths
- 12. The power delivered by the current source in the circuit shown in Figure.

- (A) 9 W
- (B) 12 W
- (C) 18.5 W
- (D) 22.5 W
- 13. The voltage across the 2 Ω resistor in the circuit shown in Figure.

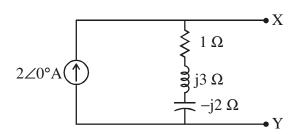
- (A) 2 V
- (B) 4 V
- (C) 8 V
- (D) 12 V
- **14.** The current through 6 V source in the circuit shown in Figure.


- (A) 0.5 A
- (B) 1.0 A
- (C) 1.5 A
- (D) 2 A

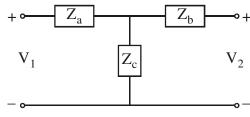
Set - A

3

EE


15. The current through the circuit shown in Figure, if switch, S is closed at time, t = 0

16. The damping ratio of an under damped R-L-C circuit with step response is


- (A) $\frac{R}{\sqrt{L/C}}$ (B) $\frac{R}{2\sqrt{L/C}}$ (C) $2R\sqrt{L/C}$ (D) $\frac{R}{2\sqrt{C/L}}$

17. The Thevenin equivalent across X-Y for the circuit shown below:

- (A) $\sqrt{2} \angle 45^{\circ} \text{ V}, (1+\text{j}1) \Omega$
- (B) $2 ∠45^{\circ} V, (1+j1) Ω$
- (C) $2\sqrt{2} \angle 45^{\circ} \text{ V}, (1+\text{j}1) \Omega$

18. The Z parameters of Tee network shown in Figure.

- (A) $\begin{bmatrix} Z_a + Z_c & Z_c \\ Z_c & Z_b + Z_c \end{bmatrix}$ (B) $\begin{bmatrix} Z_a Z_c & Z_c \\ Z_c & Z_b Z_c \end{bmatrix}$
- (C) $\begin{bmatrix} Z_a + Z_c & -Z_c \\ -Z_c & Z_b + Z_c \end{bmatrix}$ (D) $\begin{bmatrix} Z_c Z_a & Z_c \\ Z_c & Z_c Z_a \end{bmatrix}$

19.	In a 3-phase balanced system the phase voltages with a-b-c phase sequence are
	$V_{an} = V_p \angle 0^\circ$ and $V_{bn} = V_p \angle -120^\circ$. The line voltages are
	(A) $V_{ab} = V_L \angle 30^\circ$, $V_{bc} = V_L \angle -90^\circ$ (B) $V_{ab} = V_L \angle 30^\circ$, $V_{bc} = V_L \angle 150^\circ$
	(C) $V_{ab} = V_L \angle 30^\circ$, $V_{bc} = V_L \angle 90^\circ$ (D) $V_{ab} = V_L \angle -30^\circ$, $V_{bc} = V_L \angle -150^\circ$
20.	Two parallel conductors are separated by a distance, d carrying a current, I in the same direction. The magnetic field along a line running parallel to the conductors and midway between them is

- (A) zero
- (B) proportional to I
- (C) proportional to d
- (D) proportional to the permeability of the medium.
- 21. A coil of N turns is placed in a medium of reluctance, S. The inductance is

(A)
$$\frac{N}{S}$$
 (B) $\frac{N^2}{S}$ (C) $\frac{N}{S^2}$

- 22. A dielectric material is said to be linear if the electric flux density varies
 - (A) non-linearly with electric field (B) linearly with electric field
 - (C) linearly with the permittivity (D) non-linearly with electric potential
- **23.** The capacitance of a coaxial conductor of length L, having inner radius, a, outer radius, b and permittivity, €

(A)
$$\frac{2\pi \in L}{\ln \frac{a+b}{2}}$$
 (B) $\frac{2\pi \in L}{\ln \frac{a}{b}}$ (C) $\frac{2\pi \in L}{\ln \frac{b}{a}}$ (D) $\frac{2\pi \in L}{(a+b)/2}$

- 24. If $x_1(t)$ is an odd signal and $x_2(t)$ is an even signal then the condition to prove that the product of the signals, y(t) is
 - (A) odd and y(t) = -y(t)
- (B) even and y(-t) = y(t)
- (C) odd and y(-t) = -y(t)
- (D) even and -y(t) = y(t)
- 25. A continuous time signal x(t) is sampled and the periodic impulse train of period τ is given by $s(t) = \sum_{n=-\infty}^{\infty} \delta(t n\tau)$. If ω_s is the sampling frequency, then the Fourier Transform

(A)
$$S(j\omega) = \frac{2\pi}{\tau} \sum_{n=-\infty}^{\infty} \delta(k\omega_s)$$
 (B) $S(j\omega) = 2\pi \sum_{n=-\infty}^{\infty} \delta(k\omega_s)$

(C)
$$S(j\omega) = \frac{2\pi}{\tau} \sum_{n=-\infty}^{\infty} \delta(\omega - k\omega_s)$$
 (D) $S(j\omega) = \frac{2\pi}{\tau} \sum_{n=-\infty}^{\infty} \delta(\omega_s)$

26. The current through a circuit is expressed as, $i(t) = 3e^{-2t} - 2e^{-t}$. The corresponding transfer function of the circuit is

(A)
$$\frac{s+1}{s^2+3s+2}$$
 (B) $\frac{s-1}{s^2+3s+2}$ (C) $\frac{5s-1}{s^2+3s+2}$ (D) $\frac{5s+1}{s^2+3s+2}$

27.	The Z	Z-Transform of	f a disc	crete time sign	al x(n)	is				
	(A)	$\sum_{n=0}^{\infty} x(n) z^{-n}$	(B)	$\sum_{n=-\infty}^{\infty} x(n) z^{-1}$	(C)	$\sum_{n=-\infty}^{\infty} x(n) z^{-n}$	(D)	$\sum_{n=1}^{\infty} x(n)$	z^{-n}	
28.	volta	magnetizing rege side is 35 Ω 0.35 Ω	. The		actano	_	voltage			low
29.		aximum efficion	•	f a single-phas lagging			ad pow (D)		or is	
30.	facto	per unit I^2R 1 r is 0.1 and 0.0 -0.02	3, resp		per un	it regulation of	the tr	ansform		ower
31.	In sta (A) (C)	r-star connection star connected neutral condu	l tertia	•		delta connecte	ed terti	ary win	dings	sing
32.	result (A)	to 3-phase trar t is circulating cu dead short-cir	rrent o	_		no circulating	g curre	nt on no	o-load	, the
33.	comr	6-pole wave w mutator segmen 11and 35	nts, res			per of conductors 13 and 35			-	and
34.	The i	number of brus	hes in (B)	-	ole-lay (C)	-	c mac (D)			
35.	(A)	provide mech balance the fla provide path f overcome arm	anical ux pro for the	balance duced by the p circulating cur	oles					
36.	480	demagnetizing and the curre nanical degrees 9°	nt in	-	_					
37.		dc shunt genera above the OC tangent to the	ntor cri	tical field circ	` /		he line	drawn	of OCC	
38.		0 V dc motor winding resists 10 Ω				_				f the
Set -	A				6					EE

39.	 (A) are equal (B) rotate with slip speed (C) are opposite but rotate with synchronous speed (D) rotate with the same rotor speed
40.	The mechanical power developed and the rotor copper losses of a 3-phase induction motor in terms of slip, s are in the ratio of (A) $1-s:s$ (B) $s:1-s$ (C) $1+s:s$ (D) $(1-s)/s:s$
41.	In a single-phase induction motor the slip with respect to forward and backward rotating magnetic fields, respectively, are (A) s and $(1-s)$ (B) s and $(1+s)$ (C) s and $(2-s)$ (D) $(1-s)$ and $(2-s)$
42.	The number of slip-rings in a turbo-alternator are (A) zero (B) 2 (C) 3 (D) 4
43.	To eliminate n^{th} harmonic voltage in the generated voltage of a 3-phase synchronous generator, the coil span of the stator winding is (A) π/n (B) $\pi (1 - 1/n)$ (C) $\pi (1 + 1/n)$ (D) $n \pi (1 - 1/n)$
44.	The ratio of air-gap line voltage from open-circuit characteristic and armature current from short-circuit characteristic for a particular value of the field current in a synchronous generator is (A) synchronous reactance (B) synchronous impedance (C) unsaturated synchronous reactance (D) unsaturated synchronous impedance
45.	When two synchronous machines are connected in parallel the synchronizing power tends to (A) accelerate the faster machine (B) retard the faster machine (C) retards the slower machine (D) pull the faster machine out of step
46.	The maximum power transferred by a 3-phase, 400 V synchronous generator with synchronous reactance of 5 Ω and at an excitation voltage of 650 V is (A) 52 kW (B) 78 kW (C) 104 kW (D) $52\sqrt{3}$ kW
47.	The power factor of a synchronous machine is controlled by (A) connected load (B) generated voltage (C) field current (D) load angle
48.	In a non-salient pole synchronous generator $\frac{VE}{X_d}\cos\delta - \frac{V^2}{X_d}$, where V = generated voltage, E = back emf, X_d = direct axis synchronous reactance, and δ = load angle, represents (A) active power (B) reactive power (C) reluctance power
Set -	A 7 EE

Set -	A		8				EE		
	(D)	second partial derivative	elements						
	(C)	first partial derivative element	ments						
	(A) (B)	upper triangular constant	elements						
57.	In th (A)	e load flow analysis, a Jaco constant elements	bian is a matri	x of size $n \times n$	with				
	(D)	Z_{bus} is symmetric, then	Y _{bus} 1s transpos	e of Z _{bus}					
	(C)	045		C 77					
	(B)	Z_{bus} is diagonal, Y_{bus} is							
		Z_{bus} is symmetric, Y_{bus}							
56.		necessary condition for an		Y _{bus} matrice	s is, if				
5 (
55.	per ı	base kV and base MVA are unit impedance of the origin 0.25 (B) 0.5	nal circuit elem	nent is			u.s. The		
					1	1			
	(A) (B) (C)	reduce voltage fluctuation	ns y oltage						
54.	The	overhead radial distribution	n is preferred to)					
53.	shea	minimum potential gradie th diameter, D and the pote $\frac{2V}{D\log_e \frac{D}{d}}$ (B) $\frac{2}{d\log_e \frac{D}{d}}$	ential difference	e between the	conduct	or and sheath,			
		-							
		(300 - j 105) A (60 - j 75) A	(B) (D)	(-60 + j75) 135 A	A				
52.	(120)	sending end current and $i = j 15$) A and $(180 - j 90)$) A, respective	ly. The chargi	ng curre		line are		
	` ′	AB - CD = 0	(B) (D)	A = C, B = D)				
51.		medium transmission line, A = B, C = D				e related as			
		nins in operation for 2000 h 0.33 % (B) 3.33	ours in a year. % (C)						
50.		ant with 10 MW installed					Wh and		
	(A) (C)	remain constant	•	becomes uns	-	iive siope			
49.		he speed increases, the torque developed by a dc servo motor decrease with a negative slope (B) increases with a positive slope							

In a power flow program the input and output data, respectively, at the kth load bus are

(B) P_k , Q_k and V_k , δ_k

(D) P_k , δ_k and V_k , Q_k

58.

59.

60.

61.

62.

(B)

(C)

(B)

(D)

(B)

(C)

(D)

(A) P_k , V_k and Q_k , δ_k (C) V_k , δ_k and P_k , Q_k

The effect of corona is less by using

(D) overhead lines of higher voltages

(A) supplying lagging kVA

(A) tap changing transformer

booster transformer

voltage regulating transformer

phase-angle regulating transformer

voltage control (C) frequency control

(A) overhead lines of large conductor size

under ground cable of small conductor size

overhead lines having less spacing between conductors

maintaining a higher voltage than at the sending end

Real power flow in transmission lines is controlled by

A synchronous condenser is used at the receiving end of a transmission line for

	m=1	m=1	m=1	m=1	
63.	(A) load angles	e of a n-bus power	(B) active	improved by controlling e power flows blex power flows	the
64.	-	_		ansformation matrix (
	(A) $V_{1,2,0} = TV_{a,l}$ (C) $V_{0,1,2} = TV_{a,l}$	o,c	(B) $V_{1,2,0}$ (D) $V_{1,2,0}$	$=\frac{1}{3}TV_{a,b,c}$	
	(C) $V_{0,1,2} = TV_{a,l}$	<i>t,c</i>	(D) 1,2,0	$2^{1 \cdot a,b,c}$	
65.	1200 A up to shor	hronous generator t-circuit fault poin (B) 2400 A	t. The short-circ		ult current of
Set -	A		9		EE

The injected complex power for a given bus system, given Ybus, Zbus, bus voltage for

(A) $\sum_{i=1}^{n} Y_{im} V_{m} V_{i}$ (B) $\sum_{i=1}^{n} Y_{im} V_{m} V_{i}^{*}$ (C) $\sum_{i=1}^{n} Z_{im} V_{m} V_{i}^{*}$ (D) $\sum_{i=1}^{n} Y_{im} V_{m}^{*} V_{i}$

66.		ngle-line-to-gro voltage sag						es voltage flicker				
67.	(A)	tio relay by using line-to-neutral voltage protect 3-phase faults (B) double line faults double-line-to-ground faults (D) generator bus earth faults										
68.	(A)	ection of transformer from all types of faults is by using over current relay distance relay (D) Buchholz relay										
69.	The voltage that appears across the contacts of the circuit breaker after the arc extiss called as (A) arc voltage (B) recovery voltage								nction			
		re-striking vo	ltage		(D)		_					
70.	Diffe (A) (B) (C) (D)	positive sequence currents negative sequence currents										
71.	For a	synchronous	machir	ne swing curv	e, the l	oad angle swin	igs bet	ween δ_{min} and δ	max,			
		e damping cons	stant is									
		equal to zero less than zero			(B) (D)	C		l inertia constant				
					` ′	_	ianzcc	i incrtia constant				
72.		breakeven dista 100 kM	ance fo	or HVDC tran	nsmissio (B)							
	(A) (C)	500 kM - 800) kM		(D)		κM					
73.	A ho (A) (B)	A homo-polar HVDC link consists of (A) single-conductor with positive polarity (B) two conductors with one positive and another negative polarity (C) two conductors having the same polarity with a ground return										
74.	A sta	atic VAR comp										
	(A) (B)	series connects										
	(C)	energy storag			onuon	CI						
	(D)				d contro	oller						
75.	The (A) (B) (C) (D)	e Interline Power Flow Controller in a transmission system injects voltage by static series converters injects current by static shunt converters injects voltage and current by the static series and shunt converters										
Set -	A				10				EE			

76	The system given by the transfer function, G	(c) -	1 + sT
70.	The system given by the transfer function, o	(s) -	$1+sT_1$

- (A) non-minimum phase system
- (B) minimum phase system
- (C) system with transport lag
- (D) unstable system
- 77. The closed-loop transfer function of unity feedback system with $G_1(s) = \frac{K}{s}$ and $G_2(s) = \frac{R}{RCs + 1}$ in the forward path is
 - (A) $\frac{KR}{KRs^2 + s + RC}$
- (B) $\frac{RCs^2 + s}{RCs^2 + s + KR}$ (D) $\frac{KR}{RCs^2 + s + KR}$
- (C) $\frac{RC}{RCs^2 + s + KR}$

- The open-loop transfer function of a unity feedback system is $\frac{K_p K}{T_{c+1}}$. The steady state **78.** error in the unit-step response is
 - (A) Zero
- (B) $\frac{1}{1+K_{p}K}$ (C) $\frac{1}{1-K_{p}K}$ (D) $K_{p}K$
- **79.** For a unity feedback system with a transfer function G(s) and input R(s), the steady state
 - (A) $\lim_{s \to 0} \frac{sR(s)}{1 + G(s)}$ (B) $\lim_{s \to 0} \frac{R(s)}{1 + G(s)}$ (C) $\lim_{s \to 0} \frac{1}{1 + G(s)}$ (D) $\lim_{s \to 0} \frac{R(s)}{s(1 + G(s))}$
- A system represented by the characteristic equation $s^4 + 2s^3 + 3s^2 + 2s + K$ is said to be 80. stable if
 - (A) K > 0
- (B) 1 > K > 0
- (C) 2 > K > 0 (D) K > -1
- 81. The Nyquist plot of a unity feedback minimum phase system is drawn for different values of gain, K. The system is stable if the plot
 - (A) does not enclose the (-1 + i 0) point
 - (B) passes through the (-1 + i 0) point
 - (C) encloses the (-1 + i 0) point
 - passes through the (-2 + j 0) point
- For unity feedback control system, the magnitude of $G(j\omega_1)$ at the phase cross-over **82.** frequency, ω_1 is measured as 2/3 from the Bode plot. The gain margin is

11

- (B)
- (D) 9/4
- 83. A lag-lead compensator for a second order system
 - (A) improves steady state errors, reduces relative stability
 - marginally improves steady state errors, increases relative stability
 - reduces steady state errors, increases relative stability (C)
 - improves both transient response and steady state response

In the Bode plots, the magnitude and phase angle of the factor $(1 + j \omega T)$ are

(A) $20\log|1+j\omega T|$, $\tan^{-1}\frac{1}{\omega T}$ (B) $-20\log\left|\frac{1}{1+j\omega T}\right|$, $\tan^{-1}\omega T$

 $(D) -20\log\left|\frac{1}{1+j\omega T}\right|, 0$

(B) $X(t) = A^{-1}X(0)$ (D) $X(t) = A^{T}X(0)$

For the state equation $\dot{X} = AX$ where X = n-vector and $A = n \times n$ constant matrix. Given

The mathematical model of a system is $\ddot{y} + 3\dot{y} + 2y = u$, where u = input, and y = output.

(A) $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ (B) $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ (C) $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} [u]$ (D) $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} [u]$

The point of intersection of two asymptotes in a plot is called

(A) corner frequency in uniform scale

(C) $|1+j\omega T|$, $\cos^{-1}\omega T$

 $X(t) = e^{-At}X(0)$

 $X(t) = e^{At}X(0)$

The matrix state equation for $y = x_1$, is

corner frequency in logarithmic scale

phase cross-over frequency in uniform scale

the initial state X(0), the solution of the state equation

phase cross-over frequency in logarithmic scale

84.

85.

86.

87.

Set - A

(B)

(C)

(D)

(A)

(C)

88.	The state transition matrix of a state equation, $\dot{X} = AX + Bu$ (A) $L^{-1}[(sI - A)^{-1}]$ (B) $[(sI - A)^{-1}]$ (C) $L^{-1}[(sI - A)]$ (D) $L^{-1}[(A - sI)^{-1}]$
89.	Given $\dot{X} = AX + Bu$ where A is a 2 × 2 matrix and B is a 2 × 1 matrix. The condition for controllability is (A) $[A:AB]$ (B) $[B:AB]$ (C) $[AB:A]$ (D) $[AB:B]$
90.	Given $\dot{X} = AX + Bu$, $y = CX$ where $A = 2 \times 2$ matrix, $B = 2 \times 1$ matrix and $C = 1 \times 2$ matrix. The condition for observability is (A) $\begin{bmatrix} CB : CAB \end{bmatrix}$ (B) $\begin{bmatrix} B : AB \end{bmatrix}$ (C) $\begin{bmatrix} B^* : A^*B^* \end{bmatrix}$ (D) $\begin{bmatrix} C^* : A^*C^* \end{bmatrix}$
91.	A Wien bridge is used to measure (A) quality factor of a coil (B) audio frequency of a signal (C) capacitance of a capacitor (D) inductance of a coil
92.	The full scale range of PMMC voltmeter is 100 V and its sensitivity is $1000 \Omega/\text{V}$. If the meter reads 50 V , the current through the voltmeter is (A) 0.05 mA (B) 0.5 mA (C) 5 mA (D) 50 mA

12

 $\mathbf{E}\mathbf{E}$

93.	The power in a 3-phase load is mean zero, then the load power factor is (A) Zero (B) 0.5	easured by two watt meters. If one watt meters (C) 0.866 (D) unity	eter reads					
94.	The burden of the instrument transfor (A) VA rating (B) secondary winding current (C) secondary winding voltage (D) (secondary winding current) ² ×	ormers is × resistance of secondary winding						
95.	Digital meters are superior over analog (A) less expensive (B) output reading is binary in natural (C) output impedance is less (D) installation is easy as panel met	ture						
96.	The most accurate instrument for mea (A) X-Y plotter (C) phase sensitive detector	easuring phase difference between two signa (B) oscilloscope (D) electronic counter/timer	ls is					
97.	calculated maximum errors of ±1 calculated power is	eter and ammeter method in a circuit re $\%$ and \pm 2 %, respectively. The likely $\%$ (C) \pm 1.5 % (D) \pm 0.22 %						
98.	Major cause for creeping in induction (A) only current coil is energized (C) over compensation for friction	(B) under compensation for friction						
99.	The semiconductor device that operat (A) light emitting diode (C) field effect transistor	rates in the reverse breakdown region (B) zener diode (D) bipolar junction transistor						
100.	The region consisting of holes and ele (A) diffusion region (C) recombination region	electrons near the p-n junction of a diode is (B) neutral zone (D) depletion region						
101.	A BJT's voltage stand-off capability when the base current is zero (A) collector-emitter breakdown voltage (B) minimum collector-emitter voltage (C) collector-base breakdown voltage (D) emitter-base voltage							
102.	region. The slew rate is	of a certain operation amplifier is \pm 8 V in (C) 8 V/ μ s (D) 16 V/ μ s	the linear					
Set - [A	13	EE					

103.	The	critical frequen	cy of	a single-pole	active l	ow-pass filte	r with R	C network is					
		2π		1		RC		1					
	(A)	$\frac{2\pi}{RC}$	(B)	$\frac{1}{2\pi RC}$	(C)	2π	(D)	$2\pi\sqrt{RC}$					
104.		An 8-bit analogue-to-digital converter returns for an analogue input signal											
	(A)												
	(B)	B) 2 ¹⁶ discrete values C) 2 ¹⁰ discrete values											
	(D)	2 ⁸ discrete va	lues										
105.		IC used for 2:1		-	(0)	10.74150	(D)	10.54155					
	(A)	IC 74150	(B)	IC 74151	(C)	IC 74153	(D)	IC 74157					
106.		sample-and-ho		•		is							
	(A) time required following a sample(B) time required for the switch to open												
	(B)	time required transition tim				and hold							
	(C)				-		witch						
	(D)	(D) time from the hold command to the opening of the switch											
107.	A bi-	A bi-stable multi-vibrator can be built by using											
	(A)	e e e e e e e e e e e e e e e e e e e			(B) AND gates								
	(C)	C) AND or OR gates (D) Excusive-NOR gates											
108.	Semi	iconductor dev	ices aı	re protected b	y a fuse	and the mat	erial use	ed is					
	(A)	silver	(B)	gold	(C)	copper	(D)	tin					
109.	The	The power loss in a transistor is a function of the product of											
	(A)	(A) base current and collector-emitter voltage											
	(B) collector current and base current												
		collector curr			_								
	(D) collector current and collector-emitter voltage												
110.	A TI	RIAC can be sv	witche	d into on-sta	te by								
	(A)	positive gate		-									
	(B)	negative gate		=									
	(C)	positive or ne	_	-									
	(D) sinusoidal gate current												
111.	The	conducting SC			he on-sta	ate current is							
	(A)	below the late	_										
	(B)	below the hol	_										
	(C)	equal to the re	everse	leakage curi	ent								
	(D)	zero											
Set - [A				14				EE				

Set - [A				15				EE
120.	Fast (A) (B) (C) (D)	acceleration ar separately ex DC series mo AC series mo 3-phase squir	cited dotor	lc motor		ric tract	tion drive mo	otor is	
119.	(A) (C)	voltage collect DC voltage 3-phase AC,	50 Hz		(B) (D)	single- single-	phase AC, 5 phase AC, 2	5 Hz	
118.	In slip-energy recovery scheme of converter-fed 3-phase induction motor, super synchronous speeds are possible by (A) injecting voltage into the stator (B) injecting voltage into the rotor (C) extracting voltage from the stator (D) extracting voltage from the rotor.								
117.	angle	enerative break e of SCRs is 30°					•		firing delay
116.	25 H (A)	starting torque z as compared more	with t (B)	the same mot double	tor opera (C)	ting at 3 equal	50 Hz is (D)	less	
		$\frac{4}{\pi}V_{dc}$				$rac{4V_{_{dc}}}{\sqrt{2}\pi}$	(D)	$\frac{4V_{dc}}{\sqrt{3}\pi}$	
115.		fundamental c	-		-	oltage o	f a full-bridş	ge single-p	ohase square-
114.	The source (A)		•	-up chopper 0.5		-			m a 80 V dc
	curre (A)	ent is $\frac{120}{\pi}$	(B)	$\frac{120\sqrt{2}}{\pi}$	(C)	$\frac{240}{\pi}$	(D)	$\frac{120}{\pi\sqrt{2}}$	
113.		lly controlled g delay angle	_	-	-				
	(A)	$\cos\frac{\alpha}{2}$	(B)	$\cos \alpha$	(C)	unity	(D)	$\cos 2\alpha$	
112.	-	power factor og g delay angle, o	-			single-	phase semi-c	converter (operating at a

SPACE FOR ROUGH WORK