

Booklet No. :

EI - 15

Instrumentation Engineering

Duration of Test : 2 Hours

Max. Marks: 120

Hall Ticket No.

Name of the Candidate :_____

Date of Examination :_____OMR Answer Sheet No. : _____

Signature of the Candidate

Signature of the Invigilator

INSTRUCTIONS

- 1. This Question Booklet consists of **120** multiple choice objective type questions to be answered in **120** minutes.
- 2. Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer.
- 3. Each question carries **one** mark. There are no negative marks for wrong answers.
- 4. This Booklet consists of **16** pages. Any discrepancy or any defect is found, the same may be informed to the Invigilator for replacement of Booklet.
- 5. Answer all the questions on the OMR Answer Sheet using **Blue/Black ball point pen only.**
- 6. Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully.
- 7. OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall.
- 8. Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall.
- 9. No part of the Booklet should be detached under any circumstances.
- 10. The seal of the Booklet should be opened only after signal/bell is given.

INSTRUMENTATION ENGINEERING (EI)

1.	The s	set of the equation	ions <i>x</i>	z + y + z = 3, x	x + 2y + 3z = 4 and $x + 4y + 9z = 6$ has						
	(A)	unique solutio	n		(B)	(B) trivial solution					
	(C)	many solution	IS		(D)	no solu	ution				
2.	The t	hree eigen valu	ues of	the matrix $\begin{bmatrix} 2\\ 0\\ 1 \end{bmatrix}$	0 2 0	$\begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$ are					
	(A)	0, 0, 3	(B)	1, 2, 3	(C)	1, –i, i		(D)	2, 2, 2		
3.	If $f(x)$	c) is an odd fun	ction	in the interval	(–L, I	L), then	the Four	rier co	befficient a_n is	8	
	(A)	1	(B)	does not exis	t (C)	0		(D)	equal to b_n		
4.	If F i	s a conservativ	e force	e field, then th	ere ex	tist a sca	ılar func	tion ¢)		
	(A)	∇ .F = 0	(B)	$\mathbf{F} = \nabla^2 \boldsymbol{\phi}$	(C)	$F = \nabla G$	þ	(D)	none		
5.	The p	particular integ	ral (D	$\frac{1}{(-2)^2}\sin 2x$ is							
	(A)	$\frac{1}{4}\sin 2x$	(B)	$\frac{x}{2}\cos 2x$	$(C)\frac{1}{4}$	cos	2 <i>x</i>	(D)	none		
6.	The c	complete integr	al of .	$\sqrt{p} + \sqrt{q} = 1$ is							
	(A)	z = ax + by + c			(B)	$z = \sqrt{z}$	$\overline{x} + \sqrt{y} +$	⊦c			
	(C)	z = ax + (1 - c)	\sqrt{a}) ² y	+ <i>c</i>	(D)	z = ax	+(1-)	\overline{a})y+	C		
7.	If $f($	$f(z) = \frac{z}{(z+1)(z+1)}$	$\overline{2}$ the	en the residue	of <i>f</i> (z) at z =	=-2 is				
	(A)	0	(B)	2	(C)	1		(D)	-2		
8.	The $f(x) =$	variance of $=\frac{e^{-\lambda}\lambda x}{x!}, \lambda \ge 0$ i	the s	random vari	able	whose	probab	ility	distribution	function	
	(A)	λ^2	(B)	$\frac{1}{\lambda}$	(C)	λ		(D)	1		
Set - [A				2					EI	

The	minimum and	maxin	num values of	the co	efficient of con	rrelatio	on are
(A)	-1 and 1	(B)	0 and 1	(C)	-1 and 0	(D)	-2 and 2
For t	the initial value	e prob	$\lim \frac{dy}{dx} = x + y$	<i>y</i> + <i>xy</i>	and $y(0) = 1$,	then th	the value of $y(0.025)$ by
Eule	r's method is						
(A)	0.025	(B)	1.05	(C)	1.025	(D)	none
The wou	energy stored nd with 1000 t	in the urns of	e magnetic fie f wire carrying	eld at a g a curr	a solenoid 30 rent of 10 A is	cm lo	ng and 3 cm diameter
(A)	0.015 J	(B)	0.15 J	(C)	0.5 J	(D)	1.15 J
The 2 V	root-mean squ dc and a 4 V p	are v eak to	alue of voltag peak square w	e wav vave is	eform consist	ing of	a super imposition of
(A)	2 V	(B)	$\sqrt{6}$ V	(C)	$\sqrt{8}$ V	(D)	$\sqrt{12}$ V
A ge Z _P or	enerator of intant	ernal i	impedance IZ _C	3 deliv	vers maximum	n powe	r to a load impedance
(A)	$Z_P < Z_G$	(B)	$Z_P > Z_G$	(C)	$Z_P = Z_G$	(D)	$Z_{\rm P} = 2 Z_{\rm G}$
A D the a	C voltage sour	rce is tage d	connected acro rops entirely a	oss a s cross t	eries RLC cir he	cuit. U	Inder steady condition,
(A)	C only	(B)	R only	(C)	L only	(D)	R and L combination
The self i	maximum val	ue of $L_1 = 49$	mutual induct $0 \text{ mH and } L_2 =$	ance c 81 m	of two coils ir H is	nductiv	ely coupled coils with
(A)	130 mH	(B)	3969 mH	(C)	32 mH	(D)	63 mH
The	short-circuit a	dmitta	nce matrix of	two p	ort network i	$s \begin{bmatrix} 0\\1/2 \end{bmatrix}$	$\begin{bmatrix} -1/2\\ 0 \end{bmatrix}$, the two port
netw	OFK 1S						
netw (A)	non-reciproca	al and	passive	(B)	non-reciproc	al and	active
netw (A) (C)	non-reciproca	al and d pass	passive ive	(B) (D)	non-reciproc reciprocal an	al and d activ	active /e
netw (A) (C) A cir	non-reciproca reciprocal an rcuit which reso	al and d pass	passive ive at 1 MHz has a	(B) (D)	non-reciproc reciprocal an 00. Bandwidth	al and d activ	active re en half-power point is
netw (A) (C) A cin (A)	ork is non-reciproca reciprocal an rcuit which reso 10 kHz	al and d pass onates (B)	passive ive at 1 MHz has a 100 kHz	(B) (D) (Q of 1 (C)	non-reciproc reciprocal an 00. Bandwidth 10 Hz	al and d activ betwe (D)	active re een half-power point is 100 Hz
	The (A) For the Euler (A) The wourd (A) The 2 V (A) (A) A ge ZP (C) (A) A D the a (A) The self if (A) The self if (A)	The minimum and (A) -1 and 1 For the initial value Euler's method is (A) 0.025 The energy stored wound with 1000 t (A) 0.015 J The root-mean squ 2 V dc and a 4 V period (A) 2 V A generator of inter Z_P only if (A) $Z_P < Z_G$ A DC voltage sound the applied DC vol (A) C only The maximum vali- self inductance of I (A) 130 mH	The minimum and maxim (A) -1 and 1 (B) For the initial value proble Euler's method is (A) 0.025 (B) The energy stored in the wound with 1000 turns of (A) 0.015 J (B) The root-mean square v 2 V dc and a 4 V peak to (A) 2 V (B) A generator of internal is Z_P only if (A) $Z_P < Z_G$ (B) A DC voltage source is a the applied DC voltage data (A) C only (B) The maximum value of self inductance of $L_1 = 49$ (A) 130 mH (B)	The minimum and maximum values of (A) -1 and 1 (B) 0 and 1 For the initial value problem $\frac{dy}{dx} = x + y$ Euler's method is (A) 0.025 (B) 1.05 The energy stored in the magnetic field wound with 1000 turns of wire carrying (A) 0.015 J (B) 0.15 J The root-mean square value of voltag 2 V dc and a 4 V peak to peak square w (A) 2 V (B) $\sqrt{6}$ V A generator of internal impedance $ Z_{C}$ Z _P only if (A) $Z_{P} < Z_{G}$ (B) $Z_{P} > Z_{G}$ A DC voltage source is connected acre the applied DC voltage drops entirely a (A) C only (B) R only The maximum value of mutual induct self inductance of L ₁ = 49 mH and L ₂ = (A) 130 mH (B) 3969 mH The short-circuit admittance matrix of	The minimum and maximum values of the cod (A) -1 and 1 (B) 0 and 1 (C) For the initial value problem $\frac{dy}{dx} = x + y + xy$ Euler's method is (A) 0.025 (B) 1.05 (C) The energy stored in the magnetic field at a wound with 1000 turns of wire carrying a curr (A) 0.015 J (B) 0.15 J (C) The root-mean square value of voltage wav 2 V dc and a 4 V peak to peak square wave is (A) 2 V (B) $\sqrt{6}$ V (C) A generator of internal impedance $ Z_G $ delive Z_P only if (A) $Z_P < Z_G$ (B) $Z_P > Z_G$ (C) A DC voltage source is connected across a s the applied DC voltage drops entirely across t (A) C only (B) R only (C) The maximum value of mutual inductance of self inductance of $L_1 = 49$ mH and $L_2 = 81$ m (A) 130 mH (B) 3969 mH (C)	The minimum and maximum values of the coefficient of cor (A) -1 and 1 (B) 0 and 1 (C) -1 and 0 For the initial value problem $\frac{dy}{dx} = x + y + xy$ and $y(0) = 1$, Euler's method is (A) 0.025 (B) 1.05 (C) 1.025 The energy stored in the magnetic field at a solenoid 30 wound with 1000 turns of wire carrying a current of 10 A is (A) 0.015 J (B) 0.15 J (C) 0.5 J The root-mean square value of voltage waveform consist 2 V dc and a 4 V peak to peak square wave is (A) 2 V (B) $\sqrt{6}$ V (C) $\sqrt{8}$ V A generator of internal impedance $ Z_G $ delivers maximum Z_P only if (A) $Z_P < Z_G$ (B) $Z_P > Z_G$ (C) $Z_P = Z_G$ A DC voltage source is connected across a series RLC cirr the applied DC voltage drops entirely across the (A) C only (B) R only (C) L only The maximum value of mutual inductance of two coils in self inductance of $L_1 = 49$ mH and $L_2 = 81$ mH is (A) 130 mH (B) 3969 mH (C) 32 mH	The minimum and maximum values of the coefficient of correlation (A) -1 and 1 (B) 0 and 1 (C) -1 and 0 (D) For the initial value problem $\frac{dy}{dx} = x + y + xy$ and $y(0) = 1$, then the Euler's method is (A) 0.025 (B) 1.05 (C) 1.025 (D) The energy stored in the magnetic field at a solenoid 30 cm low ound with 1000 turns of wire carrying a current of 10 A is (A) 0.015 J (B) 0.15 J (C) 0.5 J (D) The root-mean square value of voltage waveform consisting of 2 V dc and a 4 V peak to peak square wave is (A) 2 V (B) $\sqrt{6}$ V (C) $\sqrt{8}$ V (D) A generator of internal impedance $ Z_G $ delivers maximum power Z_P only if (A) $Z_P < Z_G$ (B) $Z_P > Z_G$ (C) $Z_P = Z_G$ (D) A DC voltage source is connected across a series RLC circuit. Us the applied DC voltage drops entirely across the (A) C only (B) R only (C) L only (D) The maximum value of mutual inductance of two coils inductive self inductance of $L_1 = 49$ mH and $L_2 = 81$ mH is (A) 130 mH (B) 3969 mH (C) 32 mH (D)

18.	A pr divis	essure gauge i sions. One fifth	s calit of a s	orated from 0- cale division c	50 kN an be	I/m ² . It has a read with certa	uniforr ainty. 7	n scale with 100 sca The gauge has	le		
	(A)	a resolution o	f 0.5 k	xN/m^2	(B)	threshold of	0.15 kl	N/m ²			
	(C)	resolution of	0.1 kN	J/m^2	(D)	dead zone of	0.2 kN	J/m^2			
19.	A ca 12 V	pacitor is charg	ged by erval.	a constant cu The value of c	rrent o capacit	ent of 2 mA and results in a voltage increase of acitance is					
	(A)	0.75 mF	(B)	1.33 mF	(C)	0.6 mF	(D)	1.67 mF			
20.	The	maximum prot	ability	y has a large va	alue fo	or small value	of				
	(A)	(A) standard deviation				precision index					
	(C)	uncertainty			(D)	average devi	ation				
21.	In se damj	cond order sys ping factor is 0	stem tl .866. 7	he frequency of The natural fre	of dam equenc	ped oscillation y of oscillation	n is 18 n is	rad /sec. The value	of		
	(A)	15.6 rad/s	(B)	19.3 rad/s	(C)	36 rad/s	(D)	9 rad/s			
22.	The	transfer functio	on of a	system is G(s	$) = \frac{10}{S(S)}$	$\frac{0e^{-st}}{1+10}$. The sys	tem				
	(A)	has a transpor	rtation	lag	(B)	is a non-line	ar syste	em			
	(C)	is a linear sys	tem		(D)	has a zero de	ead tim	e			
23.	Acco rejec	cording to Chauvenet's criterion, a better of the probability of obtaining t				ing out of a iation from m	set of ean is	n readings should l	be		
	(A)	less than 1/2n	l		(B)	greater than 1/2n					
	(C)	less than 1/n			(D)	less than $1/\sqrt{1}$	$\sqrt{2n}$				
24.	A m equa	easurement system tion is $3\frac{dy}{dt}$ +5y	stem w $y = 8x$.	vith input <i>x</i> (t) The static sen	and or sitivity	utput of y(t) is y of the systen	s descri n is	bed by the differenti	al		
	(A)	0.60	(B)	1.60	(C)	1.67	(D)	2.67			
25.	A tra beha	ansducer has a ves as	n out	put impedance	e of 1	$k\Omega$ and a lo	ad resi	stance of 1 Ω , then	it		
	(A)	constant power	er sou	rce	(B)	constant volt	tage so	urce			
	(C)	constant curre	ent sou	irce	(D)	constant impedance source					
26.	In a the r	transducer, the esulting error is	e obser s calle	rved output de d	viates	from the corr	ect val	ue by a constant fact	or		
	(A)	dynamic error	r		(B)	hysteresis er	ror				
	(C)	non-conformi	ity erro	or	(D)	sensitivity error					
Set -	A				4				EI		

- 27. A resistance potentiometer has a total resistance of $10 \text{ k}\Omega$ and is rated 4W. If the range of the potentiometer is 0 to 100 mm, then its sensitivity in V/mm is
 - (A) 1.0 (B) 2.0 (C) 2.5 (D) 25
- 28. For signal conditioning of the piezoelectric type transducer, we require
 - (A) a charge amplifier (B) a differential amplifier
 - (C) an instrumentation amplifier (D) a transconductance amplifier
- **29.** Two inductive transducers working on the principle of change of self inductance L are connected in a push-pull arrangement. If the change of inductance of transducers is ΔL , the change of inductance of output terminal is
 - (A) ΔL (B) $2\Delta L$ (C) $\pm 2\Delta L$ (D) Zero
- **30.** A piezoelectric accelerometer has a sensitivity of 100 mV/g. The transducer is subjected to a constant acceleration of 5 g. The steady state output of the transducer will be
 - (A) zero (B) 100 mV (C) 0.5 V (D) 5 V
- **31.** Magnetostriction is the effect produced when a magnetic material is subjected to change of magnetization results in change of
 - (A) permittivity
 - (B) permeability
 - (C) dimensions
 - (D) temperature

32. A barium titanate crystal has a thickness of 2 mm. Its voltage sensitivity is 12×10^{-3} Vm/N. It is subjected to a pressure of 0.5 MN/m². Calculate the voltage generated

- (A) 3 V (B) 6 V (C) 9 V (D) 12 V
- **33.** Pirani gauge is used for the measurement of pressure in the range of
 - (A) 10^{-1} mm to 10^{-3} mm of Hg (B) 10^{-1} mm to 10^{-6} mm of Hg
 - (C) 10^{-1} mm to 10^{-9} mm of Hg (D) 10^{-1} mm to 10^{-12} mm of Hg
- **34.** In a drag cup type a.c. tachogenerator, the output voltage is
 - (A) sinusoidal (B) in the form of pulses
 - (C) modulated waveforms (D) constant dc voltage
- **35.** If the temperature of a radiating body is $1500 \,^{\circ}$ C, the wavelength at which the maximum radiant energy occurs is

(A)	2.8 µm	(B)	1.63 μm	(C)	1 μm	(D)	4.5 μm	
Set - A				5				EI

- **36.** Magnetic flux can be measured by which of the transducers ?
 - (A) Capacitive pickup (B) Inductive pickup
 - (C) Piezoelectric pickup (D) Hall effect pickup
- **37.** In a venturimeter the flow rate is 0.15 m^3 /s when the differential pressure is 30 kN/m^2 . What is the value of flow when the differential pressure is 60 kN/m^2 ?

(A) $0.212 \text{ m}^3/\text{s}$ (B) $0.106 \text{ m}^3/\text{s}$ (C) $0.3 \text{ m}^3/\text{s}$ (D) $0.075 \text{ m}^3/\text{s}$

38. A diaphragm has a natural frequency of 30 kHz. If both the diameter and thickness are halved, the natural frequency is

(A) 15 kHz (B) 240 kHz (C) 60 kHz (D) 120 kHz

- **39.** The torque in a rotating shaft is measured using strain gauges. The strain gauges must be positioned on the shaft such that axes of the strain gauges are at
 - (A) 0° with respect to the axis of the shaft
 - (B) 30° with respect to the axis of the shaft
 - (C) 45° with respect to the axis of the shaft
 - (D) 90° with respect to the axis of the shaft
- **40.** Measurement of viscosity involves measuring
 - (A) Corioli's forces (B) Buoyant force
 - (C) Centrifugal force (D) Frictional force
- **41.** The input impedance (Z_i) and the output impedance (Z_o) of an ideal transconductance amplifier are

(A) $Z_i = 0, Z_o = 0$ (B) $Z_i = 0, Z_o = \infty$ (C) $Z_i = \infty, Z_o = 0$ (D) $Z_i = \infty, Z_o = \infty$

- 42. A forward-biased silicon diode when carrying negligible current, has a voltage drop of 0.64 V. When the current is 1 A it dissipates 1W. The On-resistance of the diode is (A) 1.0Ω (B) 0.64Ω (C) 0.74Ω (D) 0.36Ω
- 43. In a negative feedback amplifier using voltage series feedback
 (A) R_i decreases and R_o decreases
 (B) R_i decreases and R_o increases
 (C) R_i increases and R_o decreases
 (D) R_i increases and R_o increases
- **44.** The first dominant pole encountered in the frequency response of a compensated op-amp is approximately at

 (A) 5 Hz
 (B) 10 kHz
 (C) 1 MHz
 (D) 100 MHz

 Set - A
 6
 EI

45. An n-type semiconductor strain gauge has a nominal resistance of 1000Ω and gauge factor of -100. The resistance of the gauge, when a compressive strain of 100μ m/m is applied, is

(A) 900Ω (B) 990Ω (C) 1100Ω (D) 1010Ω

46. A diode whose internal resistance is 10 Ω , is to power supply to 1000 Ω load from 110 V (rms) source supply. Calculate the DC and AC load currents

(A)	49.02 mA, 77 mA	(B)	77 mA, 49.02 mA
(C)	77 A, 49.02 A	(D)	49.02 A, 77 A

47. An audio amplifier is designed to have a small-signal bandwidth of 20 kHz. The openloop low-frequency voltage gain of the op-amp is 10⁵ and unity gain bandwidth is 1 MHz. What is the maximum closed-loop voltage gain for this amplifier ?

(A) 500 (B) 5×10^6 (C) 2×10^6 (D) 50

- **48.** An ideal op-amp has the characteristics of an ideal
 - (A) voltage controlled voltage source (B) voltage controlled current source
 - (C) current controlled voltage source (D) current controlled current source

49. A 1st order low-pass Butter-Worth filter has a cut-off frequency of 1 kHz for C = 0.01 μF. Now, if the cut-off frequency has to change by a scaling factor of 0.625.What should be the value of resistor ?
(A) 15.9 kΩ (B) 25.44 kΩ (C) 9.95 kΩ (D) 25.47 kΩ

- 50. Three identical amplifiers with each one having a voltage gain of 50, input resistance of 1 k Ω and output resistance of 250 Ω are cascaded. The open circuit voltage gain of the combined amplifier is
 - (A) 49 dB (B) 51 dB (C) 98 dB (D) 102 dB
- **51.** A class B push-pull complementary symmetry amplifier uses
 - (A) two npn transistors
 - (B) one pnp and one npn transistor
 - (C) two pnp transistors
 - (D) one pre-amplifier of npn transistor followed by amplifier of two transistor
- **52.** A unity gain buffer amplifier has a bandwidth of 1 MHz. The output voltage of the amplifier for an input of 2 V sinusoid of frequency 1 MHz will be

(A) 2 V (B)
$$2\sqrt{2}$$
 V (C) $\frac{2}{\sqrt{2}}$ V (D) $\frac{4}{\sqrt{2}}$ V
Set - A 7

53.	The output of an op-amplifier is 2V peak. The slew rate is 5 V/ μ s. The input sinusoidal which can be reproduced with no distortion has the maximum frequency of							
	(A)	398 kHz	(B)	398 Hz	(C)	1592 kHz	(D)	1592 Hz
54.	A hi	gh pass RC filt	er act	s as a pure diffe	erentia	ator when		
	(A)	$\omega \tau = 1$	(B)	ωτ << 1	(C)	ωτ >> 1	(D)	$\omega \tau = 0$
55.	A di The	ifferential amp	olifier gain	having CMRI	R 50,0	000 has a diff	erenti	al mode gain of 500.
	(A)	0.0001	(B)	0.1	(C)	0.001	(D)	0.01
56.	A co more	ombinational lo e separate desti	ogic c natior	ircuit which se is is	ends d	ata coming fro	om a s	ingle source to two or
	(A)	Decoder	(B)	Encoder	(C)	Multiplexer	(D)	Demultiplexer
57.	In si then	gned-magnitud the result is	le bina	ary division, if	the di	ividend is (111	00) ₂ a	and divisor is $(10011)_2$,
	(A)	(00100) ₂	(B)	(10100) ₂	(C)	(11001) ₂	(D)	(01100) ₂
58.	A lo	gic function F(A,B,C	C) = (A+B'+C)	(A'+	B'+ C) (A+B'+	C') ca	n also be written as
	(A)	$\Sigma m(2,3,6,7)$	(B)	$\Sigma m(1,2,5,6,7)$) (C)	$\Sigma m(0,1,4,5,7)$) (D)	$\Sigma m(0,2,4,6)$
59.	A 4 prop sync	bit ripple cour agation delay hronous counte	nter ar of 10 er be H	nd a 4 bit sync) ns each. If t R and S respect	hrono the we ively,	us counter are orst case delay then	made y in t	by flip-flops having a he ripple counter and
	(A)	R = 10 ns, S =	= 40 n	IS	(B)	R = 40 ns, S =	= 10 n	S
	(C)	R = 10 ns, S =	= 30 n	S	(D)	R = 30 ns, S =	= 10 n	S
60.	An 8 time	bit successive for analog inp	e appro ut of 1	oximation AD V is 20µs. Co	C has nversi	full scale readi	ng of V inp	2.55 V and conversion put is
	(A)	20 µs	(B)	10 µs	(C)	40 µs	(D)	50 µs
61.	Whe instr	n a subroutir uctions stored	ne is in/on	called, the a the	ddres	s of the instru	uction	following the CALL
	(A)	stack pointer			(B)	accumulator		
	(C)	program cour	nter		(D)	stack memory	ý	
62.	The requ	full scale outp ired bits of the	out of DAC	a DAC is 10 are	mA. I	f resolution is	to be	less than 40 μ A, then
	(A)	10	(B)	8	(C)	9	(D)	12
Set -	A				8			EI

63. The following instructions are executed sequentially Prog: XRA А MOV L,A MOV H.L INX Η DAD Η After execution of this program the contents of HL pair is (A) 0000H (B) 0101 H (C) 0002 H (D) 0001H 64. A sample and hold amplifier circuit is normally necessary before the following type of A/D converter : (A) successive approximation converter (B) flash type converter (C) voltage to frequency converter (D) dual slope integrating converter 65. Which of these interrupts of 8085 microprocessor will be recognized for both edge and level triggered inputs ? (A) INTR (B) TRAP (C) RST 7.5 (D) RST 6.5 66. DMA is particularly suited for transfer of data between (A) disk drive and CPU (B) disk drive and RAM (C) disk drive and ROM (D) disk drive and I/O 67. Which of the following discrete-time systems is time invariant? (A) y[n] = n x[n](B) y[n] = x[3n](D) y[n] = x[n-3](C) y[n] = x[-n]The inverse Laplace transform of the function $\frac{s+5}{(s+1)(s+3)}$ is 68. (B) $2e^{-t} - 2e^{-3t}$ (A) $2e^{-t} - e^{-3t}$ (D) $e^{-t} - e^{-3t}$ (C) $e^{-t} - 2e^{-3t}$ **69**. The Fourier series for a periodic signal is given as $x(t) = \cos((1.2\pi t)) + \cos((2\pi t)) + \cos((2\pi t))$ $\cos(2.8\pi t)$, the fundamental frequency of the signal is (A) 1.4 Hz (B) 1.0 Hz (C) 0.2 Hz (D) 0.4 Hz 70. Identify the transfer function corresponding to an all pass filter from the following : (A) $\frac{1-s\tau}{1+s\tau}$ (B) $\frac{1+s\tau}{1-s\tau}$ (C) $\frac{1}{1+s\tau}$ (D) $\frac{s\tau}{1+s\tau}$ Set - A 9 EI

71.	The will	region of con be	vergen	ce of the Z-tra	nsforr	n of the discre	te-tim	e signal $x[n] = 2^n u[n]$
	(A)	z > 2	(B)	z < 2	(C)	$ \mathbf{Z} > \frac{1}{2}$	(D)	$ \mathbf{z} < \frac{1}{2}$
72.	A di 50 H	gital filter has Iz interference	the tra from t	nsfer function the input, then	H(z) = the sa	$z^{2} + 1/z^{2} + 0$ mpling frequen).81. I cy of	f this filter has to reject the input should be
	(A)	200 Hz	(B)	150 Hz	(C)	100 Hz	(D)	50 Hz
73.	In a max	n FM broadca	ast, the	e maximum fi equency is 15 k	requer Hz. T	ncy deviation a he bandwidth i	allowe s close	ed is 75 kHz, and the est to
	(A)	60 kHz	(B)	180 kHz	(C)	120 kHz	(D)	240 kHz
74.	A D This	SP convolves must be an	each d	iscrete sample	with	four coefficien	ts and	they are equal to 0.25.
	(A)	high pass FI	R filter	•	(B)	high pass IIR	filter	
	(C)	low pass FIR	tilter R		(D)	low pass IIR	filter	
75.	If the	e modulation i	index o	of an AM wave	e is ch	anged from 0	to 0.5	, the transmitted power
	(A)	12.5 %	(B)	25 %	(C)	50 %	(D)	100 %
76.	The	Nyquist samp	ling rat	te for the signa	1			
	s(t) =	$=\frac{\sin{(500\pi t)}}{\pi t}\times\frac{\sin{(500\pi t)}}{\pi t}$	$\sin(700)$	$\frac{\pi t}{2}$ is given by				
	(A)	400 Hz	(B)	600 Hz	(C)	800 Hz	(D)	1200 Hz
77.	In a the r	Pulse Coded I	Modul width	ated(PCM) sig required for fa	nal sa ithful	mpled at f _s and reconstruction	l enco is	ded into an n-bit code,
	(A)	2nf _s	(B)	nf _s /2	(C)	nf _s	(D)	f _s
78.	In a bits will	digital commu are represented be orthogonal	inicatio d by si for a b	on system emp ne waves of 10 bit interval of	loying) kHz	g Frequency Sh and 25 kHz re	ift Ke spectiv	ying (FSK) the 0 and 1 vely. These waveforms
	(A)	45 µs	(B)	50 µs	(C)	200 µs	(D)	250 µs
79.	A PI	LL can be used	l to de	modulate				
	(A)	FM signal	(B)	PAM signal	(C)	PCM signal	(D)	DSB-SC signal
Set -	Α				10			EI

- 80. Source encoding in data communication system is done in order to
 - (A) enhance the information transmission rate
 - (B) reduce the transmission errors
 - (C) conserve the transmission power
 - (D) facilitate the clock recovery in the receiver

81. In Kelvin double bridge two sets of readings are taken when measuring a low resistance, one with the current in one direction and the other with direction of current reversed. This is done to

- (A) eliminate the effect of contact resistance
- (B) eliminate the effect of resistance of leads
- (C) correct for changes in battery voltage
- (D) eliminate the effect thermo-electric emfs
- 82. In a gravity controlled instrument, the deflection angle is proportional to
 - (A) the measurand (B) square of the measurand
 - (C) sine inverse of the measurand (D) sine of the measurand
- 83. In three-phase power measurement the power factor of load will be

(A)
$$\sqrt{3} \frac{(W_1 - W_2)}{(W_1 + W_2)}$$

(B) $W_1 + W_2$
(C) $\frac{(W_1 - W_2)}{W_1 + W_2}$
(D) $\frac{(W_1 - W_2)}{\sqrt{W_1 + W_2}}$

84. A DC ammeter has a resistance of 0.1 Ω and its current range is 0-100 A. If the range of the ammeter is to extend to 0-500 A the meter requires which of the following shunt resistance ?

(A) 0.010Ω (B) 0.025Ω (C) 0.011Ω (D) 1.0Ω

- **85.** A coil has been designed for high Q performance at a rated voltage and a specified frequency. If the frequency of operation is doubled and the coil is operated at the same voltage, then the Q factor and the active power P consumed by the coil will be affected as
 - (A) P is doubled and Q is halved
 - (B) P is halved and Q is doubled
 - (C) P remains constant and Q is doubled
 - (D) P decreased 4 times and Q is doubled

Set - A

- 86. Wagner's Earth Devices are used in A.C. Bridge circuits for
 - (A) eliminating the effects of inter-component capacitances
 - (B) shielding the bridge elements
 - (C) eliminating the effect of earth capacitances
 - (D) eliminating the effect of stray electrostatic fields

87. Maxwell's inductance-capacitance bridge is used for measurement of inductance

- (A) low Q coils (B) medium Q coils
- (C) high Q coils (D) low and medium Q coils
- **88.** The deflection of an electron beam on CRT screen is 10 mm. Suppose the pre-accelerating anode voltage is halved and the potential between deflecting plates is doubled, the deflection of the electron beam will be

(A) 80 mm (B) 40 mm (C) 20 mm (D) 10 mm

89. The resonant frequency of an RLC series circuit is 1.5 MHz with the tuning capacitors set at 150 pF. The bandwidth is 10 kHz. The effective resistance of the circuit is (A) 4.7Ω (B) 9.4Ω (C) 14.75Ω (D) 29.5Ω

- **90.** An average reading digital multimeter reads 10 V when fed with a triangular wave, symmetric about the time axis. For the same input an rms reading meter will read
 - (A) $20\sqrt{3}$ (B) $-10\sqrt{3}$ (C) $-20\sqrt{3}$ (D) $10\sqrt{3}$
- 91. The operation of megger is based on
 (A) dynamo meter
 (B) electrostatic meter
 (C) moving coil meter
 (D) moving iron meter
- **92.** A 53 Hz reed type frequency meter is polarized with D.C. voltage. The new range of frequency meter is
 - (A) 106 Hz (B) 26.5 Hz (C) 53 Hz (D) 212 Hz
- 93. Light load adjustments for induction type energy meters are usually done at
 - (A) 10% of full load current (B) 5% of full load current
 - (C) 50 % of full load current (D) 1% of full load current
- 94. An astable mutivibrator uses a resistance of 100 Ω and capacitance of 0.01 μ F.The frequency of the square wave generated by it is

(A)	924 Hz	(B)	593 Hz	(C)	693 Hz	(D)	110 Hz
Set - A				12			

95. A transfer function has two zeros at infinity. Then the relation between the numerator degree (N) and denominator degree (M) of the transfer function is

(A) N = M + 2 (B) N = M - 2 (C) N = M + 1 (D) N = M - 1

- 96. The system with open-loop transfer function $G(s) H(s) = \frac{1}{s(s^2+s+1)} \text{ has a gain margin of}$ (A) -6 dB (B) Zero (C) 3.5 dB (D) 6 dB
- **97.** An amplifier with resistive negative feedback has two left half plane poles in its open-loop transfer function. The amplifier
 - (A) will be stable for all frequencies
 - (B) will always be unstable at high frequencies
 - (C) may be unstable, depending on the feedback factor
 - (D) will oscillate at low frequencies
- **98.** The proportional gain (K) of a PID controller can be expressed in terms of its Proportional Band (PB) as

(A) PB (B) $100 \times PB$ (C) PB / 100 (D) 100 / PB

- 99. The maximum phase shift that can be provided by a lead compensator with transfer function $G(s) = \frac{1+6s}{1+2s}$ is (A) 15° (B) 30° (C) 45° (D) 60°
- **100.** In the Bode plot of a unity feedback control system, the value of phase of G(jw) at the gain crossover frequency is -120° . The phase margin of the system is (A) -120° (B) -60° (C) 60° (D) 120°
- 101. A temperature control system is usually very sluggish. To improve its dynamics
 - (A) a PI controller can be used
 - (B) an integral controller can be used
 - (C) a PID controller with large I and negligible D action can be used
 - (D) a PD controller can be used
- 102. A process in a feedback loop with a proportional controller with ultimate gain of $K_u = 10$ is oscillating at a frequency of $P_u = 8$ Hz. The Zeigler-Nichols setting for the proportional controller is
- (A) 5 (B) 10 (C) 8 (D) 1.25 Set - A 13

103.	Consider the following standard state-space description of a linear time-invariant single input single output system : $x' = Ax + Bu$, $y = Cx + Du$.										
	Whie	ch one of the fo	llowi	ng statements	about th	ne transfer fun	ction c	annot be true if D =	≠0?		
	(A)	The system is	unsta	able.	(B)	The system	is strict	ly proper.			
	(C)	The system is	low	pass.	(D)	The system	is of ty	pe zero.			
104.	Which of the following is commonly us electric signal ?					ed to convert the angular position of shaft into an					
	(A)	Servo motor	(B)	Synchros	(C)	Stepper mot	or (D)	LVDT			
105	T.1	4: C 41	f								
105.	Iden	Deals have	ce or	operation in fi	IZZY CO	ntrol :					
	(I) (III)	Rule base			(II) (II)	Fuzzificatio	n ·				
	(111)	Fuzzy inferen		II I IX 7 III	(\mathbf{IV})		(D)	T TIT TI TX /			
	(A)	1-11-111-1 V	(B)	11-1-1 V -111	(C)	11-1-111-1V	(D)	1-111-11-1V			
106.	6. Which of the following controller produces Zero offset ?										
	(A)	On-Off contro	ol		(B)	Proportional	1				
	(C)	Derivative			(D)	Integral					
107.	• A step index optical fiber, whose refractive indices of the core and cladding are 1.44 and 1.40 respectively, is surrounded by air. Its numerical aperture is								4 and		
	(A)	0.12	(B)	0.75	(C)	0.06	(D)	0.34			
108.	Infra mole	red spectrome ecules having	try is	used for the	detern	nination of th	he mol	ecular structure o	f the		
	(A)	Ionic bonds			(B)	Covalent bo	nds				
	(C)	Metallic bond	ls		(D)	Hydrogen bonds					
109.	Find inter and :	the distance b ferometer givin 5896 Å .	etwee ng bes	en two success st fringes in th	sive pos ne case	sitions of the of sodium so	movab urce w	le mirror of Michaeth lines of $\lambda = 58$	elson 90 Å		
	(A)	289 nm	(B)	282 nm	(C)	280 nm	(D)	308 nm			
110.	Wha pote	t is the shortes ntial as 70 kV '	st wav ?	velength of X-	-rays pi	oduced in an	X-ray	tube with acceler	ating		
	(A)	0.015	(B)	0.018	(C)	0.017	(D)	0.019			
111.	In a 599.	spectrophoton 9 nm and 600.1	neter, nm.	the monochr The required	omator resoluti	must be able on is	e to res	solve two waveler	ngths		
	(A)	100	(B)	300	(C)	1000	(D)	3000			
Set -	A				14				EI		

112.	2. A photo diode made of Ga-As has a band gap of 1.43 eV. Find the wavelength at which it will start to operate									
	(A)	0.68 μm	(B)	0.87 µm	(C)	0.73 µm	(D)	0.84 µm		
113.	The (A)	time interval be 12.5 bpm	etweer (B)	n two successiv 72 bpm	ve R p (C)	eaks in ECG is 60 bpm	s 0.8 s. (D)	Then, the heart rate is 75 bpm		
114.	In la medi	aser, the proce	ess of	creating a po	opulati	on inversion	by su	pplying energy to the		
	(A) (C)	pumping Q-switching			(B) (D)	optical resona trimming	ator			
115.	• If half life of the radioactive radon is 3.8 days, then time at the end of which $\frac{1}{20}$ th of the									
	rado (A)	n sample will r 3.8 days	emain (B)	undecayed is 16.5 days	(C)	33 days	(D)	76 days		
116.	A He-Ne laser emit light of wavelength 672.8 nm has an output power of 2.3 mW/s. How many photons are emitted each minute by the laser ? (A) 4.6×10^{17} photons/min (B) 4.2×10^{16} photons/min									
117.	The of in 180 (A)	cardiac output idicator injecte mg s/L. Find th 8.66 L/min	is me d is 2 ne carc (B)	asured with th 0 mg and the liac output. 8 L/min	e help area u (C)	of indicator d inder the die o 6.66 L/min	ilutior lilutio (D)	n method. The quantity n curve is found to be 6 L/min		
118.	Whie (A)	ch of the follov 1-D image	ving ty (B)	ype of image is 2-D image	produ (C)	iced by a CT se 3-D image	can ma (D)	achine ? All the above		
119.	 Korotkoff sounds are used (A) as a reference for sound level measurement (B) for studying heart muscle functioning (C) for study of heart valve functioning (D) for blood pressure measurement 									
120.	In an (A) (B) (C) (D)	electromagnet square root of blood flow ra square of the logarithm of t	ic bloo f the b te blood the blo	od flow meter, lood flow rate flow rate pod flow rate	the inc	luced voltage i	s direc	tly proportional to the		

SPACE FOR ROUGH WORK